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Abstract

Scheduling tasks on large-scale computational grids is
difficult due to the heterogeneous computational capabil-
ities of the resources, node unavailability and unreliable
network connectivity. This work proposes GRIDTS, a grid
infrastructure in which the resources select the tasks they
execute, instead of a scheduler finding resources for the
tasks. This solution allows scheduling decisions to be made
with up-to-date information about the resources. Moreover,
GRIDTS provides fault-tolerant scheduling by combining a
set of fault tolerance techniques to tolerate crash faults in
components of the system. The core of the solution is a tuple
space, which supports the communication, but also provides
support for the fault tolerance mechanisms.

1. Introduction
A computational grid infrastructure is an aggregate of

geographically disperse heterogeneous resources on the In-
ternet. Those resources can be desktop computers, laptops,
supercomputers, clusters of workstations, and storage and
database systems [8]. These infrastructures are used by au-
thorized users to run complex applications, like weather
simulations or filtering of large volumes of data. Computa-
tional resources like desktops or laptops are made available
by their owners – normally during idle time – to compute
those applications. Grids are dynamic in the sense that re-
sources can join and leave them at any time. This dynamic
nature allows the grids to contain many machines that would
not be available otherwise, but on the other hand, it also
means that the infrastructure has to manage the uncertainty
about the availability of the resources and their failure.

This paper is about scheduling and fault tolerance in
grids that execute bag-of-tasks applications [17]. This is
only one among several types of applications that can be
executed in grids, but there are many important applica-

tions that fit in this category: data mining, massive searches,
image processing, etc. These applications are composed
by sets of decoupled tasks that can be executed indepen-
dently, without any kind of synchronization or communica-
tion among them. This independence makes these applica-
tions specially suited for dynamic grids, since the failure of
resources that are executing tasks can easily be handled by
rescheduling the interrupted tasks in other resources.

An important objective of any grid infrastructure is to
use the resources efficiently, i.e., maximizing the resource
utilization while trying to minimize the job’s total execution
time, also called makespan [9]. The performance of the
grid depends strongly on the efficiency of the scheduling.
A schedule is an assignment of the tasks of a job to a set
of resources. Each job consists of a set of tasks, and each
task has to be executed by one of the grid resources for a
certain time. Many schedulers rely on accurate information
about resources’ attributes (CPU speed and load, memory)
and tasks to do the scheduling.

Information about resources is characterized by a set
of attributes, like the operating system model/version, the
speed and load of the processors, and free memory. This
information used by schedulers is usually provided by an
information service that is responsible for gathering data
about all resources that compose the grid.

Gathering information about resources is like taking a
snapshot of the grid, i.e., getting the global grid state in
a certain instant. This operation is reasonably costly in a
large grid, and the snapshot tends to become outdated in a
short time when the grid is comprised by a large number of
non-dedicated, heterogeneous, widely-dispersed resources.
Moreover, getting an accurate snapshot in an asynchronous
distributed system (as the Internet) is impossible [5]. The
key problem is that information obtained from the infor-
mation service may be outdated by the time the scheduler
needs it to schedule tasks.



This paper proposes GRIDTS, an infrastructure that pro-
vides a scheduling solution in which the resources select
the tasks they execute, instead of the scheduler finding
resources for the tasks. This solution allows scheduling
decisions to be made with up-to-date information, since,
naturally, each resource has always up-to-date information
about itself. Therefore our solution overcomes the problems
of getting up-to-date information about resources faced by
schedulers rely on this information.

GRIDTS is based on the generative coordination
model, in which processes (brokers, resources) interact
through a shared memory object called tuple space [10].
This coordination model supports communication that is
decoupled both in time and space, i.e., in which processes
do not need to be active at the same time and do not need to
know each others locations or addresses [4]. This makes it
particularly suited for highly dynamic systems like a grid.

