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Abstract—The popularity of wide-area computer services has
generated a compelling need for efficient algorithms that provide
high reliability. Byzantine fault-tolerant (BFT) algorithms can be
used with this purpose because they allow replicated systems to
continue to provide a correct service even when some of their
replicas fail arbitrarily, either accidentally or due to malicious
faults. Current BFT algorithms perform well on LANs but when
the replicas are distributed geographically their performance
is affected by the lower bandwidth and the higher and more
heterogeneous network latencies. This paper proposes and eval-
uates a novel BFT algorithm for WANs that requires fewer
communication steps, fewer replicas and has better throughput
and latency than others in the literature. The paper presents an
extensive evaluation of the algorithm’s performance in several
settings and conditions: in a LAN; in real and emulated WANs;
with clients close to servers and dispersed geographically; with
similar and different communication latencies between clients
and servers.

I. INTRODUCTION

The growing reliance of our society on wide-area services
demands highly reliable systems that provide correct and
uninterrupted services. One of the most popular techniques for
building fault-tolerant distributed services is the state machine
approach [1]. The main idea is to replicate the service in a
set of servers and make clients issue requests to the service
running an algorithm that ensures that all correct replicas
execute the same sequence of requests.

Several practical algorithms to implement efficient Byzan-
tine Fault-Tolerant (BFT) state machine replication have been
proposed. PBFT [2] was the first of them shown to be efficient
in practice, but several others derived from it [3], [4], [5],
[6], [7]. For these two reasons, PBFT is often considered to
be a baseline for performance of BFT algorithms in local
area networks (LANs), which other algorithms improve under
certain conditions.

The main motivation for this paper is that for a replicated
service to be fault-tolerant, common mode failures have to
be avoided. More specifically, the paper is concerned with
common mode failures caused by natural disasters, power
outages and physical attacks, which have to be prevented by
scattering replicas geographically. This requires the sites where
the replicas reside to be connected by a wide-area network
(WAN) like the Internet.

Unfortunately, when the replicas are distributed geographi-
cally the performance of current BFT algorithms is affected by

the lower bandwidth, and the higher and more heterogeneous
network latencies. Furthermore, these algorithms usually rely
on a primary replica for defining the order in which requests
are executed, and in a WAN it is difficult to detect that
the primary is faulty or that the latency and/or bandwidth
of its communication with the other replicas has become a
bottleneck for the service performance.

In order to cope with these challenges, this paper presents
the Efficient Byzantine Agreement for Wide-Area networks
(EBAWA), a new BFT state machine replication algorithm
designed for WANs that has a reduced number of commu-
nication steps, requires only 2 f +1 replicas, and introduces a
set of mechanisms focused in providing a better performance
in large-scale environments. The communication pattern of
EBAWA is based on a BFT algorithm that we designed
previously, Spinning [7]. Like Spinning, EBAWA rotates the
primary constantly, i.e., changes the primary after every batch
of pending requests is accepted for execution. The rotation
of the primary makes EBAWA mostly unaffected by certain
performance degradation attacks [3] and enables the use of
mechanisms for WANs.

Spinning executes agreements on client requests in se-
quence, one agreement per view. In WANs, this can lead to
undesirable delays due to the high latency and low bandwidth
of the communication links. In this paper we introduce a new
mechanism called asynchronous views, one of the key features
that make EBAWA efficient in WANs. The asynchronous
views mechanism consists in parallelizing several agreements,
i.e., several views. This mechanism allows not only to reduce
the delay of a server waiting for its turn for becoming the
primary, but also allows servers to batch messages of different
agreements/views in a single message, reducing the number of
sent messages and the overhead of cryptographic operations.
This mechanism reduces the latency of the algorithm and
improves the throughput because there are fewer messages
being processed.

The use of a rotating primary and asynchronous views allow
another interesting feature: clients can send requests only to
the nearest server. In WANs this tends to reduce the end-to-
end latency experienced by the client. However, in Spinning
it would have the opposite effect, because each server would
have to wait to become the primary to start an agreement
for the execution of the requests sent by the clients. EBAWA
uses the skip mechanism borrowed from Mencius to avoid



executing an agreement when a server has no pending requests
[8].

Finally, EBAWA uses a trusted component on the servers to
reduce the number of replicas and the number of communica-
tion steps required for agreement. This component implements
a simple service called Unique Sequential Identifier Generator
(USIG) [9], which comprises a counter plus a cryptographic
authentication algorithm, thus being simple to implement in
a trustworthy way. The service provided by this trusted com-
ponent makes EBAWA match lower bounds only comparable
with crash fault-tolerant algorithms: 2 f +1 replicas to tolerate
f faulty and 2 communication steps for agreement [10].
Moreover, minimizing the number of communication steps
is fundamental to improve the performance of a distributed
algorithm for WANs, since link latencies tend to dominate
the end-to-end latency experienced by clients accessing a
replicated service.

In summary the main contributions of this paper are the
following:

• it presents EBAWA, a new BFT algorithm suitable for
supporting the execution of wide-area replicated services.
EBAWA has a reduced number of communication steps, is
the first BFT algorithm for WANs that requires only 2 f +
1 replicas, and combines a set of mechanisms focused in
providing better performance in large-scale environments.

• it presents a thorough evaluation of the performance of
EBAWA in several settings and conditions: in a LAN; in
real and emulated WANs; with clients close to servers
and dispersed geographically; with similar and different
communication latencies between clients and servers. In
particular, it presents, for the first time, a performance
evaluation of BFT state machine algorithms on a real
wide-area network (PlanetLab). The results of these ex-
periments show that the techniques employed by EBAWA
make it an efficient wide-area replication algorithm.

