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Abstract

Replication is a mechanism extensively used to guaran-

tee the availability and good performance of data storage

services. Byzantine Quorum Systems (BQS) have been pro-

posed as a solution to guarantee the consistency of that

kind of services, even if some of the replicas fail arbitrar-

ily. Many BQS have been proposed recently, but compar-

ing their performance is not simple. In fact, it has been

shown that theoretical metrics like the number of steps or

communication rounds say as much about the practical per-

formance of distributed algorithms as they hide. This pa-

per presents a comparative evaluation of several BQS al-

gorithms in the literature. The evaluation is based both on

experiments and simulations. For that purpose, a framework

for evaluating BQS called BQSNeko was developed. The re-

sults of the evaluation allow a better understanding of the

algorithms and the tradeoffs involved.

1 Introduction

Replication is the most extensively used strategy to con-

struct fault-tolerant distributed systems. Byzantine Quorum

Systems (BQS) [14], in particular, have been presented as

a solution to construct Byzantine-tolerant distributed data

storage services with guaranteed availability, security and

robustness even if there are Byzantine faults, i.e., if some

replicas fail arbitrarily. A cause of these arbitrary failures

can be intrusions in the servers, so these systems have been

said to be intrusion-tolerant [8, 25].

The idea of BQS is to implement a set of registers (or

objects) on a set of servers. Clients communicate with the

servers by message-passing to read and write on these reg-

isters. Several BQS algorithms have been proposed in the

literature (e.g., [4, 13, 15, 14, 18, 17]). Their performance

has been assessed mostly in terms of theoretical metrics, like

the number of communication steps and message complex-

ity. However, several authors have shown that theoretical

metrics can say as much about the practical performance of

distributed algorithms as they can hide [2, 3, 19]. In fact, for

getting an accurate comparison between the performance of

different distributed algorithms, we have to consider the spe-

cific techniques used by the algorithms (e.g., cryptography)

and the environment where they are executed, considering

aspects like fault scenarios. For BQS protocols, this is not

different.

This need for a better assessment of the performance

of BQS algorithms is the motivation for this paper, which

presents a comparative evaluation of several BQS algo-

rithms in the literature. The evaluation is based both on

experiments and simulations. More precisely, we measured

the latencies of read and write operations of several BQS al-

gorithms, with several configuration settings, including ar-

bitrary (or “Byzantine”) faults.

The experiments and simulations were done using a

framework that we implemented for that purpose, BQS-

NEKO. This framework is an extension of NEKO, a generic

framework for the assessment of distributed crash fault-

tolerant algorithms [24]. BQSNEKO extends NEKO with

classes that simplify the implementation of BQS and classes

that allow the injection of Byzantine faults.

The analysis is divided in different scenarios intended to

evaluate pairs of algorithms with similar properties, but that

use different techniques to enforce those properties. All al-

gorithms studied use confirmable writes (the client knows

when its writes finish) [18] and strong semantics (atomic),

requiring only the optimal number of 3 f + 1 servers [17].

The scenarios evaluated are the following: Cost of minimal-

ity – comparison between the “minimal” atomic register de-

scribed in [17] and the atomic register implemented by the

PHALANX’s algorithm [15], which use respectively write-

backs and the listener communication pattern; Algorithms

for Byzantine clients – evaluation of the improved “min-

imal” register [17] and the BFT-BC algorithm [13]; and

Byzantine SMR versus BQS – comparison of two techniques

to implement Byzantine-tolerant data storage: Byzantine

Quorum Systems (the BFT-BC algorithm [13]) and State

Machine Replication (SMR) [21] (the Byzantine PAXOS al-

gorithm [5]).

Related work. Only a small number of works in the BQS

literature evaluate the algorithms they propose considering

Byzantine execution scenarios and/or compare them with

other algorithms. Martin et al. [17] propose and evaluate the

SBQ-L algorithm, but the analysis does not regard the oc-

currence of faults and is just about SBQ-L, while our study

compares that algorithm with others. Goodson et al. [9]



compare their consistency approach based on BQS with an-

other based on SMR, but do not consider faults. For ob-

taining its results, that work employs two different software

platforms while we do all the evaluation in a single testbed

(BQSNEKO or NEKO directly). We believe that using the

same software infrastructure allows a more refined assess-

ment of the algorithms studied, the techniques involved and

the results obtained. Moreover, our work presents not only

LAN results (as [9] does), but puts in perspective the behav-

ior of the protocols on WANs through simulations. An ear-

lier work by Amir and Wool performs a set of experiments

with non-Byzantine Quorum Systems on a WAN, but only at

structural level, using metrics such as availability and acces-

sibility [2]. Similar experiments were performed in works

referred by [2], by they also do not match our goal of eval-

uating BQS protocols for reliable distributed storage. The

same occurs with Jiménez-Peris et al. [11]: using a more

analytical approach, they compare a set of non-Byzantine

replication data strategies (including distinct quorum-based

constructions) for metrics like availability, scalability and

cost of messages.

