
Finding Vulnerabilities in Software Ported from 32 to 64-bit CPUs ∗

Ibéria Medeiros, Miguel Correia
Universidade de Lisboa, Faculdade de Ciências, LASIGE

ibemed@gmail.com, mpc@di.fc.ul.pt

Introduction Manufacturers like Intel and AMD started
commercializing processors with 64-bit architectures a few
years ago. Most code running in these processors today was
initially written for 32-bit processors. However, when port-
ing software written in C language from one architecture to
another that represents numbers with a different number of
bits it is easy to introduce bugs and even security vulnerabil-
ities. This abstract shows how these vulnerabilities can be
introduced, presents a source code analysis tool that finds
such vulnerabilities and summarizes the results of applying
the tool to test more than 20 open source applications with
a total of more than 4.5 million lines of code.

The main problem when porting C programs from 32
to 64-bits CPUs is the following. Programs in C for 32-
bit CPUs follow the ILP32 model [4]. In this model, three
types have a size of 32 bits: int, long and pointer. This fact
is well-known by programmers that abuse it to rather freely
exchange data between variables of these three types. When
programs with such liberties are ported for 64 bits and no
care is taken to deal with the lack of conversion, vulnerabil-
ities can be introduced. For 64-bit CPUs three models are
used. In the LP64 model the int type remains with 32 bits
but long and pointer are upgraded to 64 bits. This is the
model adopted by Unix variants, including Linux, and open
source software. In the LLP64 model, int and long remain
with 32 bits and the pointer type changes to 64 bits. This
model was adopted by Microsoft. In the ILP64 model the
three types are upgraded to 64 bits. This model is used in
some mainframes and supercomputers (e.g., Cray).

The problem appears mostly in LP64 because int and
long have different sizes. Therefore, an assignment of a
value of type long to an int variable or a pointer to an int
causes a truncation, which is a well-known category of in-
teger overflow vulnerability [1]. An example of vulnerabil-
ity of this category is the SSH CRC-32 compensation at-
tack detector vulnerability that appeared in 2001 (CVE-ID
CVE-2001-0144). The consequences of a truncation can be
several. For example, if the int variable is used to allocate a
buffer in the heap, a buffer overflow can later occur because

∗This work was partially supported by the FCT through the Multiannual
and the CMU-Portugal Programmes.

less space than needed was allocated.
Notice that these problems can be very subtle. For in-

stance, consider the case of a function that returns a pointer
but in which the type of the return value is not defined [3].
In ILP32 this works perfectly. In LP64 the pointer is trun-
cated to 32 bits. Truncations can also be caused by a cast,
to give another example.

The tool To assess the existence of these vulnera-
bilities in open source applications written in C, we
developed a tool called DEEEP (Detector of inte-
gEr vulnerabilitiEs in softwarE Portability, online at
http://deeep.homeunix.org/). DEEEP is a static
source code analysis tool, i.e., it analyzes source code with-
out executing it. The tool does two forms of analysis and
correlates their results to minimize the number of false pos-
itives (i.e, of lines of code tagged vulnerable that in fact are
not). These two forms of analysis were not implemented
from scratch, but instead two tools that did them already
were used as building blocks:

• Type checking is the obvious mechanism to find vulner-
abilities with integer manipulation because these are
indeed caused by wrong usage of data types. Both
building block tools were used to do type checking:
Lint [5] and Splint [2]. Although Splint derives from
Lint, a careful analysis of both has shown that they do
not detect exactly the same integer manipulation bugs,
there are omissions in both, so both have to be used.

• Taint analysis is a form of data flow analysis used to
detect if tainted data reaches dangerous lines of code.
The basic idea is to track the flow of data that comes
from the program inputs to see if it reaches dangerous
calls, like memcpy and others that are prone to buffer
overflows. Taint analysis is done by Splint [2]. This
tool is configured with data about (1) which param-
eters of library calls can not take tainted data (e.g.,
malloc’s only parameter), (2) which calls return tainted
data (e.g., gets); and (3) how taintedness is propagated
inside a program (e.g., tainted data operated with any
data gives tainted data).



Ferramenta DEEEP: Arquitectura da Ferramenta

Detecção de Vulnerabilidades de Inteiros na Adaptação de Software de 32 para 64 bits 8

D
ata flow

analyser

B
ug

 d
et

ec
to

r

source code

pre-processor

correlator

Splint

filter

Lint Splint

filter

vulnerabilities

Figure 1. Architecture of the DEEEP tool.

These two forms of analysis play different roles. Type
checking is in charge of finding bugs in lines of code than
manipulate integers. However, these bugs are not necessar-
ily vulnerabilities. For instance, they may not be used with
tainted data (data that comes from the input) or reach pa-
rameters that have to receive untainted data. This is where
taint analysis comes in: it tells which data flows reach dan-
gerous lines. The tool has to pick these pieces of infor-
mation and correlate them to say if there is a vulnerability.
Nevertheless, false positives are still possible (see below).