In large-scale grids, the probability of failures happen-
ing is high. Many of the current grids have single points
of failure, i.e., not all their components are fault-tolerant.
GRIDTS is fault-tolerant, in the sense that all components
in the system can fail by crashing and the system still be-
haves as expected. Fault tolerance is enforced using a com-
bination of mechanisms. Transactions are used to guarantee
that the failure of a resource or a broker does not cause the
loss of a task or leaves the tuple space in an inconsistent
state. Checkpointing is used to limit the work lost when
a resource fails during the execution of a task, allowing an-
other resource to continue where the first left. Finally, repli-
cation is used to enforce the fault-tolerance and availability
of the tuple space. We consider only crash faults, which in
this context can be accidental (some machine really crashes)
or forced by a resource owner that wants to remove his/her
machine(s) from the grid. We do not consider the possibil-
ity of the resources returning results that do not correspond
to the execution of the tasks they are supposed to execute,
on the contrary to [19].

This work has two main contributions. Firstly, it presents
an architecture for a computational grid that allows re-
sources to find tasks suited for their attributes, even if those
attributes change with time. This eliminates the complex-
ity of gathering information about the whole grid. Sec-
ondly, the infrastructure provides fault-tolerant scheduling
by combining a set of fault tolerance techniques to tolerate
crash faults in any component of the system.

The remainder of the paper is organized as follows. Sec-
tion 2 defines the tuple space used to support the scheduling
of tasks. Section 3 gives an overview of GRIDTS. Section 4
presents an evaluation of the performance of GRIDTS and
compares it with other schedulers. Finally, Section 5 gives
some concluding remarks.

2 Tuple Spaces
GridTS is based on a tuple space, a notion first intro-

duced in the Linda programming language [10]. A tuple
space can be viewed as a shared memory object that allows
distributed processes to interact by inserting tuples in the
space. In this space, generic data structures called tuples
can be inserted, read and removed.

A tuple is an ordered sequence of typed fields. Given
a tuple t = 〈f1, f2, ..., fn〉, each field fi can be: actual,
i.e., be a value; formal, i.e., a variable name preceded by a
question mark (“?”); or a wildcard, like “*” meaning any
value. A tuple in which all fields are actual is called an
entry and is denoted by a lowercase letter, e.g., t. A tuple
with at least one formal field is called a template and is
denoted by t̄. A tuple space can only store entries, never
templates. Templates are used to read tuples in the space.

An important characteristic of this coordination model is
the associative nature of the communication: tuples are not
accessed through an address or identifier, but rather by their
content. An entry t and a template t̄ are said to match if :
(i) both have the same number of fields; (ii) corresponding
fields have the same type, and; (iii) corresponding actual
fields have the same value. A tuple space provides three
basic operations [11, 10]:

• out(t): puts the tuple t in the tuple space (write);
• in(t̄): reads and removes a tuple t that matches t̄ from

the tuple space. If no matching tuple t is available,
the process stays blocked until a tuple matching the
template t̄ is available in the space (destructive read);

• rd(t̄): has a behavior similar to in , but leaves the
matched tuple t in the tuple space (non-destructive
read).

Both the in and rd operations are blocking, but they have
also non-blocking versions: inp() and rdp(). These op-
erations work in the same way as their blocking versions
but return a “tuple not found” value if no matching tuple is
available in the tuple space. All these read operations are
non-deterministic, because if there is more than one match-
ing tuple available, one of them is chosen arbitrarily. There
is one more version of rd(t̄) that returns all the tuples that
match t̄: copy collect (̄t) [15].

2.1 Fault Tolerance

Fault tolerance in the generative coordination model can
be considered at two levels:

• fault tolerance of the tuple space, i.e., the problem of
guaranteeing that the space does not fail if there are
faults in the tuple space itself; and

• application-level fault tolerance, i.e., to ensure that
the applications satisfy certain dependability proper-
ties even if some of the applications’ processes fail.



In GridTS, the first issue is handled using replication,
i.e., by running the tuple space in several servers and ensur-
ing that the tuple space as a whole tolerates the failure of
some of the servers [21, 2]. In this paper we consider that
the tuple space is indeed implemented by a set of servers
and is fault-tolerant but we do not delve into the details of
how it is done since the problem is well understood and is
solved [21, 2].