Contributions. The main contribution of the paper is the

presentation of the first comparison of the practical perfor-

mance of several BQS, based both on experiments and simu-

lations. This comparison provides insights that can be useful

both from a theoretical point of view to help design more ef-

ficient protocols, and from a practical point of view to help

practitioners choose the most adequate BQS for their appli-

cation and environment. Furthermore, the performance of

data storages based both on BQS and state machine replica-

tion is compared. A second contribution is the presentation

of BQSNEKO, a framework for supporting the evaluation of

BQS protocols. Besides being useful for that specific pur-

pose, BQSNEKO suggests how to extend NEKO to simplify

the implementation and comparison of sets of distributed al-

gorithms of the same class, something that is quite unusual,

at least in the context of Byzantine fault-tolerant algorithms.

2 Byzantine Quorum Systems

Byzantine Quorum Systems (BQS) [14] are a way to im-

plement consistent and available Byzantine-resilient storage

systems. BQS simulate registers on a distributed environ-

ment where processes communicate by message-passing.

The system model assumes two sets of processes: a fixed

set of servers U (|U | = n) and a possibly unbounded set of

clients Π. A BQS Q is a non-empty set of subsets (quo-

rums) of U (Q ⊆ 2U ) where ∀Q1,Q2 ∈ Q, Q1 ∩ Q2 6= /0.

Each pair of processes is connected by an asynchronous re-

liable authenticated point-to-point channel. Quorums satisfy

intersection properties required to maintain the system con-

sistency. BQS rely on the assumption that there is always a

quorum where all servers are correct.

In BQS, servers are subject to Byzantine failures, i.e.,

they can deviate arbitrary from their specification. In such

cases, servers are said faulty. Otherwise, servers are said

correct. The model assumes that up to f servers may be

faulty (f-threshold). Client processes may also be faulty ac-

cording to the fault model adopted for them, which can be

fault-free or Byzantine. Clients access the system by com-

municating with read and write quorums. A read quorum

Qr (resp. write quorum Qw) is accessed by clients on a read

(resp. write) operation. When |Qr|= |Qw|, we have symmet-

ric quorums. Otherwise, we have asymmetric quorums.

Each server stores a variable x that simulates a read-write

register replicated on the set of servers U . The variable x is

usually represented by a pair 〈v,t〉 where v is the variable

value and t is a unique timestamp associated to the value v.

Read-write registers can have different consistency seman-

tics according to the behavior of the system on concurrent

read and write operations. Three consistency semantics are

usually defined [12]: safe, regular and atomic. Registers

can also support simultaneous write operations (multi-writer

multi-reader semantics) or just a single write at time (single-

writer multi-reader semantics).

Data involved on quorum operations can be either

generic (i.e., any data) or self-verifying. Self-verifying

data contains an unforgeable digital signature that allows to

check if it is modified. This is very useful for Byzantine en-

vironments because it allows correct processes to detect if

malicious servers corrupted values.

Many BQS and algorithms have been proposed in the lit-

erature, e.g., [4, 13, 15, 14, 18, 17]. The different solutions

reflect different views on how to build storage systems using

BQS, and basically differ on aspects such as: quorum orga-

nization (symmetric or asymmetric), register semantic (safe,

regular or atomic) and failure model of the clients (failure-

free, crash, Byzantine).

3 Methodology, Tools and Configurations

This section presents the methodology underlying our

work, the tools used for developing and running the experi-

ments (NEKO and BQSNEKO), and the settings and config-

urations analyzed.

3.1 Methodology

The basic method we use is a simple experimental one:

implementing several variations of a basic distributed stor-

age service that supports only read-write operations, then

evaluating and comparing their performance using experi-

ments and simulations. The reason for this restriction to

read-write operations (vs. arbitrary operations) is that BQS

have been shown to be powerful enough to implement at

most atomic registers with these two operations, not other

operations like test-and-set or increment [10].

The evaluation in Section 4 considers three scenarios.

The idea is to arrange the algorithms with similar consis-



tency semantics and quorum system structure in subsets.

The experimental results are compared with classical the-

oretical metrics and those in prior work. The objective is

to clarify the relation between the algorithms (and the tech-

niques they employ), their practical performance and the as-

pects not captured by theoretical metrics.

The experiments were done in a LAN because experi-

ments in a WAN, in practice, have to be done in the Internet,

being more subject to interferences whose impact is hard to

assess (variable CPU loads and network delays). Nonethe-

less, we establish some relations and projections between

the LAN results and results obtained over a simulated large-

scale network, in order to grasp how the algorithms would

behave in a WAN. All experiments use a low number of

servers since servers must fail independently, something that

has to be obtained using diversity, which has a cost that be-

comes higher as the number of replicas increases [20].

3.2 BQSNeko

We implemented and executed all BQS algorithms in

Java using BQSNEKO, a framework based on NEKO [24],

especially developed for our study. The only exception to

the use of BQSNEKO was the last experiment, in which we

compare BQS and SMR. In that case we used an implemen-

tation of the SMR system directly on NEKO, with an archi-

tecture similar to that of the BQS algorithms in BQSNEKO.

BQSNEKO extends the NEKO framework used for pro-

totyping and executing distributed algorithms over real and

simulated networks. BQSNEKO was created from the per-

ception of two limitations of NEKO for the implementation

of BQS algorithms: the absence of a mechanism to inject

Byzantine faults and of a “skeleton” with basic code to im-

plement BQS algorithms. BQSNEKO is essentially an ex-

tension of NEKO with these features.

