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ABSTRACT
The increase of personal data on mobile devices has been fol-
lowed by legislation that forces service providers to process
and maintain users’ data under strict data protection policies.
In this paper, we propose a new primitive for mobile applica-
tions called auditable mobile function (AMF) to help service
providers enforcing such policies by enabling them to process
sensitive data within users’ devices and collecting proofs of
function execution integrity. We present SafeChecker, a com-
putation verification system that provides mobile application
support for AMFs, and evaluate the practicality of different
usage scenario AMFs on TrustZone-enabled hardware.
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1 INTRODUCTION
For over 30 years [5], an important problem that has fasci-
nated the research community is about trusting the result of
computations performed on untrusted platforms. Since the
advent of cloud computing, this interest has further grown
in obtaining proofs of code execution on untrusted clouds.
An approach to address this problem that has garnered

particular attention is verifiable computing. At a high-level,
verifiable computing consists of studying how a prover can
convince a verifier of a mathematical assertion. The main
obstacle faced by this field has been practicality, as the costs
of computing and verifying proofs over general computa-
tions tend to be very high [21]. Still, recent adaptations of
existing theoretical protocols into real systems [20] yielded
performance improvements of 20 orders of magnitude [21],
moving the field into a near-practical state. In particular,
the succinct non-interactive arguments of knowledge (SNARK)
cryptographic primitive [8] provides short proofs of compu-
tation and figures among the biggest advances in the field
with respect to performance efficiency.

In this paper, we argue that verifiable computing has a
good application potential for mobile platforms and propose
the concept of auditable mobile functions (AMFs). Essentially,
AMFs consist of a mobile OS primitive that allows a remote
verifier to obtain integrity proofs of function execution, serv-
ing as an additional mobile data protection mechanism. In
fact, while we have witnessed in recent years an increase in
personal data collection on mobile devices, service providers
have undergone a growing pressure with respect to how that
data must be handled, driven not only by the end-users’ man-
ifested privacy concerns, but also by legislation that imposes
strict data protection policies like the GDPR [1].
The AMF primitive allows service providers to build mo-

bile applications capable of processing users’ data on their
devices while obtaining proofs of integrity of the computa-
tions therein performed. By avoiding transferring security-
sensitive data off users’ devices and into their servers, service
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providers are able to lessen the risks of potential security
breaches that might fall under their responsibility.

We present the design, implementation, and evaluation of
SafeChecker, a system that provides AMF support for An-
droid applications. A key novelty of our system’s design is
the incorporation of techniques from verifiable computing
and trusted computing. First, SafeChecker uses SNARKs to
generate proof of execution of AMFs. Second, it verifies the
resulting proofs on the mobile device within a TrustZone-
enabled trusted execution environment (TEE) isolated from
the operating system; ARM TrustZone consists of a set of
hardware security extensions featured in modern ARM pro-
cessors [19]. SafeChecker keeps a log of the proof validations
inside the TEE and provides the means for external services
to check these results and notify the verifier. By leveraging
these techniques, SafeChecker is able to provide proofs of
AMF integrity without the need to trust the mobile OS. We
focus on functions written in native code that can be bundled
with Android apps, without loss of generality.

In building SafeChecker, it was necessary to provide for
the security of the entire AMF life cycle, especially in critical
steps involving application code transformation and cryp-
tographic key provisioning. We modified the Android OS
by implementing all the AMF logic necessary to support
real-world Android applications and enable efficient world
switch between OS and trusted environment, and we adapted
existing SNARK algorithms to run inside the TEE. We built a
fully operational SafeChecker implementation and tested it
on TrustZone-enabled hardware for three example use cases.
Our results show that the execution times of the tested AMFs
sit in the order of seconds, which are acceptable numbers
considering the use cases under study in exchange for the
additional benefits brought about by AMFs.
Next, we provide an overview and usage scenarios for

AMFs. In Section 3, we introduce our building blocks, and
present the design of SafeChecker in Section 4. We proceed
by presenting implementation details on our prototype in
Section 5 and complement them with evaluation results and
performance and security discussion in Section 6. Finally, we
discuss related work in Section 7, and conclude in Section 8.

2 OVERVIEW AND SCENARIOS
In this section, we motivate the need for our new primitive,
clarify the main design goals, and provide example use cases.