The second issue is handled by application-level fault
tolerance mechanisms provided by the tuple space, usually
transactions [12, 2]. This mechanism guarantees essen-
tially that if a process tries to execute a set of operations
in the tuple space, either all the operations are executed or
none of them is. If the process executes all operations in
the set, then the transaction is said to commit. If the pro-
cess fails (crashes) during the execution, then the transac-
tion is aborted; if some of the operations have already been
executed then the tuple space removes all their effects to
guarantee the atomicity. In practice, the detection of a fail-
ure works the following way [18]. When a process starts a
transaction, it defines a lease to do that transaction, i.e., a
time interval during which it will execute the transaction’s
operations. If the process does not commit during that time,
the tuple space assumes that the process failed and aborts
the transaction. If the process needs more time to execute
the transaction, it periodically renews the lease. This lease
mechanism involves time assumptions about maximum pro-
cessing and communication times.

Due to the simplicity of tuple spaces and their language
independence, many current programming language pro-
vide this communication and interaction model. Among
them, the JavaSpaces [18] – part of Java’s Jini framework
– and the TSpaces [14] are some of the most known. Both
support transactions.

3 GridTS

3.1 The Infrastructure

In GRIDTS there is not one but several masters – called
brokers – that get jobs from their users, divide the jobs
in tasks and make available these tasks to the resources,
which are composing the grid.

An overview of the GridTS infrastructure is shown in
Figure 1. The basic functioning is based on the master-
workers pattern [21, 2]. This pattern has two kinds of en-
tities: one master and several workers. The master gives
tasks to the workers that execute them and return the re-
sults to the master. In GRIDTS there is not one but several
masters – called brokers – that get jobs from their users,
divide the jobs in tasks and make available these tasks to
the resources, which are composing the grid. Brokers are
usually specific to one class of applications, i.e., they only
know how to decompose jobs of this class. For example,

if the application deals with processing satellite images, the
broker decomposes the image (job) in several parts (tasks),
that can be processed by different resources. When a re-
source/worker finishes executing a task, it gives the result
to the broker that assembles all results and return them
to the user. All communication between brokers/masters
and resources/workers is done exclusively through the tuple
space.

Figure 1. The GridTS infrastructure

In our proposal – GRIDTS – we use a tuple space for
supporting task scheduling. Briefly, the idea is the follow-
ing:

• The user submits a job to a broker that decomposes
the job in several small tasks. The broker insert tuples
describing these tasks in the tuple space (task tuples).

• The resources retrieve from the space tuples that de-
scribe tasks they are able to execute, and execute them.
After each execution, the result is placed in the tuple
space.

• When all job’s tasks finish executing, the broker as-
sembles all task results and gives them to the user that
submitted the job.

Each task represents one unit of work that may be per-
formed in parallel with other tasks. The tuple that describes
a task contains all the necessary information for its execu-
tion: the identification of the task, the requirements for its
execution (e.g. processor load, processor speed, available
memory, operating system), the code to be executed (or the
location from where to download it), and the parameters –
input data– to the execution of the task (or their location).
The users do not need to know which resources will exe-
cute the tasks, their location or when these resources will
be available.

The architecture of GRIDTS has the immediate bene-
fit of not requiring an information service to give infor-
mation about the resources (their availability, usage and
other parameters), on the contrary of most grid platforms.
GridTS enforces a natural form of load balancing since the
resources pick tasks adequate to their conditions and get a
new one whenever the previous ended. However, there are



also some challenges. The first is a problem of fairness
since multiple users/brokers can put tasks concurrently in
the tuple space. The second is related to fault tolerance:
GRIDTS has to tolerate failures in the brokers and, more
importantly, to deal efficiently with resources’ failures.

3.2 Fairness

To guarantee a fair scheduling, the resources have to
pick tasks tuples from the tuple space using an appropriate
criteria. A solution that ensures fairness is to use a ticket.
When a broker wants to insert a tuple in the space, it picks a
tuple that represents the ticket (ticket tuple), inserts the job
with the current ticket number, increases the ticket number
and inserts it back in the space. A job is represented in the
tuple space by a job tuple1 and a set of task tuples. When
a resource wants to pick a task, the criteria should be to
select the job with lowest ticket to ensure fairness. After the
job selection, the resource selects the task to be executed
according to some heuristic.