Like in NEKO, in BQSNEKO a distributed environ-

ment is implemented as a set of processes communicat-

ing by message-passing. Each process maintains locally

an instance (i.e., information) of the distributed application,

which is composed by a set of processes interconnected by

one or more networks. The application instance is struc-

tured in a stack of three layers1, each of which implements

a specific service. The layers communicate with each other

exchanging messages by calling send and deliver methods:

higher layers push down messages to lower ones calling a

send method; lower layers push up messages to higher ones

calling a deliver method. Some network models are already

implemented in NEKO. Networks can be simulated (using

simulation libraries) or can be real physical networks (using

Java sockets). NEKO also provides features to develop new

network models.

An implementation of a BQS algorithm involves three as-

pects: (1) Configuration settings describing basic properties

1The current BQSNEKO version is based on version 0.9 of NEKO. The

new NEKO version (version 1.0) has a different component organization.

of the quorum system used and its configuration parame-

ters (e.g., fault-threshold, number of processes, size of read

and write quorums); (2) Messages, namely the collection of

messages exchanged by client and server BQS protocols; (3)

Protocols executed by the clients and servers.

An application in BQSNEKO has three layers (see Fig-

ure 1). The Process Layer contains the functionality of the

BQS process, either a client or a server. The Latency/Crypto

Layer is used to simulate the delays of the cryptographic op-

erations on a BQS algorithm. If the communication is done

in a real network, then the delays are not simulated but real.

In that case, the cryptographic operations are implemented

using the Java Cryptography Extensions (JCE). The Profile

Layer defines the failure profile or faultload (failure-free,

crash or Byzantine).

bqs.layers.delay.QCryptoLayerbqs.layers.delay.QDelayLayer

bqs.layers.profile.QPoisonousProfileLayer bqs.layers.profile.QNewTypeLayerbqs.layers.profile.QDoSProfileLayer

bqs.layers.profile.QProfileLayer

bqs.layers.process.QProcessLayer

bqs.layers.process.QServerLayer bqs.layers.process.QNewTypeLayerbqs.layers.process.QClientLayer

Process Layer

deliversend

Latency/Crypto Layer

deliversend

Profile Layer

deliversend

Neko Support

Figure 1. BQSNEKO process layer model

To prototype and experiment with BQSNEKO it is nec-

essary to follow three basic steps: (1) Defining the structural

properties of the BQS, implementing the BQS client and

server algorithms, and creating the messages they use. To

help with this step, BQSNEKO provides generic classes and

methods for constructing both client and server algorithms

and the messages. (2) Specifying Byzantine profiles (fault-

loads) by extending the profiles provided by BQSNEKO or

constructing new ones. (3) Configuring and running the ex-

periment. Just as for the algorithm’s implementation, BQS-

NEKO also extends the NEKO configuration by defining new

parameters related to the configuration of BQS and Byzan-

tine scenarios.

3.3 Configuration Settings

The experiments presented in the paper were performed

with two configurations: LAN and simulated WAN. These

configurations were set up with parameters such as the num-

ber of clients doing concurrent operations and the number of

Byzantine servers.



The executions were deployed on a local network infras-

tructure, using the TCP sockets provided by NEKO to im-

plement asynchronous reliable point-to-point channels. The

authentication and integrity of the channels are obtained

using session keys and the HmacSHA-1 message authen-

tication algorithm (provided by BQSNEKO). Some pro-

tocols also require digital signatures based on asymmetric

cryptography. These signatures are also provided by the

BQSNEKO crypto layer, which calls the JCE. In the ex-

periments, we used signatures based on RSA and SHA-1.

The LAN contained 5 computers interconnected by a 100

Mb/s Ethernet network. The computers had identical hard-

ware and software configurations: 1.9 GHz PCs with 512

MB RAM, Linux kernel 2.6.12, and Java virtual machine

1.5.0 06. When the maximum number of faulty servers was

set to f = 1, there were n = 4 servers and each one was ex-

ecuted in a different machine. When the number of faulty

servers was f = 2, there were n = 7 servers and some ma-

chines run 2 servers.

The evaluation of algorithms on large-scale environ-

ments was done on a simulated network. We adopted

the contention-aware simulated network model specified in

[23]. It takes into account resource contention (local pro-

cessing and network allowing a more precise evaluation

than models that do not consider it. Contention is repre-

sented by the λ parameter (λ ≥ 0) which specifies the rela-

tive performance between resources of local processing and

network. Therefore, for modeling large-scale networks we

use λ = 0.1 (more contention on network resources) as also

done in similar works [22].

The values reported in the next section for protocol exe-

cutions are mean values of the latency of the read or write

operation (in milliseconds) and their standard deviations,

obtained from the execution of the same operation by a cor-

rect client 1000 times. The latency is measured getting a

clock reading immediately before sending a request and an-

other one immediately after getting the reply, then subtract-

ing the two values. In some cases, we observed high devi-

ations due to high contention on the computer processors.

This happened mostly with protocols that use signatures,

since they use more CPU time causing greater contention.

For simulations we collected times of a single execution

over a simulated WAN with a correct client per scenario (in

s.t.u., simulation time units). In some cases, we also present

data about the additional number of messages sent due to

Byzantine servers and contention with other correct clients.