2.1 Auditable Mobile Functions
We propose auditable mobile function (AMF), a new primitive
which enables a verifier party to obtain a proof over the
correct execution of a security-sensitive function on a remote
mobile device. By correct execution of a function f, we mean
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Figure 1: Lifecycle of an application with AMFs.

that the integrity and authenticity of f’s inputs, outputs, and
code can be ascertained with high probability by the verifier.
For a number of mobile application scenarios, service

providers may need to process privacy-sensitive data col-
lected by the end-users’ devices. By sending such data to
their servers, service providers must ensure that this data is
correctly maintained. However, given the stringent data han-
dling policies determined by law in many countries (notably
in the EU [1]), data breaches from servers may result in the
payment of huge fines. To reduce this risk, sensitive data may
be processed locally on the mobile devices by letting service
providers execute specific functions over the data and col-
lect the resulting outputs. In this way, the original raw data
is maintained always in the mobile devices. Depending on
the usage scenario, service providers may also require func-
tion execution correctness guarantees from mobile devices.
Providing such guarantees is the goal of AMFs.
Figure 1 presents a high-level view of the lifecycle of an

application that implements AMFs. This lifecycle is primar-
ily controlled by the service provider, which is responsible
for implementing the application (step 1), indicating which
functions must be considered as AMFs (step 2), and releas-
ing the resulting application package to application markets,
e.g., Google Play (step 3). Users then install the application
on their devices as usual (step 4), and whenever an AMF is
executed an accompanying process for proof generation and
verification takes place (step 5). Later, by playing the verifier
role, the service provider can retrieve the AMF verification
outcome through some mediation system (step 6) and check
whether or not the AMF has been correctly executed (step 7).
This operation model can bring two important benefits for
service providers. First, a service provider can prove toward
a third party (e.g., a legal authority) that its application does
effectively retain the users’ data on their devices, thereby
preserving privacy. Such proofs can be obtained by allow-
ing the third party to inspect the application’s source code
and validate the correct usage of AMFs. Second, the service
provider can obtain guarantees that the integrity of the AMF
executed at the mobile endpoint has not been tampered with,
e.g., as a result of malware interference.
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2.2 Usage Scenarios for AMFs
To illustrate the applicability of AMFs, we provide three ex-
amples of usage scenarios. In all these cases, AMFs aim to
enable a service provider to take the role of verifier party in
order to obtain guarantees of AMF execution on remote mo-
bile devices. Such function is part of a mobile application that
users install on their devices. The concrete parties involved
and their respective incentives for adopting AMF-based mo-
bile applications depend on the specific usage scenario.
1. Digital evidence collection. Oftentimes, witnesses or victims
of criminal activity use their own smartphones for taking pic-
tures, recording videos, or capturing audio which can later be
used by police authorities for forensic analysis. To preserve
admissibility, it is crucial to guarantee the authenticity of the
media content collected by mobile devices’ sensors. Since
the collected data may include sensitive information for the
witnesses themselves (e.g., if the witness is a whistle-blower
or a victim), it should be possible to sanitize the collected
sensor data (e.g., blurring sensitive regions of a photo) before
extracting it from the device while ensuring the authentic-
ity of the obtained results. While previous work introduced
the notion of trusted sensors [17] to ensure the authenticity
of collected sensor data, AMFs allow police authorities to
take one step further by verifying that the intended sani-
tization function has been correctly applied. On the other
hand, by keeping the raw sensor data on mobile devices, the
application is privacy friendly.
2. Gamification. Some applications reward users based on
given behaviour adoption, e.g., cycling, together with cer-
tain actions such as covering a certain distance or visiting
certain points of interest, e.g., shops. Given that location
data constitutes privacy-sensitive information, it is in the
gamification service’s best interests to process this data in
users’ devices. With AMFs, gamification services can achieve
such a goal while checking that the remotely executed func-
tions have not been tampered with, e.g., by malware or some
dishonest user. For instance, in the aforementioned cycling
application, determining if the device has visited a given set
of points of interest could be implemented by an AMF. The
service provider would still be able to determine with high
confidence that the user has taken some expected route and
therefore can reliably grant him a reward. At the same time,
this property would be attained without the gamification
service needing to know about users’ precise locations.
3. E-health. A class of e-health applications aims to provide
health monitoring services. For instance, certain applications
combine wearables, e.g., smart bracelets, with users’ mobile
devices to monitor user health indexes, e.g., heart rate, and
recommend physical activity or even medication dosages.
Although systems like DroidVault [15] can provide integrity
protection of health records at rest, AMFs can be used as a

complementary security mechanism that enables e-health
service providers to check the integrity of the data processing
operations on end-users’ devices. By using AMFs, a service
provider could, e.g., prescribe reliable medication dosages
to its users or notify them about abnormal sensor readings
without the need to extract the raw data from their devices.