II. RELATED WORK

There are two BFT algorithms in the literature that were
designed for WANs [11], [12]. Steward is a hierarchical state
machine replication architecture [11]. Each site has a group
of servers that play the role of a single participant in a
wide-area algorithm. Steward’s main protocol is a lightweight,
crash fault-tolerant consensus algorithm executed between
sites, while within each site it runs PBFT. EBAWA has a
more flexible architecture than Steward because it does not
have a hierarchical architecture and clients and servers can be
localized in the same site or dispersed geographically. EBAWA
has only two sub-algorithms that deal with the normal case
operation and merge operation, while Steward has over ten
specialized algorithms that run within and among sites, most
of which are associated with global view changes. Besides,
EBAWA tolerates f malicious servers that can be localized in
different sites, while Steward can withstand f out of 3 f + 1
Byzantine failures within each site but cannot survive even a
single site compromise.

Mencius is an algorithm for efficient state machine replica-
tion in WANs that also changes the primary for each agreement
[8] but that has many important differences to EBAWA.
Mencius only tolerates replica crashes, while EBAWA tolerates
Byzantine replicas. In Mencius servers other than the primary
do not exchange messages among themselves, while EBAWA
has an all-to-all communication pattern. In EBAWA clients can
be arbitrarily scattered geographically, while Mencius uses a
fate sharing model in which the service is used only in a set
of data centers and clients can only communicate with the
service through the replica in their data center (clients may be
unable to use the service if the local server is faulty). EBAWA
uses several mechanisms that do not exist in Mencius but
are important for tolerating malicious behavior and increasing
performance: asynchronous views, batches of messages, merge
operation, timeout reset, and blacklisting of faulty servers.

Mao et. al [12] describe the design principles of a BFT
algorithm for WANs, the RAM algorithm, by exploring the
use of the A2M trusted service [13] and a rotating primary.
When compared to RAM, EBAWA requires fewer replicas
(2 f + 1 instead of 3 f + 1) and uses a trusted service that is
simpler, easier to implement and make trustworthy. The USIG
service provides an interface with operations only to increment
a counter and to verify if counter values are correctly signed,
while A2M provides a log that can grow considerably and
an interface with functions to append, lookup and truncate
messages in the log. Besides, EBAWA uses a flexible model,
while RAM follows the Mencius’ fate sharing model.

There are three previous BFT state machine replication
algorithms that require only 2 f + 1 replicas. However, they
were not designed specifically for WANs and do not include
the mechanisms that we use in EBAWA with the purpose of
obtaining efficiency in those environments, with the exception
of a trusted component. The first algorithm of the kind is based
on a distributed trusted component called TTCB [14]. The
second is based on the above mentioned A2M local trusted
component [13]. Finally, MinBFT uses USIG itself, but does
not include any of the other mechanisms of EBAWA [9].
USIG [9] is very similar to TrInc [15], which was proposed
independently in the literature at the same time.

III. SYSTEM MODEL

We model the system as a set of n servers (or replicas)
{s0, ...,sn−1} that provide a Byzantine fault-tolerant service
to a set of clients {c0,c1, ...}. Clients and servers are inter-
connected by a LAN or a WAN and communicate only by
message-passing. The bandwidth between pairs of servers can
be asymmetric and variable. The network can drop, reorder and
duplicate messages, but these faults are masked using common
techniques like packet retransmissions. Messages are kept in
a message log for being retransmitted when necessary. We as-
sume a partial synchronous system model [16], i.e, the system
can be asynchronous but there are (unknown) communication
and processing delay bounds that are respected after some
(unknown) instant of time. An attacker may have access to
the network and be able to modify messages, so messages take



digital signatures or message authentication codes (HMACs).
Servers and clients know the keys they need to verify these
signatures/HMACs. We make the standard assumptions about
cryptography that hash functions are collision-resistant and
that signatures and HMACs cannot be forged.

Correct servers/clients always follow their algorithm. Faulty
servers/clients can deviate arbitrarily from their algorithm,
even by colluding with some malicious purpose. This class of
unconstrained faults is usually called Byzantine or arbitrary.
We assume that at most f out of n servers can be faulty with
n = 2 f +1. The fault model considered is hybrid [17]: although
any number of clients and up to f servers can be subject to
Byzantine faults, the modules that implement the USIG service
on servers are trusted/trustworthy, i.e., they always satisfy the
specification of the USIG service.

The USIG Service. The Unique Sequential Identifier Gen-
erator (USIG) is a service provided locally in each server
by a module that has to be built to be trusted/trustworthy
[9]. More precisely, the confidentiality of its key and the
integrity of its operation are assumed to be held even if an
adversary has access to the server. There is no communication
among the modules in different servers, so each correct server
si has exclusive access to module wi of a set of modules
{w0, ...,wn−1}.

The service is used to assign identifiers to messages ensur-
ing the following properties: (1) it will never assign the same
identifier to two different messages (uniqueness), and (2) it
will never assign an identifier that is not the successor of the
previous one (sequentiality). The interface of the service has
two functions: (1) createUI(m) returns a unique identifier
UI, which is a data structure containing a counter value and
a USIG-certificate that certifies that UI was created by this
module wi for message m; (2) verifyUI(UI,m) verifies if
the UI is valid for message m, i.e., if the USIG certificate
matches the message and the rest of the data in UI.

The main components of a module wi are a counter and
cryptographic mechanisms. The unique identifier is a reading
of the counter, which is incremented whenever createUI is
called. When this function is called in module wi, it returns
a USIG certificate containing a HMAC that is obtained using
the message m and a secret key Ki. This key is shared with
all modules w j, which use it to validate the certificate. The
service properties are based on the secretness of the shared key,
then both functions must be implemented inside a tamperproof
component. This tamperproofness can be obtained even on
COTS trusted hardware, such as the Trusted Platform Module
(TPM) [18]. More details about the USIG implementation can
be found in [9].