We limit our attention to systems that tolerate f faulty

servers for f = 1 and f = 2. For each experiment or simula-

tion with an f-threshold BQS, we consider 0 ≤ b ≤ f faulty

servers (b = 0 for fault-free executions). Faulty servers al-

ways perform the same faulty behavior in all experiments:

they always return a fake value, instead of the value actually

stored in the variable. This behavior does not corrupt the

result of the operation that reads the value, since the algo-

rithms tolerate this behavior, but can have an impact in terms

of performance. The quorum systems used have always the

tight number of servers needed to tolerate the number of

faults f considered, i.e., n is always equal to 3 f + 1.

4 Experiments

This section describes the experiments with several well-

known BQS protocols in the literature. They are divided in

three distinct scenarios, every of which containing a pair of

algorithms with similar properties, but using different tech-

niques to enforce these properties. The scenarios are the

following:

• Cost of minimality (Section 4.1): assessment of the

cost of implementing a “minimal” atomic register, i.e.,

the costs of the two basic mechanisms used to imple-

ment register atomicity with correct clients and optimal

number of servers (n = 3 f + 1) [17]. PHALANX’s al-

gorithm [15], which employs write-backs, is compared

with the MINIMAL-C algorithm [17], which is based

on the listener communication pattern.

• Algorithms for Byzantine clients (Section 4.2): as-

sessment of the techniques that allow atomic registers

to tolerate poisonous writes by Byzantine clients (dif-

ferent values are sent to different servers). MINIMAL-F

[17], which employs write disseminations between the

servers, and BFT-BC [13], which uses certificates and

signatures for the client to prove that it follows the pro-

tocol, are compared;

• Byzantine SMR versus BQS (Section 4.3): study of

the costs involved for atomic storage implementation

using two replication techniques: BQS and SMR. We

present a comparison between the PAXOS SMR algo-

rithm [5] (henceforth called PAXOS for short) and the

BFT-BC algorithm [13].

Although there are a diversity of BQS constructions, we

chose those ones since they all have optimal resiliency and

represent a class of basic mechanisms (write-backs, listener,

etc.) used by many other similar algorithms.

4.1 Cost of Minimality

A register is said to be atomic if (a) a read that is not

concurrent with a write returns the last value written; and

(b) concurrent reads and writes behave as if they occurred

in some order [12]. Designing a protocol that implements

an atomic register is not simple because it has to ensure that

the value obtained by a read operation remains the same for

the subsequent reads until the following write. This is not

simple when there are concurrent reads and writes.

The first algorithmic construction used to obtain atomic-

ity in BQS protocols was the write-back mechanism used in



 5

 10

 15

 20

 25

 30

 35

L
a
te

n
c
y
 o

f 
o
p
e
ra

ti
o
n
 (

m
s
)

faults tolerated (f), actual number of faulty servers (b)

f=1, b=0 f=1, b=1 f=2, b=0 f=2, b=1 f=2, b=2

Minimal (max time)
Minimal (mean time)
Minimal (min time)
Phalanx (max time)
Phalanx (mean time)
Phalanx (min time)

(a) Read on LAN

 5

 10

 15

 20

 25

 30

 35

L
a
te

n
c
y
 o

f 
o
p
e
ra

ti
o
n
 (

s
.t
.u

.)
faults tolerated (f), actual number of faulty servers (b)

f=1, b=0 f=1, b=1 f=2, b=0 f=2, b=1 f=2, b=2

Minimal
Phalanx

(b) Read on WAN

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

L
a
te

n
c
y
 o

f 
o
p
e
ra

ti
o
n
 (

m
s
)

faults tolerated (f), actual number of faulty servers (b)

f=1, b=0 f=1, b=1 f=2, b=0 f=2, b=1 f=2, b=2

Minimal (max time)
Minimal (mean time)
Minimal (min time)
Phalanx (max time)
Phalanx (mean time)
Phalanx (min time)

(c) Write on LAN

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

L
a
te

n
c
y
 o

f 
o
p
e
ra

ti
o
n
 (

s
.t
.u

.)

faults tolerated (f), actual number of faulty servers (b)

f=1, b=0 f=1, b=1 f=2, b=0 f=2, b=1 f=2, b=2

Minimal
Phalanx

(d) Write on WAN

Figure 2. MINIMAL-C Vs PHALANX: latency for read and write without concurrency.
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Figure 3. MINIMAL-C Vs PHALANX: write and read with concurrency.

the PHALANX algorithm [15]. A read operation usually in-

volves contacting a read quorum to obtain the value v. The

write-back mechanism uses an extra access to the quorum

system to write v in all servers. This extra access ensures

that all subsequent reads (before a write) will read the same

value v. The PHALANX atomic register protocol requires

n ≥ 3 f + 1 servers [15].

More recently, Martin et al. showed that no atomic write-

confirmable quorum system protocol2 tolerating f Byzan-

tine servers can be implemented with less than 3 f + 1

servers [17]. This work also shows that this bound is tight by

presenting the SBQ-L algorithm (that we call MINIMAL-

C), which implements an atomic register with optimal re-

siliency. This algorithm employs asymmetric quorums

(write quorums smaller than read quorums) with n ≥ 3 f +1

servers and the listener communication pattern where a

reader registers itself on servers and receives updates from

the servers until some value is returned by at least 2 f + 1

servers. When this happens, the registration on servers is re-

voked. As PHALANX, MINIMAL-C does not tolerate faulty

clients.