2.3 Goals and Threat Model
The goal of our work is then to build a system to support
the lifecycle of AMFs on commodity mobile devices. Our
system is meant to be used by the service providers for incor-
porating AMFs onto their mobile applications. Developers
of AMF-based mobile applications are honest. They write
the mobile applications’ code, in particular AMF functions,
so that it satisfies the requirements laid out by the service
provider (which also plays the verifier role). As a result, ap-
plication developers are trusted with respect to annotating
their apps, writing the code of the respective AMFs, and
correctly compiling, packaging, and publishing applications.
The main security goal of our system is to preserve the

integrity of AMFs when they are executed on the end-users’
devices and generate the respective proofs. An adversary
may try to interfere with the execution of AMFs to its own
advantage (e.g., by changing AMF code) in a way that the
resulting deviant behavior is not detected by the verification
service. We model the adversary as any agent with the ca-
pability to control any application or the OS of the mobile
device. In practice, the specific agent will depend on the us-
age scenario. In some cases, malware might subvert mobile
applications or the entire OS. In other cases, the mobile user
might obtain some benefit by manipulating the AMFs’ exe-
cution on a rooted device, for example. Note that it is not in
scope to provide confidentiality protection for the data resid-
ing on the devices (it may be a by-product of not requiring
data to leave the mobile device for processing, though).
As for the building blocks of our solution, we intend to

adopt verifiable computing techniques and ARM TrustZone,
and we target the Android mobile platform. We assume the
hardware platform is correct, and the OS is untrusted, i.e., is
not part of the trusted computing base. Without loss of gen-
erality, AMFs are implemented as native functions included
in the code of mobile applications.

3 BUILDING BLOCKS
This section introduces the two building blocks of our solu-
tion: verifiable computing and ARM TrustZone.

3.1 Verifiable Computing
The field of verifiable computing addresses one of the biggest
issues with cloud computing, i.e., the need to trust remote
machines to process privacy-sensitive data. Essentially, it
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Figure 2: Verifiable computing framework [25].

allows for untrusted third parties to provide clients with
computation execution correctness proofs.
Figure 2 presents the general flow associated with veri-

fiable computing [25]. Essentially it shows a framework in
which a client, acting as verifier, can assess whether, for a
computation p and desired input x, the output y given by a
remote party, acting as prover, over p(x) is correct. Initially,
both verifier and prover compile p, usually a function ex-
pressed in a high level language, e.g., C, into a boolean circuit,
C (step 1). These circuits are simply networks of AND, OR,
and NOT logic gates. Then, the prover executes p, obtaining
a transcript for the execution of C on x (step 2). In step 3, the
prover encodes the transcript in a way suitable for efficient
querying by the verifier. In possession of the transcript, the
verifier can then issue probabilistic queries in order to assess
computation execution correctness (step 4).
Although the field has had practicality issues [21], there

have been considerable performance improvements [21, 22]
leading to the emergence of open source projects [2, 3] that
foster the usage of verification cryptographic protocols. A
particular cryptographic primitive called SNARK [8] is at
the very root of these improvements. First, by leveraging
arithmetic constrains, i.e., sets of equations over finite fields,
instead of boolean circuits to represent computations, it sig-
nificantly improves performance. And second, by providing
non-interactive and zero-knowledge properties to execution
proofs it further expands the range of use cases supported.

3.2 ARM TrustZone Technology
Our second building block consists of ARMTrustZone, which
is a set of security extensions of ARM processors providing
hardware level isolation between two execution domains:
normal world and secure world [19]. The normal world is
assumed to run untrusted software, usually a large OS, e.g.,
Android, and its applications. The secure world hosts the
TEE and is supposed to run a smaller, trustworthy kernel,
and security services. The context switch between worlds is
controlled by the higher privileged monitor mode.
Software in the normal world can force a switch to the

secure world by calling the secure monitor call (SMC) in-
struction. Compared to the normal world, the secure world
has higher privileges, as it can access the normal world’s

memory, CPU registers and peripherals but not vice-versa.
More specifically, each world has access to its own memory
management unit (MMU) to maintain separated page trans-
lation tables. Cache memories are also TrustZone-aware, i.e.,
cache lines are tagged as secure and non-secure hence pre-
venting normal world access to secure cached content. This
mechanism is complemented by the ability to exclusively
assign interrupts to the secure world, therefore guaranteeing
peripheral world access isolation.