IV. EBAWA MECHANISMS

The state machine approach consists of replicating a service
in a group of servers. Each server maintains a set of state
variables, which are modified by a set of operations. Clients of
the service issue requests with operations through a replication
algorithm which ensures safety (all correct servers execute
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Figure 1. Communication patterns of a single agreement (a) in PBFT
and Spinning and (b) in EBAWA.

the same requests in the same order) and liveness (all correct
clients’ requests are eventually executed).

This section presents the mechanisms that EBAWA com-
bined in order to be efficient in WANs.
Trusted/trustworthy component. EBAWA explores the use
of a trusted component that provides the USIG service to con-
strain the power of faulty processes to have certain behaviors.
This allows the reduction of the number of communication
steps (from the previous minimum1 of 5 [2], [4] to 4) and
of the number of replicas (from 3 f + 1 [2], [3], [4], [5],
[6] to 2 f + 1). Figure 1 illustrates these improvements by
showing the communication patterns of PBFT and EBAWA.
The number of communication steps is an important metric
for distributed algorithms, as discussed before. Besides, the
already mentioned need of avoiding common mode failures re-
quires diversity of the replicas [19], which involves additional
considerable costs per replica, in terms not only of hardware
but especially of software development and management.
Then, reducing the number of replicas has a significant impact
in the system cost.
Rotating Primary. EBAWA follows the idea of Spinning of
changing the primary whenever a batch of requests is accepted
for execution. An individual agreement in Spinning follows
essentially the communication pattern of PBFT (Figure 1(a)),
but in Spinning the primary changes automatically in a round-
robin fashion whenever it defines the order of a single batch of
requests. Spinning has no view change operation, since views
are always changing, but it has a merge operation, which is
in charge of putting together the information from different
servers to decide if requests in views that went wrong are to
be executed or not.

The use of rotating primary has two main benefits. The first
is that it avoids performance attacks made by faulty servers
to which many BFT algorithms are vulnerable [3] in a very
simple and efficient way: by always changing the primary. The
second is that it improves the throughput of PBFT when there
are no faulty servers by balancing the load of ordering requests
among all (correct) servers.
Clients scattered geographically. In order to tolerate natural
disasters, power outages and physical attacks, servers have to
be in different locations. Previous works on wide-area BFT
replication consider that clients are in the same site than

1There is an optimization called tentative execution that allow these
algorithms to run in 4 steps, but it only works in synchronous and fault-free
environments [2].



servers (e.g., in the same data center) [11], [12], and their fate
is shared with the site’s server. The main problem with this
fate sharing model is that clients of a site are unable to access
the service if their local server is compromised. Moreover, this
model makes it unclear how to deal with clients that are not
located on any of the replica’s sites.

In EBAWA clients can be placed anywhere. We use the
notion of proximity to associate clients with servers: a client is
nearer to certain servers than others. This proximity is in terms
of communication round-trip time, so a client sends requests
only to the server that replies faster (unless it is faulty). In
order to reduce the cost of communication, the nearest server
is also in charge of sending the complete result of the requested
operation to the client, while others send only a digest (hash).
This optimization is important when results are large. Clients
verify if a result is valid by matching f digests with the
complete result.
Asynchronous views. In Spinning a server s only becomes
the primary of view v when the batch of requests of view
v− 1 is accepted, so only then it can send a PRE-PREPARE
message defining the batch of requests to be executed in view
v. In other words, agreements about batches of messages (pairs
of steps prepare-commit) are done sequentially, following the
sequence of views. In EBAWA, the order of the requests is
defined by PREPARE messages. Differently of Spinning, in
EBAWA a server starts an agreement as soon as it receives
a client request by sending a PREPARE message, allowing
servers to deal with many agreements (in some sense, with
many views) in parallel, or asynchronously. Therefore, when
a server receives a sequence of PREPARE messages it can batch
the COMMIT messages in a single one, reducing the number
of communication steps among servers and the overhead of
cryptographic operations (one unique identifier per message).

As mentioned before, reducing the number of steps among
servers has a significant impact in the latency of wide-area
algorithms. Reducing the number of cryptographic operations
increases the system throughput. Therefore, this new feature
impacts both the latency and the throughput of the algorithm.
Skip messages. In order to reduce the communication steps
and computation overhead, we borrow from Mencius [8] the
idea of SKIP messages. Servers without pending client requests
can skip their turn, i.e., their view, by sending a SKIP message.
A SKIP message is equivalent to an empty PREPARE message
but avoids that each server sends its COMMIT message, re-
ducing the number of communication steps of the agreement.
To prevent that a faulty primary sends in the same view a
SKIP message and a PREPARE message to different subsets of
replicas, the SKIP message is always signed with an unique
identifier, just like a PREPARE message. The performance
evaluation shows that this modification is especially important
when the load of client requests shifts from one server to
another.

V. THE EBAWA REPLICATION ALGORITHM

This section provides a more detailed description of the
EBAWA algorithm. The detailed pseudocode and proof of

correctness are in the extended version of the paper [20].
Each server is always in one of two states: normal or

merge. In normal operation each server orders only one batch
of requests or skips its turn. Servers agree on requests and
execute their operations. When a server is faulty a merge
operation is executed to put together the information from
different servers and decide which requests in the previous
views were executed. We use two mechanisms to avoid that
a faulty replica periodically impairs the performance of the
system: blacklisting and timeout resetting. Table I serves as a
reference to the fields of the messages of the algorithm.