It is important to clarity that the performance of schedul-
ing depends strongly on the efficiency of the heuristic cho-
sen. Thus, any scheduling heuristic that uses any or only
local information about resources can be used in GRIDTS.
For example, the Workqueue could be used (Section 4.1),
i.e., simply getting any task of the chosen job. But when
the job’s tasks are heterogeneous, slow resources might get
large tasks, taking much more time to execute them than a
faster resource. This could delay the overall job’s execution.

To minimize this mismatch between task size and re-
source speed, we propose a simple heuristic by classifying
both jobs and resources in classes. Resources are classified
in classes CR = {r1, . . . , rnc} according to their speed. For
instance, if they are classified in three classes (nc = 3), the
first class can have resources until 1GHz, the second one
resources from 1 to 3GHz, and the third one over 3GHz.
Tasks are classified in classes CT = {t1, . . . , tnc} accord-
ing to their size. It is the broker that is responsible for clas-
sifying the tasks in classes, putting this information in the
task tuple (in the information field). The number of task
and resource classes rc is the same and there is a correspon-
dence between classes: class r1 should include the slower
resources and class t1 the smaller tasks; class rnc should
include the faster resources and class tnc the larger tasks.

Resources start getting tasks from the corresponding
class of tasks, i.e., if a resource belongs to class ri it gets
a task from class ti. When there are no more tasks of class
ti, it tries to get a task of class ti+1; if there no tasks from
that class, it tries to get from ti+2, etc.; if there are no more

1Represents all common information of tasks from the same job, as the
number of tasks that compose the job, the ticket value associated with the
job, information about the attributes for job execution (e.g., the required
processor speed, memory, operating system) and the code to be executed
(or a reference to its location, e.g, an URL).

from class tnc them it starts trying to get tasks from class
ti−1, etc. If there are no more tasks, it means that all job’s
task are being (or have been already) executed. By enforc-
ing faster resources to execute larger tasks first, and slow
resources to execute smaller tasks first, the probability of
large tasks being scheduled to slow resources is reduced,
and the job execution tends to terminate faster.

3.3 Fault-Tolerance

In a grid environment, with hundreds, thousands, or even
tens of thousands of resources, joins, exists and failures
of resources are frequent. Thus, we employ fault-tolerant
mechanisms to allow the system behave as expected.

Transactions are used by both brokers and resources.
Broker uses transactions to ensure that: (1) the job’s tasks
are insert atomically in the space, i.e., either they are all
inserted or none is (in case the broker fails during the inser-
tion); (2) the ticket is not lost if the broker removes it and
crashes before inserting it back incremented in the space;
(3) to get the results of the tasks atomically from the space.
These transactions allow also the broker not to be locked
waiting until all the tasks are executed, i.e., the broker can
leave the system after having placed the tasks into the space
and later run again to get the results.

On the resources-side, transactions are used mainly to
guarantee that when a resource fails during the execution of
a task, the task tuple is returned to the space to be eventually
executed by another resource (or the same if it recovers).

Tasks usually take a long time to execute, e.g., hours or
even days, so it is not convenient to restart from scratch the
execution of a task whenever the resource that is executing
it fails. To minimize this problem, GridTS uses a backward
error recovery mechanism that consists in periodically sav-
ing the state of the task execution – a checkpoint – in the
tuple space [13]. If the resource fails, then another resource
continues the execution of the task from that checkpoint,
thus limiting the work lost when a resource fails during the
execution of a task.

The algorithmns and correctness proofs of GRIDTS is
described in [7].

4 Evaluation
This section presents a comparison of different grid

scheduling algorithms based on simulations. The perfor-
mance metric used in all simulations was the total time to
execute all tasks of a job, also called makespan. The algo-
rithms were evaluated under several different environmental
conditions, both without and with faults.