3.3 Combining Verifiable Computing with
ARM TrustZone

In our solution, we use TrustZone to provide protection for
the proof verification stage implemented by the verifier. In
fact, since the proof verification requires access to the inputs
and given that, as explained in Section 2.1, the inputs must
never leave the end-users’ mobile devices, this means that the
verification process must be carried out on themobile devices
themselves. On the other hand, since the OS is not trusted, we
use TrustZone to provide the necessary isolation between
the OS and a trusted environment where the verification
logic can execute securely; the trusted environment will be
implemented inside the secure world.
An alternative design would to be to run AMFs entirely

inside the secure world thereby precluding the need for ver-
ifiable computing protocols altogether. However, this ap-
proach has an important downside which we aim to avoid,
namely that it requires running untrusted application code
inside the secure world. Although there are TEE systems
that allow for sandboxing such code [19], recent attacks to
TEE systems have shown that allowing for the execution
of general-purpose untrusted applications inside the secure
world increases the attack surface and hence the risks of
security breaches [18]. To reduce such risks, we explore a
design point in which only the verification logic runs inside
the secure world, therefore reducing exposure to attacks.

4 SAFECHECKER DESIGN
We present the design of SafeChecker, a system that provides
AMF support for the Android mobile platform.

4.1 Architecture
Figure 3 depicts the architecture of our system, namely its
components as well as most of the execution flows of the
verification notification environment. For practical reasons
we take the Android OS as the underlying example. Shaded
boxes represent SafeChecker’s original components, while
pattern-filled boxes represent existing components needed
to be modified. All trusted components of SafeChecker reside
in the secure world, namely SafeChecker Kernel, Verifica-
tion Engine and Storage Driver. The normal world runs an
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Android stack together with a SafeChecker OS service that
provides an interface to mobile apps and leverages a system
call API to perform world switches via the SMC instruction.
All these components play specific roles in the lifecycle

of AMFs. Given that auditable functions are embedded into
verifiable applications’ packages (Section 4.2), the OS’s ap-
plication installer (i.e., package manager in the figure) must
be modified to handle them accordingly when installing
applications on the system (Section 4.3). The execution of
computation proofs happens whenever an AMF is called,
which effectively triggers the execution of the correspond-
ing function in the modified native libraries (Section 4.4).
After the proof is calculated, it is forwarded to the verifi-

cation engine, leveraging SafeChecker’s service and API in
the normal world, and the SafeChecker kernel in the secure
world (Section 4.5). Once the verification finishes, its results
are stored in the trusted filesystem managed exclusively by
the Storage Driver, thus preventing access from the normal
world. The control is then returned to the normal world.

With respect to verifier notification, authorized notifica-
tion services are able to extract proof verification results
from the secure filesystem in order to notify verifiers us-
ing channels other than the ones accessible through the
potentially compromised mobile device, e.g., dedicated email
account (Section 4.6). In the following sections, we provide
details over the different SafeChecker operations, and base
our descriptions on the example given in Figure 4.

4.2 Verifiable Application Code Adaptation
Android applications are typically written in Java, but they
can feature native code (C/C++ code compiled into binary
code), leveraging the Java native interface (JNI). In order to
implement AMFs, application developers must (1) add the
@Auditable annotation to the intended Java native methods

they wish to be verified at runtime, and (2) configure their
build process to accommodate the proving logic adaptation.
Note that the programming effort associated with providing
AMF support for typical applications is small: developers
need simply to declare which functions should be made veri-
fiable and add the corresponding annotation to each of them.

Once a developer compiles an annotated application, there
must be a proof adaptation procedure in the build process
to make the application compatible with the verification
mechanism. This procedure is implemented by an adaptation
pipeline mechanism composed of the following four stages:
1. Method matching: Figure 4 provides an example of the com-
plete verification environment for a certain function f. The
code adaptation poses very little disruption, as developers
can simply use the IDE to annotate the Java source code, and
work on the native source code of function f, and other typi-
cal resources of standard mobile applications. After most of
the usual build process is completed, the adaptation pipeline
begins. In the first stage of the pipeline, the annotated Java
methods are parsed so as to determinewhich native functions
implement the high level methods’ corresponding logic.
2. Constraint generation: After this matching, the AMFs’
source code is processed and adapted to our mechanism.
Instead of compiling these functions into boolean circuits
(see Section 3), we use a more efficient approach in which
functions are compiled into arithmetic constrains, i.e., sets
of equations over finite fields [21]. Therefore, in this stage,
these functions’ source code is processed by an arithmetic
constraint generator. This module analyzes the code, and
transforms each function into a group of algebraic repre-
sentations called quadratic arithmetic programs (QAPs). The
resulting artifacts consist of a group of QAP files needed to
both prove and verify computation proofs, as well as a file
containing a representation of the operations a prover must
follow to compute a proof over a function f. In Figure 4 the
group of QAPs for a given function f is represented by Cf .
3. Prover compilation: Next, the prover logic is compiled. First
it compiles the general prover that proves nondeterministic
polynomial time (NP) statements as constraint systems rep-
resented by QAPs. Then each of the AMFs’ source code is
bundled with a call to the generic prover patched with the
function’s corresponding QAPs and prover configuration file.
At that point, a native library containing those adapted func-
tions and general prover is compiled. Ultimately, this process
generates for a given function f an execution verification
compatible function f’ (see Figure 4).
4. APK assembly: In the last stage, the standard application
package assemblage must be adapted to include the resulting
prover native library, as well as the QAP files needed by
the verification component. Note that, for every processed



MobiQuitous ’18, November 5–7, 2018, New York, NY, USA N. Duarte et al.