Client Messages - Request
c client identifier
seq request identifier
op operation requested to be executed
Server Messages - Normal operation
s server identifier
v view number
m request message
UI unique identifier of a message signed by the USIG of its sender
Server Messages - Checkpoint
vlast the view number of the last request accepted by s
UIlast is the unique identifier of the last executed request
d digest of the replica state
Server Messages - Merge operation
Clast latest stable checkpoint certificate
P a set of valid PREPARE messages received by a server since Clast
O a set of all messages signed by the local USIG service since Clast
VP vector with requests taken from the P field of MERGE messages

(ordered by view number)
M set of f +1 MERGE messages (merge certificate)

Table I
LABELS GIVEN TO FIELDS IN MESSAGES

Normal Case Operation. The sequence of events is (cf. Fig-
ure 1(b)): (1) a client sends a request to the nearest server; (2)
the server assigns an execution order number to the request
(the unique identifier) and sends it to all servers in a PREPARE
message; (3) when a server receives a valid PREPARE from
the primary it sends a COMMIT message to the other replicas;
(4) when a server receives f + 1 valid COMMIT messages it
accepts a request, executes the operation, and returns a reply
to the client (5) the client waits for f + 1 matching replies
for the request and completes the operation. Next we describe
these events in more detail.

Clients keep a list with the nearest servers. A client c issues
a request for the execution of an operation op by sending a
message m = 〈REQUEST,c,seq,op〉σc to the nearest server (see
the meaning of fields in Table I). The seq field is used to ensure
at-most-once semantics: servers do not execute a request with
a seq lower or equal than the last executed from that client, in
order to avoid executing the same request twice (if a malicious
client does not follow the sequence, its requests are discarded).
If the client does not receive enough replies during a time
interval, it resends the request to the next in the server list. In
case the request has already been processed, the server resends
the reply.

A request m is sent by the primary si in a message
〈PREPARE,si,v,UIi,m〉 where UIi is obtained by calling
createUI. When a server s j receives a PREPARE message
from si, it evaluates if: (i) UIi is valid (by calling verifyUI);



(ii) the client signature is valid; (iii) the view number v is
equal to the current view number on s j and the sender is
the primary of v; and (iv) it is in the normal state. If these
conditions are satisfied the message is said to be valid and s j
sends a 〈COMMIT,s j,v,UIi,UI j〉 message to all others.

Each PREPARE or COMMIT has a unique identifier UI
produced by a USIG module, so no two messages can have
the same identifier from the same server. Servers check if the
identifier of the messages that they receive are valid calling the
verifyUI function. A request m is accepted by a server if the
server receives f + 1 valid COMMIT messages from different
servers for m, i.e., f +1 COMMIT messages that contain valid
UIs with the same primary’s UI.

Servers process messages following the primaries UIs and
the view number. Each server keeps a vector Vacc[n] with the
highest counter value cv that it received from each of the
other servers in all signed messages of the algorithm. Using
Vacc a replica easily detects holes in the sequence numbers
of messages of potentially faulty servers. This message or-
dering mechanism imposes a FIFO order: no correct server
processes a message 〈...,si, ...,UIi, ...〉 sent by a server si
with counter value cv in UIi before it has processed message
〈...,si, ...UIi

′, ...〉 sent by si with counter value cv−1.
In order to reduce the algorithm overhead, servers assign a

single UI to a batch of requests and start a single agreement
(i.e., send one PREPARE message). A (correct) server only
starts an agreement if the number of unfinished agreements
that it started is lower than W , so this parameter bounds the
number of pending agreements created by each server. This
allows each server to deal with n×W agreements in parallel
or asynchronously. Therefore, the COMMITs for a sequence
of PREPARE messages can be batched in a single message,
reducing the number of messages.

With the asynchronous views mechanism, servers usually
receive PREPARE messages for views greater than the current
one (v). If a PREPARE mp for view v′ > v is valid, the server
buffers mp. When it finishes accepting all messages with
v′′ < v′, it sends the COMMIT message of view v′. In order to
cause buffer exhaustion malicious servers might send messages
with high view numbers. To prevent this, correct servers
discard messages with view number higher than v + n×W ,
when the buffer free space drops below some low water mark
L (a system parameter). L should be big enough so that replicas
do not stall waiting for a stable checkpoint to remove messages
from the log (see checkpoint mechanism in the next section)
and greater or equal to n×W to allow servers to deal with the
maximum number of parallel agreements.

Servers without pending client requests can skip their turns
by sending a message 〈SKIP,si,v,UIi〉. In order to reduce
the computation overhead, SKIP messages can be also pig-
gybacked with COMMIT messages.

Checkpointing. As in PBFT, replicas generate and
multicast periodically checkpoints of the format
〈CHECKPOINT,s,vlast ,UIlast ,d,UI〉. UI is obtained for
the checkpoint message itself. A replica considers that a

checkpoint is stable when it receives f + 1 CHECKPOINT
messages from different replicas with the same vlast , d and
UIlast . This set of messages forms a checkpoint certificate that
proves that the replica’s state was correct until that request
execution. Therefore, the replica can discard all entries in its
log with view number v′ < vlast .

Merge operation. The USIG service strongly constrains what
a faulty primary can do, e.g., it cannot repeat or assign
arbitrary sequence numbers to batches of messages. However,
a faulty primary can still prevent progress by sending a
PREPARE or a SKIP message to less than f +1 replicas. When
f +1 replicas suspect that the primary is faulty, they execute a
merge operation in order to make correct servers agree on the
requests that were accepted and go to the next view. When
a server accepts a batch of requests it increments the view
number and starts a timer that expires after Tacc. If in the
view v a server does not receive enough COMMIT messages to
accept a request, and neither a SKIP message during Tacc, then
it changes its state to merge and sends a MERGE message for
view v to all servers.