The goal of the first scenario is to evaluate what is the

“cost of minimality”, i.e., the cost involved in building

an atomic register with the minimal number of servers –

n = 3 f + 1 – and the listener pattern (MINIMAL-C) com-

pared with the approach based on write-backs (PHALANX).

2A BQS protocol is write-confirmable if the client knows when its write

completes, i.e., messages are sent by the servers to confirm the write com-

pletion [18].

Beyond evaluating the algorithms comparing their latencies,

we analyze the number of extra messages exchanged when

there is concurrency between writes and reads. These extra-

messages correspond to the number of additional messages

collected by the client due to the listener pattern execu-

tion (MINIMAL-C) and the number of write-back messages

(PHALANX). Concluding, our aim here is to compare the

costs of the two most popular techniques for implementing

register atomicity: write-backs and listener pattern.

Evaluation without concurrency. Figures 2(a) and 2(b)

show the latencies of reads without concurrency on local and

simulated large-scale networks, respectively. The number

of servers (n = 3 f + 1) and the number of faulty servers (b)

vary. The mean latency values of executions on a LAN show

that the performance of MINIMAL-C is slightly better than

that of PHALANX. That result comes from a signature ver-

ification in PHALANX (the servers store self-verifying data,

so a signature has to be verified). However, the time differ-

ence is small because verifying a signature is much faster

than doing a signature with RSA. As long as there is no

concurrency, no write-back operation is done and the data

received comes from at least one correct server so it is cor-

rectly signed. In the MINIMAL-C algorithm there is no sig-

nature verification, justifying the small execution latencies

of reads. On average the impact of Byzantine servers is ac-

tually low: for b = 1 the latency grows ≈ 2.1% (PHALANX)

and ≈ 8.2% (MINIMAL-C); for b = 2 the growth is ≈ 13.1%

(PHALANX) and ≈ 4% (MINIMAL-C).



The performance on a simulated large-scale network

(Figure 2(b)) for both protocols is equal, showing a disap-

pearance of the effect of the signature verification on the

PHALANX’s read protocol observed at the tests on a LAN.

Although the read of the MINIMAL-C protocol executes 3

steps, the last step does not count for the latency since the

final message of the listener pattern does not require a re-

sponse. As result, the latency for reading in MINIMAL-C is

similar to PHALANX (which executes 2 steps since there is

no write-back).

The results of write operations with no concurrency are

exhibited, respectively, in Figures 2(c) and 2(d). Compar-

ing the results, the cost of the cryptography in PHALANX

is evident. The operation skeleton for the two algorithms

is identic: both query a quorum for data, create a new pair

〈v,t〉, try to update the system and wait for a set of acknowl-

edgments from servers. However, in PHALANX the client

signs the value using RSA which takes almost 14 ms in our

environment. In a WAN this difference almost disappears,

and the protocols have similar latencies (Figure 2(d)).

Concurrency. Figures 3(a) and 3(b) show the results of a

scenario with one writer and 0 to 5 concurrent readers, for

the fault thresholds f = 1 and f = 2. In all cases MINIMAL-

C has lower latency than PHALANX. The impact of concur-

rency and the number of servers is not high.

Figures 3(c) and 3(d) illustrate the values collected from

an execution of a reader along with one writer and other

readers (varying among 0 to 4) in scenarios with fault

thresholds equal to 1 and 2, respectively. Just considering

the mean values for all system loads (faults and concur-

rency) we can note small variations on the behavior of the

reader’s performance in the MINIMAL-C protocol. On the

other hand, the read operation in PHALANX has a more ac-

centuated increase for 4 concurrent readers, especially when

f = 2.

Extra messages. Table 1 gives percentages of the number

of reads that do write-back operations in PHALANX and that

use the listener pattern in the MINIMAL-C protocol. Such

values reveal a low use of the write-back mechanism: in the

worst case on a LAN concurrency involving write and read

operations, that mechanism is executed approximately 7%

of times for f = 1 and 11% for f = 2. From the point of view

of extra messages, the table shows that concurrency has a

higher impact in the MINIMAL-C protocol. Reads executing

the listener pattern are 88.46% of all executions for f = 1

and at almost all executions for f = 2 (99.24%). However,

as can be seen in the section, even with these extra messages,

MINIMAL-C outperforms PHALANX in a LAN.

4.2 Algorithms for Byzantine Clients

In Byzantine-prone environments, not only servers can

fail arbitrarily. Clients can also be faulty, executing steps

that are not in their specification. In that case, implementing

f = 1 f = 2

b = 0 b = 1 b = 0 b = 1 b = 2

MINIMAL-C 88.5 81.7 94.4 96.9 99.2

PHALANX 6.8 6 10.9 9.9 7.9

Table 1. Percentage of reads using the lis-

tener pattern (MINIMAL-C) and write-backs
(PHALANX) in a LAN. Concurrency with 1

writer and 0-5 readers.

a register with atomic semantics is even more complicated.

These clients can damage the system by violating the system

consistency semantics (safety) and/or the protocol termina-

tion (liveness). A common approach that protocols use to

cope with Byzantine clients is the use of signed messages to

detect modifications performed by malicious clients. Other

mechanisms are also used.

In [17], Martin et al. provide an improved version of the

SBQ-L algorithm (called here MINIMAL-F), which imple-

ments multi-writer multi-reader atomic registers and toler-

ates Byzantine clients. The MINIMAL-F algorithm assumes

clients can maliciously exploit the listener pattern: faulty

writers update different values preventing the servers from

returning the same value and consequently preventing con-

current or future reads from terminating (poisonous write).