Mobile Device 

AMF App 

Verification 

Service 

Normal World 

Verifier 
 Developer 

App Market 

f ’ 

Notification 

Service 

annotated Java code 

f native source code 

other resources 

Bytecode 

Trusted Storage app 

pkg 

INf < IDf, INf, OUTf, Pf > 

 

 

 

<IDf, Cf > 

KPf 

KPf <IDf, H(INf ), H(OUTf ), VRf > 

Secure World 

notification 

 

 

 KVf 

IDE 

app 

pkg 

Figure 4: Auditable mobile function metadata.

auditable function f, the IDE must assign a unique id, IDf
(see Figure 4), and sign these QAP files.

4.3 Verifiable Application Installation
Since the retrofitting procedure produces additional veri-
fication artifacts, there is a need to adapt the mobile OS’s
application installation logic. Upon installing an applica-
tion, Android normally performs operations such as creating
directories to store the application’s shared preferences; as-
sess permissions by analyzing the application’s manifest
file. With our approach, the installation of applications also
requires the installation of the QAP files, needed by the veri-
fication engine, in the secure world’s filesystem. In order to
do so, the application installer must forward these artifacts to
the SafeChecker service while installing an application pack-
age. At this point, the service leverages the SafeChecker’s
system call API to allocate and include the artifacts in a
memory region shared with the secure world, which the
SafeChecker kernel accesses after an application installation
flagged SMC instruction is called.

In possession of these artifacts, the SafeCheker kernel first
verifies these QAP files’ authenticity by checking their sig-
natures. Then it leverages the storage driver to store these
artifacts securely. Note that for a given function f these ar-
tifacts are stored as a tuple ⟨IDf , Cf ⟩, where IDf is the id
assigned by the IDE, andCf is a representation of these QAP
files (Figure 4). Once these artifacts are safely stored, the
SafeChecker kernel issues the verification engine to gener-
ate new verification and proving keys for each of the new
functions, which it again persistently stores through the stor-
age driver. Although the verification key (KVf ) never leaves
the secure world, the proving key (KPf ) must be provided to
applications in order for AMFs to compute execution proofs.

4.4 Proof Computation
Because of the modified native libraries, once an application
calls an AMF, it automatically issues the computation of a
proof over the corresponding native function. But before
actually computing the proof, the native library must first
get the computation’s proving key (KPf ).

In case of a first time verification, the library must first
fetch the function’s proving key from the secure world. Only
after issuing a SafeChecker service call, which triggers a
system call to the SafeChecker API and corresponding SMC
to the SafeChecker kernel, is the proving key returned from
secure storage. In subsequent verifications, the library may
fetch the proving key from a local directory. Once the ex-
ecution proof is calculated (Pf ), the library again issues a
SafeChecker service call, thus delivering the proof through
a chain that ends in the verification engine, where the verifi-
cation takes place. Apart from KPf , AMFs must also be fed
the normal inputs expected to run a native function (INf ).

4.5 Proof Verification
To verify a proof, the verification engine first fetches the
verification key (KVf ) and QAPs corresponding to a function
f from the secure filesystem, and then asserts the proof
leveraging them. More specifically, to verify a proof, an AMF
must provide the id of the function (IDf ), the inputs and
outputs from the function (INf , andOUTf respectively), and
the execution proof (Pf ). In this case, the verification logic
from the verification engine is as general as the proving logic
bundled into applications’ native libraries.