4.1 Scheduling Algorithms

This section introduces some of scheduling algorithms
in the literature. The simulations compare GRIDTS with all



of them. Some algorithms – knowledge-based – use a cen-
tralized service to provide information about the available
resources and their characteristics. This solution does not
scale well and requires the service to keep track of the re-
sources to maintain the information up-to-date. Proposals
that do scheduling without taking into account information
about the resources – knowledge-free – have also been pro-
posed.

Workqueue is a knowledge-free scheduler for clusters,
not specifically for grids, which does not use any informa-
tion about resources for task scheduling [6]. The first task
waiting to be scheduled is picked and a free resource is as-
signed arbitrarily to execute it. This procedure is repeated
until all tasks are scheduled. After a task is completed, the
scheduler assigns a new task to the resource. A problem is
that when a large task is assigned to a slow resource, the
execution of the complete application may be delayed until
the termination of this task.

The basic Workqueue with Replication (WQR) algo-
rithm does the same as Workqueue [16]. However, when
there are no more tasks to be executed and there are still
idle resources, the tasks that are still running are replicated
in these idle resources, i.e., they are also executed in these
resources. When a task replica terminates, all its replicas are
stopped. The idea is that when a task is replicated there is a
chance that a replica is assigned to a faster node, thus aug-
menting the probability of a faster completion of the task.
Simulations have shown that WQR has a good performance
if there are free resources, but this is not the case in grids
when there are several users constantly requesting the exe-
cution of jobs.

Compared with Workqueue and WQR, GRIDTS has the
advantage of not wasting resources with replication and let-
ting the resources choose tasks suited for their characteris-
tics, so the probability of a large task being scheduled to a
slow resource is minimized.

MFTF (Most Fit Task First) [20] gives more priority to
the task that ‘fits’ better to an available resource. The fitness
value is defined as follows: fitness(i, j) = 100000

1+|Wi/Sj−Ei|
. Wi is the workload of the ith task. Sj is the CPU speed
of the jth resource according to the information service. Ei

is the expected execution time of the ith task. Wi/Sj is
the estimated execution time of task i using the resource
j. Wi/Sj − Ei is the difference of the estimated execution
time and expected task execution time. A small difference
indicates greater suitability between task and node. When
this difference is zero, it means that the resource is the most
suitable to that task. Determining a suitable Ei is quite im-
portant in this scheduling method.

MFTF uses dynamic information about the resources in
order to be more efficient than a knowledge-free scheduler
as WQR. As we stated in the beginning of the paper, get-
ting information about resources is difficult and it can be-

come outdated in a short time due to the dynamism of grid.
GRIDTS overcomes this limitation because the resources
themselves get the tasks to be executed and then, naturally,
know their availability at any time and can get tasks that are
more suited to them.

4.2 Simulation Environments

We simulated 2490 scenarios and repeated each of them
10 times to compare GRIDTS with three scheduling algo-
rithms: Workqueue, WQR and MFTF. All algorithms were
simulated considering the same set of resources and tasks.
GRIDTS was simulated using one, three and five classes
(denoted respectively GRIDTS1, GRIDTS3 and GRIDTS5)
and WQR using only two replicas (denoted WQR2x).
MFTF used perfect information about resources and tasks,
something that is difficult to be obtained in the real world.

We used the GridSim toolkit to run our simulations [3].
GridSim supports the modeling and simulation of heteroge-
neous grid resources, users and application models. It pro-
vides the main building blocks for the simulation of appli-
cations in grid environments. Using these building blocks
to simulate Workqueue, WQR and MFTF was straightfor-
ward. However, we had to develop the new scheduling
model for GRIDTS.

All simulations used the same value for the grid speed,
i.e., for the sum of the resources speeds: 1000. The re-
source speed represents how fast it can execute a task. For
instance, a resource with speed 5 can execute a task with
size 100 in 20 time units. We also used a fixed value for the
job size: 6000000 time units. In a ideal world, the makespan
of this job would be 6000 time units, i.e., 100 hours, if the
unit was the minute. By fixing the grid speed and the job
size, the variation of makespan is due only to the differences
of the scheduling algorithms. Related to communication we
make assumptions that the transfer times are negligible be-
cause we assume the jobs have small input/output data.