A MERGE message has the format 〈MERGE,s j,v,
Clast ,P,O,UI j〉. Correct servers only consider MERGE
messages that satisfy the following requirements: (1) the
checkpoint certificate Clast contains f +1 valid UI identifiers;
(2) the counter value in UI j is cv j = cv + 1, where cv is the
highest counter value of the UIs signed by the replica in O
(if O is empty the highest counter value will be the UI in
Clast ); and (3) there are no holes in the sequence number of
messages in O. The O field in the merge message prevents
that a faulty server that committed one request in a view
does not include that request in its merge message during the
merge operation.

When the primary of the view v, si, receives
f + 1 MERGE messages from view v − 1, it sends
〈PREPARE-MERGE,si,v,VP,M,UIi〉 to all servers. M is
used by the recipients of the message to verify if the primary
computed VP correctly. When a server s j receives a valid
〈PREPARE-MERGE,si,v,VP,M,UIi〉 from si it changes its
state to normal and sends a COMMIT message. The server
increments the view v′ after receiving f + 1 valid COMMIT
messages for all prepared requests VP that have not been
executed before and executes them. If a replica detects that
there is a gap between the sequence number of its last
executed request and the first request to be executed in VP, it
fetches other replicas for commit certificates of the missing
requests. If, due to garbage collection, the other replicas
have deleted these messages, there is a state transfer (using a
protocol similar to PBFT’s [2]).

Punishing Misbehavior. EBAWA avoids that faulty servers
impact the performance by blacklisting them. When a server is
included in the blacklist it stops becoming the primary, but it
can continue participating of the algorithm. When a server
receives a valid PREPARE-MERGE message in view v, this
means that f + 1 servers agreed that some problem occurred
in view v− 1 therefore they include the primary of v− 1



in the blacklist. The size of the blacklist is bounded to f
and the servers are inserted and removed following a FIFO
policy. The blacklist has to be updated by all correct servers
in a coordinated way, so all servers have to apply the same
criteria in the same order to insert servers in the list. Therefore,
when a merge operation starts immediately after another one,
the servers replace the last server that was inserted in their
blacklist, instead of adding. That server is replaced by the
server that caused the new merge operation. All servers enter
normal mode in the same view, so this guarantees that all the
blacklists are always consistent.
Timeout reset. The maximum time interval for a message to
be accepted in a view, Tacc, starts with an initial value Tstart and
is multiplied by two whenever there is a merge operation. To
avoid that a malicious primary forces this timeout to be high,
each server halves the value of Tacc whenever it detects that
the system is stable (if Tacc > Tstart ). The system is considered
stable if after r views a server verifies that the average time
to accept a request in a view (or skip it) is lower than Tacc/2
(r is a system parameter).

VI. PERFORMANCE EVALUATION

In this section we assess the advantages of EBAWA and
the proposed mechanisms by comparing this algorithm with
previous ones in several environments and conditions. Our
evaluation tries to answer the following questions: (1) Does
the introduction of mechanisms to make EBAWA efficient on a
WAN, make it worse than other BFT algorithms on a LAN? (2)
What are the benefits of the EBAWA mechanisms on WANs
when clients and servers are dispersed geographically, when
they are located in the same data center, and when the number
of tolerated faults increases? (3) How does EBAWA compare
with other BFT algorithms when they are deployed on a real
WAN?

A. Algorithm Implementation

We implemented our prototypes in Java. Due to features like
memory protection, strong typing and access control, Java can
make a BFT implementation more dependable than another
written in languages like C or C++.

We compare EBAWA with three previous BFT replication
algorithms: PBFT, Spinning and MinBFT. PBFT [2] is often
considered to be the baseline for BFT algorithms, so we were
interested in comparing EBAWA with PBFT’s C++ implemen-
tation2. We also implemented a version of PBFT’s normal case
operation in Java (JPBFT) to be able to run it in a WAN,
because the original PBFT prototype does not run adequately
in a WAN (it uses UDP that loses too many messages forcing
the leader to change frequently, and it requires IP Multicast
that is usually not available3). MinBFT [9] is a previous
BFT algorithm that we designed with the same number of
communication steps and replicas as EBAWA, but that neither

2Available at http://www.pmg.lcs.mit.edu/bft/.
3The original PBFT prototype uses IP Multicast with two purposes: for

communication among servers and for controlling the execution of experi-
ments. The first can be switched off (IP used instead) but the latter can not.

rotates the primary nor uses any of the mechanisms explained
in Section IV, except the USIG service. Spinning is similar
to PBFT but it rotates the primary whenever agreement about
the execution of a batch of messages is done [7]. We were
interested in comparing EBAWA with MinBFT and Spinning
once they can be considered to be improvements of PBFT,
thus showing that just reducing the number of communication
steps (MinBFT) or having a rotating primary (Spinning) is not
enough to provide an efficient BFT algorithm for WANs. We
do not compare with RAM because it is neither completely
specified nor implemented yet. We also do not compare with
Steward because its hierarchical architecture with two levels
of protocols is completely different and has a higher overhead
than our simpler client/servers architecture. Finally, we do not
compare with Zyzzyva [6], that has been shown to be the most
efficient BFT algorithm in LANs in several conditions, since
its performance depends strongly on the latency being very
stable, something that is not true in a WAN.

The prototypes JPBFT, Spinning, MinBFT and EBAWA
were implemented within the same codebase and optimized
to have high throughput under heavy load. In the case of the
first three algorithms, we implemented adaptive batching and
window congestion control schemes similar to the ones used
in PBFT [2]. In all our implementations, we used TCP sockets
for communication and NTT ESIGN with 2048-bit for public-
key signatures, as provided by the Crypto++ library accessed
through the Java Native Interface. In the LAN’s machines, it
takes 1.035 ms to sign and 0.548 ms to verify a message with
20 bytes (size of a request’s hash).