A limitation of our approach is the verification time. Trusted
hardware solutions such as ARM TrustZone rely on isolation
mechanisms that prevent execution concurrency between
the normal and secure worlds. In practice this means that at
any given time, only one of the worlds is executing. There-
fore, although applications can leverage multithreading to
compute several proofs simultaneously, verifying an execu-
tion proof in the secure world leads the normal world to halt.
In a mobile device scenario this means the user interface
will not be responsive until the verification step finishes and
control is taken back to the normal world.
A logical workaround to this usability issue is to delay

the verification of proofs until the device is on a stand-by
mode, i.e., its screen is off. This means that at runtime, the
switches between the two worlds concern only the secure
storage of proofs, and request for first-time proving keys.
Then, when the device is on stand-by, the SafeChecker ser-
vice can trigger the world switch and the verification engine
can process a batch of proofs. Once a verification terminates,
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its result is securely stored as a tuple ⟨IDf ,H (INf ),H (OUTf ),
VRf ⟩, where VRf is the verification result, and H (INf ) and
H (OUTf ) are hashes of the inputs and outputs fed and out-
putted by function f respectively (Figure 4). These hashes
are essential to keep sensitive information private when
divulging verification information to notification services.
Note however that users should be allowed to specify the
information accessible by these services, so the use of these
hashes should be parameterized.

4.6 Result Retrieval
To keep verifiers informed of applications’ execution correct-
ness, authorized notification services are allowed to periodi-
cally query the SafeChecker’s kernel for proof verification
results. In order to do so, SafeChecker’s service must provide
a query API usable only by authorized notification services.
When the proof result query API call is issued by a notifica-
tion service, SafeChecker’s service must first authenticate
that service, and then leverage SafeChecker’s API to retrieve
the proof verification results from the secure world. When-
ever a query is made, the SafeChecker kernel must fetch
these results from the secure filesystem, sign and copy them
to a memory region shared with the normal world. After
the world switch through the SMC instruction, the service
can then forward the results to the notification service. Be-
cause the results are signed, even if SafeChecker’s service
is compromised, the contents of the results cannot be tam-
pered with. Furthermore, we assume the existence of a secure
channel between the notification service and SafeChecker’s
kernel, since we assume both the notification service and
the mobile device have uniquely identifying keypairs. This is
particularly admissible for ARM-based mobile devices, since
they are usually shipped with such keys.

5 SAFECHECKER IMPLEMENTATION
We implemented a SafeChecker prototype for the Freescale
NXP i.MX53Quick Start Board. Our prototype features needed
components to assess the costs associated to verifiable com-
puting in mobile devices. TCB comprises the SafeChecker
Kernel, the Verification Engine, and the Storage Driver.
The SafeChecker kernel resides in the secure world and

is responsible for memory management, thread execution,
and world switch operations. To facilitate the development
of SafeChecker’s kernel, we adopted the base-hw custom
kernel from the Genode Framework [4], which comprises a
20 KLOC codebase. Additionally, we used Genode’s Virtual
Machine Monitor (VMM) to run a paravirtualized Android
OS, which leverages a custom-made Linux kernel for Genode.
This paravirtualization is needed so that certain resources
(e.g., framebuffer) and signals (e.g., data abort interrupt) can
be managed only by the secure world.

In order to build our Verification Engine, we leveraged
libsnark [2], a library that offers several cryptographic meth-
ods for proving and verifying the integrity of computations.
To preserve a small TCB, we ported only the logic associated
with the r1cs_ppzksnark proof system, which proves NP state-
ments as rank-1 constraint systems (R1CS), which internally
are converted into QAPs. Additionally, because of compatibil-
ity issues, we ported the logic associated with the alt_bn128
elliptic curve, an alternative to the more optimized bn_128
curve, which also provides 128 bits of security but is only
available for x86 architectures. Because libsnark uses very
large integers when handling the integrity of computations,
we also had to port GNU’s Multiple Precision Arithmetic
Library (GMP). The process of shrinking our GMP port to
achieve a smaller TCB is left for future work.
With respect to the arithmetic constraint generator, we

leverage Pequin’s [3] frontend, which produces the QAP and
prover configuration files necessary for our verification logic
to be tested. We created an Android system service represent-
ing the SafeChecker service, and a kernel module that offers
a verification API that triggers the necessary world switches
through SMC invocations, and passes the necessary artifacts
between worlds (e.g., proving keys). Currently we hold a few
computations adapted with the verification mechanism in
the SafeChecker service and have manually inserted their
corresponding QAP files in the secure storage.

6 EVALUATION
In this section, we evaluate the performance of our prototype
when verifying computation proofs in the secure world.

6.1 Methodology
To illustrate how both the proof computation and verification
performances are influenced by the computation complexity,
we implemented three AMF-based applications which aim
to mimic the use cases described in Section II-B:
Digital evidence collection: The first application implements
an AMF for censoring parts of a picture. The AMF receives a
squared int32_t matrix representing the image’s original
pixels, and outputs a copy with a censored square of pixels
starting from the upper left corner. The pixels of the censored
square are colored with a constant color value. For baselines
we use a 32x32, 64x64 and 128x128 matrices, and increase
the square size from 1x1 until the size of the whole picture.
Gamification: The second application aims to test whether
a user is located within a certain geographical region. It
implements an AMF which receives as input two double
vectors representing latitude and longitude GPS coordinate
pairs, and eight doubles representing the GPS coordinates
of a squared region. The AMF then returns the number of
times a pair of coordinates falls within that squared region.
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(a) Image censorship proof.
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Figure 5: Proof computation performance.
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Figure 6: Proof verification performance.