In grid computing, the makespan of the jobs depends on
several parameters, like the number of resources and tasks,
the task granularity (task size), the tasks heterogeneity
(the variation of the tasks’ sizes) and the resources hetero-
geneity (the variation of the resources’ speeds). We also
considered the fault load, the number of resources failures,
since GRIDTS was designed to be fault-tolerant. The com-
bination of these parameters defines specific execution en-
vironments.

The grid’s resources’ speed have a distribution U(10 −
hm/2, 10 + hm/2), where U(a, b) represents an uniform
distribution from a to b and the values used for hm were
0, 2, 4, 8 and 16. This means that the average speed of all
resources is 10. When hm = 0, all resources have speed 10,
so the grid is homogeneous. The maximum heterogeneity
of the resources happens when hm = 16 and the speed of
the resources varies with distribution U(2, 18).



Concerning the tasks’ granularity, the experiments
considered four groups of task sizes. The mean sizes of the
tasks of those groups were 1000, 2500, 10000 and 25000
time units. The higher is the mean size of the tasks, the
smaller is the number of tasks per resource. When the mean
task size is 1000, there are 6000 tasks and 60 tasks per re-
source on average, and when the mean task size is 25000,
there are 240 tasks and 2.4 task per resource. To simulate
the heterogeneity of tasks, in each group, the task sizes
were varied 0%, 25%, 50%, 75% and 100 %. For instance,
a variation of 0% means all tasks have the same size (ho-
mogenous job), while a variation of 50% means the tasks’
sizes have a uniform distribution U(5000, 15000).

The fault load defines the types of faults that are sim-
ulated in the system during the execution of an job. In
the failure-free fault load, there are no failures, i.e., all re-
sources behave correctly. In the fail-stop fault load, a per-
centage of the resources crash during the simulation. We
assume that a resource that fails does not recover and rejoin
the grid.

4.3 Simulation without Failures

The results presented in this subsection show the per-
formance of the scheduling algorithms in an environment
where no faults were injected (i.e., the failure-free fault
load). The remain three parameters were varied in this ex-
periment: the task granularity, the task heterogeneity and
resource heterogeneity. Figure 2 shows the results of the
simulations with varying these parameters.

Tasks’ granularity. Varying the tasks’ granularity allows
to see how each scheduler behaves when there are more
or less tasks per resource. Figure 2(a) shows the aver-
age makespan with different mean task sizes (1000, 2500,
10000, 25000). Each point was obtained as the average of
all levels of tasks’ heterogeneity and resources’ heterogene-
ity. It can be observed that when tasks are smaller, the
schedulers tend to have similar performances. The reason

for this behavior is that there are many tasks per resource,
so all resources tend to be busy all the time. However, as the
size of the tasks grows, the differences among schedulers’
makespan increase.

As we expected, GRIDTS1 had similar performance
to Workqueue. With larger tasks, both had the highest
makespan, since large tasks can be scheduled to slow re-
sources near the end of the job, taking more time to termi-
nate. The figure shows that the use of classes in GRIDTS
minimizes this effect (GRIDTS3, GRIDTS5). Enforcing re-
sources to execute tasks of the most fit class first, the prob-
ability of a larger task being scheduled to slow resources
becomes smaller. GRIDTS is better when the number of
tasks executed per resource is high.

WQR has better performance than the other schedulers
because, at the end of simulation, it replicates the tasks to
available resources. This approach however has no impact
when successive jobs are being scheduled. Also, when tasks
become large – less tasks per resource – the performance of
WQR starts to decrease. The reason is that a large task and
its replicas can be scheduled to slow resources, harming the
job execution time.