We used the Xen hypervisor [21] to isolate the USIG service
from the replica process. We run the USIG service as a daemon
in a virtual machine (VM) isolated from the one in which the
normal system runs. The USIG service is not connected to the
network and contains as little code as possible. The counter
used by the USIG service has 64 bits, which is enough to
prevent it from burning out before 233 years if incremented
twice per millisecond. To sign messages, the USIG service
uses HMACs based on SHA1 resulting in 0.008 ms to execute
the createUI function and 0.007 ms to execute verifyUI
function.

B. Methodology

In all experiments with Java code we enabled the Just-
In-Time (JIT) compiler and run a warm-up phase to load
and verify all classes, transforming the bytecodes into native
code. We measured the latency of the algorithms using a
simple service with no state that executes null operations. The
latency was measured at the client by reading the local clock
immediately before the request was sent, then immediately
after the response was accepted and subtracting the former
from the latter. Throughput results were obtained by calling
also null operations using requests and responses with 0
bytes. These requests were sent by a variable number of
logical clients in each experiment. Each client sent operations
periodically (without waiting for replies), in order to obtain
the maximum possible throughput. Unless where noted, in



experiments with EBAWA, clients evenly distributed their
requests among servers and each server was able to start 10
agreements asynchronously (W = 10).

C. Local Area Network

Setup. In order to compare the performance of EBAWA with
PBFT we conducted experiments in a LAN without faults or
instability in the network. To measure the throughput, we exe-
cuted from 0 to 120 logical clients distributed over 6 machines.
The servers and clients machines were 2.8 GHz Pentium-4
PCs with 2 GBs RAM running Sun JDK 1.6 on top of Linux
2.6.18 connected by a gigabit switch. To measure latency
and throughput we implemented two versions of EBAWA.
In EBAWA-S the clients send requests signed using public-
key cryptography. In EBAWA-V clients sign requests with
authenticators (vectors of MACs), as done in other algorithms
[2], [9], [7]. We consider a setup that can tolerate one faulty
server ( f = 1), with n = 4 servers for PBFT, Spinning and
JPBFT and n = 3 servers for MinBFT and EBAWA, unless
where noted. Each experiment ran for 100000 client requests
to allow performance to stabilize, before recording data for
the following 100000 operations.

Latency. Figure 2(a) shows the latency of the algorithms for
requests and responses of size 0 and 4K. PBFT has shown
the best performance of all algorithms/implementations (0.4
ms with 0/0), followed by Spinning (1.3 ms with 0/0) and
JPBFT (1.8 ms with 0/0). This experiment shows clearly that
our Java implementation runs an agreement much slower than
PBFT, although they run the same number of communication
steps. One of the possible reasons for this is the overhead
of our event-driven socket management layer that maintains
several queues and event listeners to deal smoothly with a high
number of connections. Spinning is faster than JPBFT since it
implements the tentative execution optimization, which allows
the replicas to send a reply before executing the commit step,
as originally proposed in [2].

Even with fewer communication steps, the latencies of
MinBFT and EBAWA in a LAN are higher than those of
the other algorithms due to the overhead to access the trusted
component in an isolated VM. EBAWA-V presented the best
latency of the three (2.1 ms with 0/0), followed by MinBFT
(2.3 ms with 0/0) and EBAWA-S (2.5 ms with 0/0). The worst
latency of EBAWA-S is justified by the fact that the client
signs requests and each server needs to verify if the client’s
signature is valid.

Throughput. The throughput results in a LAN are presented
in Figure 2(b). The main conclusion is that EBAWA-V presents
the best throughput in fault-free environments, followed by
Spinning, MinBFT, PBFT and JPBFT. The peak throughput of
EBAWA-V is 22% better than PBFT’s peak throughput. These
results can be explained by two factors: (1) the introduction of
asynchronous views as explained in the Section IV, allowing
piggybacking of PREPARE and SKIP messages on COMMIT
messages, reducing the number of communication steps and
the cryptographic operations executed by servers (only one

Req/Resp
size (Kb)

PBFT JPBFT Spinning MinBFT EBAWA-V EBAWA-S

0/0 0.4 1.8 1.3 2.3 2.1 3.5
0/4 0.6 2.2 1.7 2.9 2.3 4.0
4/0 0.8 2.5 2.1 3.1 2.6 4.1
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Figure 2. Latency and throughput of algorithms on fault-free LAN.

unique identifier per message); (2) the rotation of the primary
providing a better load balancing among the servers. In PBFT,
the throughput of the system is constrained by the amount of
messages per batch processed by the primary, which is 5n,
while other servers process only 4n + 1 messages per batch.
If we consider this asymmetry as 5n

4n+1 ≈ 1.2, this means that
the primary executes 20% more work than other servers.

Figure 2(b) shows also that the verification of the clients’
signatures limits the peak throughput of EBAWA-S to about
2000 operations per second, which is exactly what the machine
processor is capable of, since it takes approximately 0.5 ms
to verify a signature (1/(0.5× 10−3) = 2000). However, the
use of public-key signatures instead of authenticators provides
non-repudiation, ensuring that all correct replicas take the
same decisions about the validity of clients’ requests [4]. The
use of message authenticators can be faster than signatures but
lets the algorithm vulnerable to malicious clients that can force
primary changes in PBFT or merge operations in Spinning and
EBAWA.

As a side note, this same signature verification takes 0.128
ms on a 64-bit 2.3GHz quadcore Xeon machine, which allows
the execution of 7812× 4 = 31248 verifications per second.
This shows that algorithms based on public-key cryptography
can be used successfully in high-end servers, especially if the
power of multi-core architectures is exploited to verify signa-
tures in parallel. This possibility and the greater robustness of
EBAWA-S lead us to use this version of EBAWA in the WAN
experiments (next sections).