To measure the performance, we begin with a GPS data
collecting period of one hour, and vary the frequency of
collected data pairs from one per hour to one per minute.
E-health: The third application implements an AMF that
computes the daily average heart rate of a user. The AMF
receives a int16_t vector containing heart rate readings, and
returns the average of all the values therein. For performance
measurement, we start with a daily calculation, and vary the
reading frequency from one per hour to one per minute.

We test the performance of these three applications on an
i.MX53 Quick Start Board, featuring a 1 GHz ARM Cortex-
A8 Processor, and 1 GB of DDR3 RAM memory. The board
launched SafeChecker from amini SD card, whichwas flashed
with the modified Genode and Android versions. We report
the mean of 5 runs, and standard deviations.

6.2 Verification Performance
We present our evaluation results separately regarding the
performance of proof computation and the performance of
proof verification. Note that we do not report detailed mea-
surements of the overheads introduced by low-level system
mechanisms, such as the execution times associated with
the allocation of shared memory between worlds, proof, in-
put and output copy to the memory buffer, and the world
switch instruction call. The reason is that these overheads are
negligible considering that the execution times of proof com-
putation and verification take several seconds. For instance,

we report a 4ms world switch cost for censoring a 32x32
pixel matrix, which takes about 10 seconds to complete.
Figure 5 depicts our proof computation performance re-

sults. The curve in Figure 5a shows the proof computation
time of the image censorship application as a function of the
size of the censored pixel square expressed as the number
of pixels of the square’s respective side. As discussed in the
section below, these images can be considered as chunks of
the original picture. For a 128x128 image, the execution time
starts in 540 seconds and drops to 120 seconds as the size
of the censored region increases from zero until it covers
the entire picture. For smaller 64x64 and 32x32 images, the
proof computation times shrinks considerably to the order
of 50 and 10 seconds, respectively. The reason why the proof
computation times tend to decrease as the censored region
size increases is because the AMF performs fewer expensive
operations that consist in reading the original pixels from
the input matrix to write them to the output matrix; instead,
the AMF simply writes zeros to it.
Figures 5b and 5c present the proof computation perfor-

mance of the location checks and heart rate average calcu-
lations, respectively. In both cases, we test these functions
by increasing their input sizes based on the respective sam-
pling rates, which change between one per hour to one per
minute for a one hour and one day sampling period respec-
tively. We see that, although their input sizes are different
(the medical measurements receive larger input sizes), the
performance of both applications is comparable, exhibiting



Providing Auditable Mobile Functions MobiQuitous ’18, November 5–7, 2018, New York, NY, USA

execution times which vary between 10 and 12 seconds. The
factor that evens out their performances is a difference in
the complexity of their computations: whereas the medical
measurements AMF executes arithmetic computations for
the average calculation, the location check AMF needs to
perform more expensive nested if conditions, which are re-
quired to compare the latitude and longitude of coordinate
pairs. Similar to the 32x32 image censoring application, the
costs of varying the number of inputs in this range (1 to 1440
= 24h x 60 min for medical measurement) when compared
with the 128x128 image censoring example (1 to 16384 =
128x128) produces reduced differences in the performance
of the AMF with the different input sizes.
With respect to the proof verification performance, our

main results are depicted in Figure 6. In general, they all
follow the same trend as in their counterpart proof compu-
tation experiments. The main difference between them is a
decrease in the total execution times by nearly one order of
magnitude.We can then see that the cost of proof verification
is significantly lower that the cost of proof computation.