Figure 1 shows the architecture of the tool. Some com-
ponents are obvious, others need a short explanation. The
pre-processor basically uses the makefiles of the program
to run the cc/gcc pre-processor on all code files. The filters
discard all alarms that are unrelated to specific vulnerabili-
ties that are detected by DEEEP.

Experimental results The tool was first assessed with a
set of reasonably short programs with vulnerabilities cre-
ated for this purpose. The tool detected every single vul-
nerability. This assessment showed that the tool can indeed
find the vulnerabilities that we are interested in. Then it was
run with the code of 21 open source projects. The results are
displayed in Table 1.

The results show that a large number of bugs with in-
teger manipulation were found (column integer warnings).
They were not only truncations but also overflows, under-
flows and signedess problems. The numbers of vulnerabili-
ties flagged by the tool were much lower (column vulnera-
bilities) and the manual analysis of each of these vulnerabil-
ities has shown that they were not really vulnerabilities but
false positives (next column). There was indeed input data
that was propagated to integer manipulation bugs and then
to dangerous calls, but the logic of the program prevents
these bugs from being attackable. An interesting conclu-
sion is that even this correlation of two forms of analysis is
not enough to clearly distinguish bugs from vulnerabilities,

Application Integer Vuln. False Files Lines of Analysis
warnin. posit. code time

wu-ftpd 2.6.2 217 0 - 50 22.629 25 sec
vsftpd 2.0.5 91 0 - 34 12.376 21 sec
sendmail 8.14.1 1.132 3 3 160 112.700 1:52 min
samba 3.0.26a 21.566 0 - 651 494.688 23:11 min
proftpd 1.3.0a 409 0 - 95 87.868 1:30 min
lighttpd 1.4.18 886 0 - 93 52.134 2:00 min
inetutils 1.5 980 0 - 175 79.793 1:16 min
dovecot 1.0.5 1.984 0 - 359 111.026 5:58 min
bind 9.4.1 1.298 0 - 604 323.860 4:24 min
asterisk 1.4.18 11.906 2 2 414 333.997 10:28 min
antiword 0.37 255 1 1 67 30.864 1:08 min
aircrack 0.9.3 353 4 4 14 21.147 0:35 sec
lsat 0.9.6 13 1 1 36 6.923 0:18 sec
ipac-ng 1.31 206 1 1 28 19.928 0:29 sec
rodmap 1.1.0 719 4 4 150 69.929 3:28 min
pen 0.17.2 95 1 1 5 3.772 0:21 sec
atop 1.22 169 3 3 14 12.030 0:32 sec
clamav 0.60 495 3 3 50 19.873 1:10 min
openldap 2.1 310 2 2 452 198.626 9:59 min
openafs 1.4.6 8.290 0 - 1221 689.920 15:25 min
wine 0.9.52 715 0 - 2197 1.833.251 1:57:38 h
Total 52089 25 25 6869 4537334

Table 1. Results of running DEEEP with 21 open source
projects. Integer warnings are the outcome of the bug detec-
tor component (after filtering). The column false positives
was obtained through manual analysis off all vulnerabilities
detected (previous column).

eliminating false positives entirely.

Final remarks This abstract briefly introduces the prob-
lem of vulnerabilities introduced when porting code from
32 to 64-bit CPUs. It presents a methodology based on cor-
relating the results of two kinds of analysis to find these
vulnerabilities, and a tool that implements that methodol-
ogy, DEEEP. The tool was tested successfully with syntectic
code with vulnerabilities introduced on purpose, but failed
to find vulnerabilities in real applications with more than
4.5 million lines of code, a somewhat surprising negative
result.

We warmly thank Per Mellstrand for introducing us to the problem
of introducing vulnerabilities when porting code to 64-bit CPUs.

References

[1] D. Brumley, T. Chiueh, R. Johnson, H. Lin, and D. Song.
RICH: Automatically protecting against integer-based vulner-
abilities. In Proceedings of the Network and Distributed Sys-
tem Security, Jan. 2007.

[2] D. Evans and D. Larochelle. Improving security using exten-
sible lightweight static analysis. IEEE Software, 19(1):42–51,
Jan/Feb 2002.

[3] R. Mach. Moving to 64-bits. Dr. Dobb’s, June 2005.
[4] Open Group. Data size neutrality and 64-bit support. In

A. Josey, editor, Go Solo 2 - The Authorized Guide to Version
2 of the Single UNIX Specification. The Open Group, 1997.
http://www.unix.org/version2/whatsnew/login 64bit.html.

[5] Sun Microsystems. C user’s guide. http://docs.sun.com/
source/806-3567/, 2000.