D. Emulated WAN – Emulab

Setup. We conducted experiments on an emulated WAN to
measure the latency of the algorithms when the replicas are
scattered through different data centers connected by dedicated
links. From now on, our focus is on the algorithms’ latency,
because low latency is intrinsically difficult to achieve in a
WAN, while throughput can be increased with faster hardware
and by using channels with higher bandwidth. The experiments
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Figure 3. Latency on a emulated fault-free WAN. (a) Clients in the same sites of the servers. (b) Clients and servers distributed on a WAN.
(c) Heterogeneous latency among clients and servers.

were conducted on Emulab [22], using 20 Intel Pentium III
machines with 600 Mhz processors, 256 Mb of RAM and
Red-Hat Linux 9. The JVM was Sun JDK1.5.11. Each link was
configured with 20Mbps of bandwidth and the server-to-server
latency was configured to 40 ms. The latency between clients
and servers is different on each experiment. Each experiment
was executed during 30 minutes and we consider setups with
different numbers of replicas (f=1, 2 and 3). Recall that in
the WAN experiments we used our own PBFT prototype
(JPBFT) instead of the original PBFT prototype since the latter
uses UDP that loses too many messages (forcing the leader
to change frequently) and requires IP Multicast (usually not
available in WANs).

Clients located in the same site as servers. The first case we
consider is when each site has a set of clients and one replica
of the service. This setup mimics a common deployment
in real data centers, which is considered by previous BFT
algorithms for WANs [11], [12]. In EBAWA, clients send
their requests to the local replica. In MinBFT and JPBFT we
consider that the client and the primary server are in the same
site (which is the best possible case). In Spinning, due to the
rotation of the primary, the replica near the client becomes
the primary periodically. Clients are in the same network than
servers therefore their latency to access a server is about 0.2
ms.

Figure 3(a) presents the latency of the algorithms. The figure
shows similar results for EBAWA and MinBFT, and these
results are about 30% better than the latency presented by
Spinning and JPBFT due to the lower number of communica-
tion steps of the former. With clients in the same data center,
JPBFT presents a latency better than expected (REQUEST
and PREPARE messages are received almost at the same time
by replicas). Spinning presents the same average latency of
JPBFT because in Spinning clients send requests to all servers
and each server is constantly becoming the primary, so the fact
that the client is placed with a replica has no impact.

Clients scattered geographically. Our second WAN ex-
periment considers a client-replicas link latency of 40 ms
to represent clients accessing replicas on different countries.

Figure 3(b) shows the results of this experiment.
Under such homogeneous setting, the latency observed

directly reflects the amount of communication steps required
by each algorithm: EBAWA presents almost the same latency
of MinBFT, which is better than Spinning’s and JPBFT’s.
Spinning presents better latency than JPBFT due to the afore-
mentioned tentative execution optimization.

Missing communication step. When we conducted experi-
ments with f = 1 we observed that, surprisingly, MinBFT and
EBAWA showed a latency corresponding to 3 communication
steps, which contradicts the theoretical 4 communication steps
of these algorithms (their latency should be at least 40×4 =
160 ms). The explanation for this discrepancy highlights an
interesting advantage of these algorithms. In a setup with f = 1
in which the network latency is stable, replicas receive the
PREPARE and COMMIT messages from the primary almost
together (the primary “sends” the PREPARE to itself and
sends its COMMIT immediately). Since, the two algorithms
need only f +1 COMMIT messages to accept a request, with
f = 1 these are only two. These two COMMITs would be
received just after the PREPARE: one from the primary and
another from the replica itself. Therefore, the client request is
executed in a replica as soon as the PREPARE message from the
primary arrives, making MinBFT and EBAWA have latencies
18% and 35% better than Spinning and JPBFT, respectively.
In setups with f > 1 this nice feature disappears since the
quorum to accept the request has to contain at least 3 replicas,
making MinBFT and EBAWA present latencies 11% and 27%
better than Spinning and JPBFT, respectively. It explains the
significant latency increase on setups of f = 1 to f = 2
(+23%), which is not observed from f = 2 to f = 3 (+3%).

Primary location. In the previous experiments we observed
that EBAWA and MinBFT present almost the same latency
when the client is near to the primary and the environment
is homogeneous. In this experiment we try to answer the
following question: can this equivalence hold in environments
where the client-replica latency is heterogeneous?

In these experiments we observed that the location of the
primary replica affects significantly the service latency in
WANs (when the primary is fixed). For MinBFT, we defined



WAN-Europe WAN-America
Portugal - France 41.03 Vancouver - Pennsylvania 94.57
France - Italy 27.3 Michigan - Pennsylvania 48.14
France - Germany 30.43 California - Pennsylvania 91.57
Italy - Germany 29.3 Vancouver - Michigan 74.48
Portugal - Italy 53.96 Michigan - California 80.76
Portugal - Germany 48.5 Vancouver - California 55.52
Spain - Portugal 46.87 New York - Pennsylvania 39.14
Spain - Germany 47.62 New York - Vancouver 72.57
Spain - Italy 45.75 New York - Michigan 48.57
Spain - France 28.87 New York - California 88.71
Average 39.96 69.40
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Figure 4. Network latency on a real WAN in America/Europe (a) and algorithms’ latencies in WAN-Europe (b) and WAN-America (c).

that the primary server can be located in three different sites
(site1,site3 and site5) and between each site and client we
defined different latencies as presented in Table II. Figure
3(c) presents the results of the experiment. In EBAWA clients
always send the request to the nearest server located in site1.
When the primary is located near the client (site1), MinBFT
presents the same latency as EBAWA, as we have seen in
previous experiments. Otherwise, when we vary the location
of the primary we have a significantly increase on MinBFT’s
latency. In MinBFT for f = 1, due to the case of the missing
step, we have the same latency when the primary is in the site3
or site5 that is 30% greater than EBAWA’s latency. For f = 2,
MinBFT presents a latency 20% and 35% greater than EBAWA
when the primary is located in site3 and site5, respectively.
This difference in the algorithms’ latencies is kept with f = 3.
This experiment shows the benefit of implementing a BFT
algorithm with a rotating primary and making clients choose
the nearest server as their primary.

site1 site2 site3 site4 site5 site6 site7
latency 25 ms 40 ms 55 ms 75 ms 95 ms 75 ms 75 ms

Table II
LATENCY AMONG CLIENTS AND REPLICAS ON DIFFERENT SITES.