6.3 Performance and Security Discussion
Performance discussion. Based on our experimental evalua-
tion, the costs involved in the computation and verification
of AMF proofs tend to be relatively high. Nevertheless, such
numbers can be acceptable for use cases where the AMF
functions are meant to be executed with a relatively low
frequency and do not demand a quick response time, such
as in the examples we used above. A possible optimization is
to employ probabilistic verification. Instead of automatically
computing proofs upon function execution, AMFs can be
packagedwith logic which would first query the SafeChecker
service for authorization of execution proof calculation.
Regarding the performance results, we make two final

remarks. First, the obtained performance numbers are the
product of our raw adaptation of a state of the art computa-
tion verification protocol provided by libsnark; libsnark is a
prototyped library which has not been extensively optimized.
Second, we underline that it was not our goal to advance
the state of the art in verifiable computing algorithms. Yet,
we designed SafeChecker so that further improvements in
verifiable computing may be incorporated into our system
so as to improve the execution efficiency of our system.
Security discussion. SafeChecker can prevent compromised
OSes or applications from interfering with the execution
integrity of AMFs. For instance, buffer overflow exploits
to undermine the calculation of execution proofs may be
detected by the verification process. The same holds for code
injection attacks aiming at modifying the original function’s
logic. Note that AMFs do not preclude a compromised OS

from accessing application data, nor is it their original goal:
AMFs are concerned about integrity verification.

We discuss some attacks that SafeChecker does not cur-
rently address, and possible solutions. SafeChecker is un-
able to handle DoS attacks preventing the communication
between worlds, hence undermining the execution of our
verification mechanism. In fact, SafeChecker is oblivious
of which proofs are supposed to be verified, and if it re-
ceived all verification requests sent. Nevertheless, if such
attacks were to happen, they could be detected, as the re-
sulting communication failure between notification services
and SafeChecker’s kernel, could at the very least lead to an
abnormal behaviour notification to the verifier.
With respect to AMF code vulnerabilities, execution cor-

rectness cannot be used to infer the benign nor malicious
nature of a function. If a function is malicious, a positive exe-
cution proof simply proves the function executed as intended.
In that regard, SafeChecker relies on current application
markets’ vetting effectiveness, similarly to every mobile OS
environment. Therefore, SafeChecker’s runtime verification
mechanism provides execution correctness assurances over
previously vetted functions running on untrusted platforms.

7 RELATEDWORK
We cover the related work focusing on three main areas:
verifiable computing, TrustZone, and Android security.

Verifiable computing emerged 30 years ago, with pro-
posed theoretical work that was by the time non-practical [5].
Notwithstanding, the work by Setty et al. [21, 22] has pushed
the field into a near-practical state with performance im-
provements of 20 orders of magnitude. The recent emergence
of a succinct, non-interactive, sound proof of knowledge
(SNARK) cryptographic primitive [8] further evolved the
field and fostered new advances in zero-knowledge proofs.
ADSNARK [6] allows users to calculate execution proofs
over functions handling their sensitive data, and provide
those proofs as execution compliance to service providers,
without revealing the data. Pequin [3] is a verifiable com-
puting toolchain whose front-end transforms C programs
into sets of arithmetic constraints, which are then fed to
one of libsnark’s proof systems, Pequin’s backend. Zero-
cash [20] leverages libsnark’s zero-knowledge proofs to build
a privacy-preserving version of Bitcoin. More recently, Gi-
raffe [24] implements a new probabilistic proof built on pro-
tocol T13 [23], yielding considerable performance improve-
ments which could be incorporated in SafeChecker. In con-
trast to SafeChecker, none of these systems were ever used
in mobile environments, as they mostly target the cloud.

ARM TrustZone has been widely used in mobile security,
e.g., for enabling secure storage of sensitive data [15], pro-
viding secure authentication mechanisms [16], and safely
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control peripherals [14]. Other TrustZone-based systems
aim to enhance the security of mobile OSes themselves, e.g.,
by implementing rootkit resilient OS introspection mech-
anisms [12], and tracing API function and system calls to
detect malicious apps [27]. General purpose Trusted Execu-
tion Environment (TEE) systems [19] allow for the execution
of security-sensitive application code inside a secure world
sandbox isolated from the mobile OS. SafeChecker comple-
ments existing work with a new TrustZone-based service
aimed to provide auditable mobile function support.

Lastly, untrusted Android applications have been secured
with data shadowing [9], application sandboxing [7], or in-
formation flow control techniques [11]. Other systems refine
Android’s permission model [26], implement mandatory ac-
cess control (MAC) [10] and enable kernel-level hooking
APIs for user-level access control models [13]. All this work
is complementary to ours, since we are introducing a fun-
damentally new OS primitive which is primarily concerned
about providing integrity guarantees of code execution.

8 CONCLUSIONS
We presented SafeChecker, a computation verification sys-
tem for mobile devices. AMFs allow service providers to
check the integrity of client-side remote computations with-
out requiring the migration of sensitive data off their clients’
mobile devices. The design of SafeChecker combines in an
original fashion techniques from two different domains: veri-
fiable computing and ARM TrustZone. Despite the computa-
tional costs introduced by existing verification protocols, the
performance overheads of SafeChecker can be acceptable for
use cases where AMFs are executed infrequently.
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