To tolerate such bad clients, MINIMAL-F employs signed

messages and replication of messages among servers dur-

ing the write protocol. In this approach, clients share the

same private key (the writer private key) and servers have

the associated public key. Servers only accept write requests

correctly signed. Furthermore, servers perform a new step

in the write protocol: they replicate new stored values to

other servers in the system in order to keep the stored values

consistent.

In a more recent work, Liskov and Rodrigues described

the BFT-BC algorithm, which implements a multi-writer

multi-reader atomic register that handles a large variety of

problems caused by Byzantine clients [13]. This algo-

rithm requires a Byzantine quorum system with n ≥ 3 f + 1

servers. To tolerate Byzantine clients, BFT-BC uses cer-

tificate proofs, composed of 2 f + 1 signed messages from

servers (a quorum). Therefore, for passing from a phase to

the next, in BFT-BC a client must prove that it is not trying

to execute an inappropriate operation by showing its certifi-

cate. Valid proofs serve to vouch the state of the client (for

example, did the client complete its last write operation con-

sistently?), enforcing clients to keep up some algorithm in-

variants, preventing them from successfully sending forged

messages, exhausting the timestamp space or performing in-

completely a protocol.

The purpose of this experiment is to compare the perfor-

mance of the MINIMAL-F and the BFT-BC algorithms. The

experiments also analyze the extra number of messages sent
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Figure 4. MINIMAL-F Vs BFT-BC: read and write without concurrency.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  1  2  3  4  5

L
a
te

n
c
y
 o

f 
o
p
e
ra

ti
o
n
 (

m
s
)

Concurrent readers

BFT−BC (b=1)
BFT−BC (b=0)
Minimal (b=1)
Minimal (b=0)

(a) Write on LAN ( f = 1)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  1  2  3  4  5

L
a
te

n
c
y
 o

f 
o
p
e
ra

ti
o
n
 (

m
s
)

Concurrent readers

BFT−BC (b=2)
BFT−BC (b=1)
BFT−BC (b=0)
Minimal (b=2)
Minimal (b=1)
Minimal (b=0)

(b) Write on LAN ( f = 2)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  1  2  3  4

L
a
te

n
c
y
 o

f 
o
p
e
ra

ti
o
n
 (

m
s
)

Concurrent processes: 1 writer and readers

BFT−BC (b=1)
BFT−BC (b=1)
Minimal (b=1)
Minimal (b=0)

(c) Read on LAN ( f = 1)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  1  2  3  4

L
a
te

n
c
y
 o

f 
o
p
e
ra

ti
o
n
 (

m
s
)

Concurrent processes: 1 writer and readers

BFT−BC (b=2)
BFT−BC (b=1)
BFT−BC (b=0)
Minimal (b=2)
Minimal (b=1)
Minimal (b=0)

(d) Read on LAN ( f = 2)

Figure 5. MINIMAL-F Vs BFT-BC: write and read with concurrency.

by correct clients on their read operations when confronted

with concurrent processes.

Evaluation without concurrency. Figures 4(a) and 4(b)

present the results of the execution of read operations with

no concurrency, respectively on a LAN and on a simulated

WAN. For all fault conditions MINIMAL-F has better per-

formance than BFT-BC. This happens because the read

of BFT-BC requires the verification of signatures for each

value queried from a quorum, on the contrary to MINIMAL-

F. With Byzantine servers (b > 0), both protocols present

slight changes of performance since more messages are col-

lected (messages from Byzantine servers have to be dis-

carded). On the simulated large-scale network the latency

times tend to be equal since the costs of local processing

is diluted in the communication delays and the number of

communication steps is 2 in both protocols.

For the write protocol, MINIMAL-F has better perfor-

mance for all fault settings (Figure 4(c)). As no concur-

rency is considered, both BFT-BC and MINIMAL-F execute

in 4 communication steps. Therefore, the cost of the signed

proofs in BFT-BC is higher than the cost of signatures at

the clients in MINIMAL-F, especially when f = 2. In fact,

on a LAN BFT-BC requires more local processing since it

uses more signatures, as each server does signatures twice:

when it sends the prepare and acknowledgment messages to

the client. MINIMAL-F does signatures only once, when the

client performs its write request. Although each server ver-

ifies the signature and, if it is correct, replicates each write

request (either from the client or other servers), the cost of

those procedures are very small for two reasons: firstly, be-

cause the communication delay on a LAN is low; secondly

because the time required to verify signatures is lower than

the time to do signatures (in our environment ≈ 0.9 ms and

≈ 14 ms, respectively).

Figure 4(d) shows results of write operations on a sim-

ulated WAN. The results differ from those in a LAN. In

general, MINIMAL-F has running times higher than those

obtained for BFT-BC. The cost of communication is higher

in the MINIMAL-F (servers have to disseminate writes be-

tween themselves – an O(n2) message complexity protocol)

while the impact of contention on signature processing in

BFT-BC is lower, leading to its better performance.