Load Balancing. When servers are replicated on a WAN, the
load of requests generated by clients can change following an
unpredictable pattern. We conducted an experiment with two
client-server pairs, each pair located at a different site. Each
client generates requests during 20 minutes and measures the
latency. The client at data center A generates requests during
the first 10 minutes obtaining an average latency of 86 ms.
Then, the client of data center B generates requests in parallel
with A’s client. Both sites registered an average latency of 89
ms. Finally, the experiment finish with B’s client generating
requests during the last 10 minutes and registering an average
latency of 84 ms. The latencies per request are presented in
Figure 5. This experiment shows that when the load of client
requests increases (duplicates in this case), EBAWA promptly
adjusts to the new load assuring a minimum impact in the
service latency. This happens because a replica sends skip
messages (see Section IV) to give its turn to other replicas
when it has no client requests to order; and because of the
asynchronous views (see Section IV) that allow a replica

to send a set of COMMIT messages for different pending
PREPAREs in a single one, reducing communication overhead
on the system.

0

80

160

240

320

400

0 5 10 15 20 25 30

Time (m)

L
at

en
cy

 (
m

s)

Requests
from site A

Requests
from site A and B

Requests
from site B

Figure 5. Service latency when the load changes from site A to B.

E. Real WAN – PlanetLab

Setup. In order to assess EBAWA’s latency on real WANs,
where both processing and network resources are unpre-
dictable, we conducted a set of experiments on PlanetLab4.
We used two setups called WAN-Europe and WAN-America,
representing configurations with replicas scattered through dif-
ferent locations in Europe and America, respectively. Together
with the protocols latency we also registered the commu-
nication latency between each pair of servers.The observed
average latency varied between 27 ms to 94 ms as presented
in Figure 4(a). We consider a setup with f = 1 with three
(EBAWA and MinBFT) and four (JPBFT) servers and a client.
In WAN-Europe, the client was located in Portugal and the
servers in France, Italy, Germany and Spain (for JPBFT). The
primary replicas were at Germany for JPBFT and MinBFT.
In WAN-America, the client was located at Pennsylvania and
the servers at Vancouver, California, Michigan and New York
(for JPBFT). The primary replica was located in Michigan
for JPBFT and MinBFT. We measured the latency of these
algorithms during 10 days, 3 times per day, and the reported
values are the average of the latency measurements made each
day. In each experiment the client submitted 10000 requests.
Results. Figure 4(b) and (c) shows the latency of EBAWA,
MinBFT and JPBFT in WAN-Europe and WAN-America. The
figure shows that EBAWA consistently outperforms MinBFT
and JPBFT on real networks with heterogeneous latency

4http://www.planet-lab.org/.



among servers. Not surprisingly, EBAWA and MinBFT present
a better latency than JPBFT due to the reduced number
of communication steps. The most significative result in
WAN-Europe was when the average network latency was 50
ms, when EBAWA presented an average latency 31% lower
than MinBFT and 48% lower than JPBFT. In the WAN-
America experiments, when the average network latency was
60 ms, EBAWA presented an average latency 10% lower than
MinBFT and 43% lower than JPBFT.

The closer results of MinBFT and EBAWA in WAN-
America can be explained because in this scenario we located
the primary replica of MinBFT in Michigan that is the site with
the best average latency to the client, hosted in Pennsylvania.

The better latency of EBAWA in these experiments can be
explained mainly by two factors: (1) the client in EBAWA
always sends the requests to the nearest server (the server
that present best latency to that client). In JPBFT and MinBFT,
the client sends requests to all servers and the primary may
not have the best latency to that client. Therefore this delays
the ordering of the client requests and affects the end-to-
end latency. We expect that the advantage of EBAWA would
be even greater if we used larger request/responses. (2) The
PREPARE message of EBAWA carries the REQUEST message,
consequently, when a server accepts a request it can execute
the request immediately (and return a reply to the client).
In MinBFT and JPBFT, the PREPARE and PRE-PREPARE
messages, respectively, sent by the primary server of these
algorithms, contain only a hash of the original request. We
observed that with the link heterogeneity of a real WAN, it
is common that a server receives a PREPARE message from
the primary before it has received the request from the client.
Then, it cannot execute the request until it receives the message
from the client or from another server, affecting the algorithm
latency. Thus, our observation is that in a WAN, it is important
to send requests in the PREPARE message.

VII. CONCLUSION

This paper presents and evaluates EBAWA, a novel BFT
algorithm for WANs. When compared with other BFT al-
gorithms for WANs, EBAWA reduces the numbers of com-
munication steps and replicas by assuming a hybrid fault
model with a minimal trusted service. This reduced number
of replicas and communication steps among servers increases
considerably the system’s performance. EBAWA is more flex-
ible in the sense that clients and servers can be located in the
same site or dispersed geographically. A thorough performance
evaluation of EBAWA has shown that it is competitive with
other BFT algorithms in LANs, while outperforming all of
them in several WAN settings, especially with the higher
heterogeneity of a real WAN.
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