Concurrency. Figures 5(a) and 5(b) present latencies of

write operations with concurrent readers over a LAN for f =
1 and f = 2, respectively. In most of the tests, MINIMAL-

F performs more efficiently than BFT-BC. Considering the

mean deviations of each execution, it can be observed that

performance in BFT-BC is more affected as the number of

concurrent readers grows. For all settings considered, the

latencies of MINIMAL-F and BFT-BC were in the following

intervals: from 21 ms to 29 ms and 42 ms to 53 ms ( f = 1);

from 36 ms to 54 ms and from 56 ms to 102 ms ( f = 2).

The increase of latency of BFT-BC’s writes as con-

currency and number of faulty servers grow is a sign of

more contention in the servers. Servers have to verify the

certificate in the clients’ requests and sign response mes-



sages. Moreover, BFT-BC verifies and does signatures

during reads executing concurrently with writes, whereas

MINIMAL-F does not. Looking at the same concurrency

cases from a reader’s perspective, the impact of those ad-

ditional cryptographic operations can be confirmed.

Figures 5(c) and 5(d) illustrate experiments where one

writer executes concurrently with 0 to 4 readers. For all fault

scenarios and numbers of concurrent processes, the perfor-

mance of BFT-BC, that increases faster, is always worse

than that of MINIMAL-F because here BFT-BC is also more

subject to contention on servers processing concurrent read

and write requests. The following intervals for read oper-

ations were obtained: from 9.72± 6 ms to 29± 11 ms for

BFT-BC and 4± 1.5 ms to 16.3± 5.7 ms for MINIMAL-F

( f = 1); from 27.4±11 ms to 55±19.5 ms for BFT-BC and

from 10.4±6 ms to 32.6±6 ms for MINIMAL-F ( f = 2).

Extra messages. In general, BFT-BC’s reader performs

just a few write-backs. For MINIMAL-F, like for MINIMAL-

C (Section 4.1), concurrency is visible in terms of additional

messages. However, concurrency occurs at a smaller level

(write in MINIMAL-C performs better than its faulty coun-

terpart, what raises more concurrency) although it does not

affect much the total performance of this read on concur-

rency. Table 2 exhibits percentages of BFT-BC’s reads with

write-backs and MINIMAL-F’s reads with extra messages

due to the use of the listener pattern.

f = 1 f = 2

b = 0 b = 1 b = 0 b = 1 b = 2

MINIMAL-F 64.2 78.4 82.5 87.7 91.7

BFT-BC 6.2 6.6 11.8 9.9 9.5

Table 2. Percentage of reads using the lis-
tener pattern (MINIMAL-F) and write-backs

(BFT-BC) in a LAN. Concurrency with 1 writer
and 0-5 readers.

Notice that the results of Table 2 are in accordance with

those of the previous experiment (Table 1). This was ex-

pected since the protocols use the same mechanisms (write-

backs and listener pattern).

4.3 Byzantine SMR versus BQS

Two techniques can be used for implementing Byzan-

tine fault-tolerant replication: State-Machine Replication

(SMR) [21] and Byzantine Quorum Systems [14]. These

techniques differ essentially in the following aspects: (a)

SMR can be used for implementing any deterministic ser-

vice, while (asynchronous) BQS can not; (b) SMR requires

solving consensus so it cannot be implemented determinis-

tically in asynchronous systems [7], while BQS can.

There has been some discussion on which is the best

technique, SMR or BQS. Recent works argue in both direc-

tions, giving emphasis either to the fact that SMR is generic

[6], or to the possibility of implementing BQS without ad-

ditional time assumptions (or, alternatively, randomization)

[26] and its potential scalability [1]. Advances have been

presented in the literature for both techniques giving, for ex-

ample: evidence that SMR can be efficient [5, 19]; improve-

ments for the Byzantine PAXOS consensus protocol [16];

new protocols for BQS that tolerate malicious clients using

an optimal number of servers [4, 13]. These improvements

suggest that both SMR and BQS can be used for implement-

ing reliable services efficiently. On the other hand, they also

raise a pair of questions: which of these techniques is the

most efficient? In which conditions should one of these

techniques be used instead of the other?

Here, we investigate these issues with an experimental

evaluation of two protocols: Byzantine PAXOS [5] (SMR)

and BFT-BC [13], which is the BQS protocol most resilient

to malicious client-behavior we assessed. The BQS pro-

tocol evaluated is the same from the previous section, but

Byzantine PAXOS deserves some discussion before present-

ing the experiments. SMR requires that all operations (in

this case, reads and writes) are executed by all servers in

the same order. In this context, PAXOS works as a total or-

der multicast protocol where one of the servers, called the

proposer, act as a leader defining in which order each op-

eration should be processed. When the other servers, called

acceptors, receive the order for each operation, they run 2

steps of message exchanges to commit this order and then

execute the request. The SMR protocol employed in our ex-

periments implements an optimization for read operations in

which clients only execute the PAXOS protocol if they read

the register state in n− f servers (with a single access – a

message round-trip) and not all of them have the same value

[5]. To implement this modified version of PAXOS, we used

NEKO plus mechanisms similar to those in BQSNEKO, e.g.,

using a layer of cryptography for executions over a LAN (we

do not use BQSNEKO since it is targeted to BQS).

Evaluation without concurrency. Figure 6(a) presents

results of reads without concurrency over a LAN regarding

various fault contexts for f = 1. When there are no faults,

both protocols achieve their optimal performance, with ter-

mination in 2 steps. In that case, PAXOS achieves a slightly

better performance than BFT-BC. This small difference oc-

curs because BFT-BC verifies signatures when consolidat-

ing a read value. When one fault occurs, BFT-BC’s read

is almost not affected (goes from ≈ 5.5 ms to ≈ 5.7 ms).

The client spends this additional time simply waiting for one

more message from a correct server, to get the value from a

full quorum, in an environment where communication time

is low. For PAXOS with a faulty acceptor, the client some-

times is forced to run the ordering algorithm (instead of us-

ing the optimistic read described before, that is similar to a

BQS algorithm). This increments the latency from ≈ 1.85

ms (context free of faults) to ≈ 6.8 ms. When there are a

faulty acceptor and a faulty proposer, the final latency grows
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Figure 6. PAXOS Vs BFT-BC on the LAN without ( f = 1) and with ( f = 1 and f = 2) concurrency.

even more. It passes to ≈ 41 ms since the PAXOS ordering

protocol runs in two rounds, involving an extra protocol for

electing a new proposer.

Figure 6(b) provides results for write operations with no

concurrency and fault threshold f = 1. BFT-BC takes more

time than PAXOS to write in fault-free executions. The

reason is that, with no faulty servers, only BFT-BC does

public-key signatures in the write operation. The PAXOS

protocol is little affected by a faulty acceptor. More pre-

cisely, only one more communication step is necessary,

whose cost is notably low in a LAN. BFT-BC’s write is

not much affected by failures for the same reason as its

read protocol. PAXOS’ write performs worse than BFT-BC

when the proposer is faulty, because a new proposer has to

be elected. Such procedure requires two additional steps of

communication and doing a public-key signature, which is

expensive when the communication is cheap, i.e., in a LAN.

Note that the PAXOS’ mean latency for reading with a faulty

proposer (Figure 6(a)) is almost half (≈ 41 ms) of the la-

tency for writing with faulty proposer (≈ 77 ms). The rea-

son we observed is that 50% of the reads are non-optimized,

i.e., only 50% of the reads executed the PAXOS ordering

protocol.

Concurrency. Figures 6(c) and 6(d) present times for con-

current operations in a LAN for both protocols. Figure 6(c)

shows results of reads performed together with one writer

and a variable range of 0 to 4 readers. Figure 6(d) shows re-

sults of writes executed concurrently with a range of 0 to 5

readers. Considering the mean deviations, PAXOS performs

better than BFT-BC in all cases. It is interesting that PAXOS

achieves smaller processing contention and better scalability

than its BQS counterpart.

Also, it has to be pointed out that approximately 88%

of the reads in Figure 6(c) were optimized, for f = 1 (4

servers). For f = 2 (7 servers) that amount decreased to

64%. These values indicate that, as for some BQS al-

gorithms which do not use signatures (e.g., MINIMAL-C),

PAXOS performs with low variation on latency due to con-

currency. This happens because its implementation does not

execute consensus for each received request from a client.

Consensus is executed for batches of requests.

5 Summary and Conclusions

Some comments are due on the experimental results de-

scribed in this paper. First, it is notable the large impact of

asymmetric cryptography on executions on a LAN in which

the performance bottleneck resides in local processing and

the communication latency is small. It is common when

assessing the performance of distributed algorithms to dis-

regard local delays, but for algorithms that use signatures

that cost has to be taken into account. As a consequence,

protocols storing self-verifiable data (e.g., PHALANX and

BFT-BC) have higher latency, as shown in all experiments

conducted. On the other hand, that cost is mitigated when

those algorithms run over a WAN.

It was also demonstrated the good performance of pro-

tocols implementing the listener pattern with protocols

MINIMAL-C and MINIMAL-F (Sections 4.1 and 4.2). These

algorithms have better performances than their counterparts

even with concurrency. Although that does not mean low

concurrency in terms of exchanged messages (fitting [17]),

such protocols explore very well the inherent low latency of

the communication on a LAN. However, the experiments on

the simulated WAN showed that this low latency is not kept

in a WAN (Section 4.1).

The paper puts in evidence the efficiency of the SMR ap-

proach using the Byzantine PAXOS algorithm when running

on a LAN and with no faulty proposer. This conclusion di-

verges from opinions that BQS are more efficient than SMR,

at least for the protocols considered. The PAXOS algorithm

(message complexity O(n2)) demonstrated having a good

performance because it was implemented in a “batch fash-

ion”: the algorithm does not order individual read/write re-

quests but batches of requests. We do not know whether

that performance will be guaranteed on large-scale environ-

ments with contention among clients and with Byzantine



fault loads. Regarding the Byzantine PAXOS protocol, the

experiments of Section 4.3 show that the recent optimiza-

tion for early decision in two communication steps in syn-

chronous fault-free executions [16] has almost no benefit in

LAN settings, since the communication is too fast.

To make the evaluation easier, a framework for eval-

uating BQS called BQSNEKO was designed and imple-

mented. It is freely available (with all protocols) at http:

//www.das.ufsc.br/∼wagners/bqsneko.

The results presented in this paper are an important step

to better understand the algorithms assessed, as well as

the functionality and tradeoffs on Byzantine-tolerant stor-

age systems. They show subtle details of the BQS protocols

evaluated, that would be usually hidden by traditional met-

rics of distributed algorithms. To the best of our knowledge,

there is no similar assessment in the literature.
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