MFTF has good performance only when tasks are small.
The justification for this is that MFTF assigns a task to the
most suitable resource, but it may not be the fastest resource
available. Therefore, the solution chosen by the scheduler
may not lead to the best makespan, but it can get stable ex-
ecution times similar to the expected execution time (Ei) of
each task. The fitness of a task to a resource depends on
Ei, so calculating Ei is crucial for getting the best makepan
possible, but in practice it is hard to obtain. In the simula-
tions, we set Ei to the mean task size divided by the mean
resource speed. When tasks are larger, the task sizes hetero-
geneity leads to a higher distance between the ratio work-
load/speed and Ei, leading to lower fitness values. There-
fore, tasks that are much larger or much smaller than the
mean task size get worse fitness values, which harms the
scheduling.
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Tasks’ Heterogeneity. Figure 2(b) evaluates how each
scheduler behaves with different levels of tasks’ hetero-
geneity. Like the previous figure, each point is the average
of all levels of resources’ heterogeneity and tasks’ granu-
larity. Like before, GRIDTS1 has similar performance to
Workqueue. The performance of WQR remains almost un-
altered in all cases, due to its replication scheme. Using
classes with GRIDTS (GRIDTS3 and GRIDTS5) make its
performance stay almost unaltered like WQR. The perfor-
mance achieved by GRIDTS3 and GRIDTS5 can be cred-
ited to the ability of a powerful resource to choose a large
task to execute. The performance of MFTF becomes worse
when the tasks’ heterogeneity augments, for the reasons dis-
cussed above: the higher the difference among tasks’ sizes,
the worse the fitness and the higher the job execution time.

Resource’ Heterogeneity. Figure 2(c) evaluates how
each scheduler behaves with different levels of resources’
heterogeneity. As before, each point is the average of all
levels of tasks’ heterogeneity and tasks’ granularity. Again,
GRIDTS1 has similar performance to Workqueue. WQR’s
performance stays almost unaltered in all cases. The per-
formance of GRIDTS’s classes GRIDTS3 and GRIDTS5
stays almost unaltered while the resources’ heterogeneity
level is less or equal to 8. With level 16, their performance
degrades. MFTF presents the same performance as before.

4.4 Simulation with Failures

This section presents the behavior of the algorithms
when subject to different fault loads and the influence of
using checkpoint mechanism in GRIDTS.

The experiments were carried out by having a percent-
age of resources failing, i.e., stopping to execute, at random
time during the job execution. For GRIDTS is shown the
results using only three classes. In the experiments, each
point is the average for all levels of resources’ heterogene-
ity. The Figure 3 show three different levels of tasks’ granu-
larity (2500, 10000, 25000), varying 50% among task sizes
in each level.

As can be observed, when there are more than 50% of the
resources subject to failures, the performance of GRIDTS3
becomes better than WQR. The reason for this behavior is
that when there are many failed resources, the chance of
a resource being available to replicate tasks decreases, so
WQR starts behaving like Workqueue.

Similarly to fault-free environments, MFTF does not
have good performance in environments subject to failures.
Again, this is due to the difficulty in calculating a good
value for Ei. It was calculated without considering faults in
the system, since it is not clear how this information might
be included in the calculation.

The Figure 3 also allows us to conclude that using
checkpointing in GRIDTS allows it to increase its perfor-
mance mainly with higher tasks’ granularity. The reason is
that when tasks are larger, the processing loss that can be
avoided is higher. When more than 30% of resources are
subject to failures, WQR becomes worse than GRIDTS3.

4.5 Summary of the Evaluation

The simulations lead us to several interesting conclu-
sions. The first one is that GRIDTS with 3 or 5 classes of
tasks/resources has better makespan than most of the other
algorithms, with the exception of WQR when the number of
resources failures is not high (in this case GRIDTS is also
better than WQR). However, in the simulations WQR bene-
fited from the fact that each simulation was for a single job,
so WQR had the opportunity of using additional resources
to replicate tasks and reduce the makespan. However, in
grids permanently executing jobs this is not possible.

It is specially interesting that GRIDTS had better per-
formance than MFTF because MFTF is knowledge-based,
needs an information service and the non-trivial definition
of a parameter (Ei), while GRIDTS does not have any of
these difficulties.

Another interesting conclusion is that the performance of
GRIDTS improves if there are 3 classes instead of just one,
but is similar with 3 and 5 classes, so apparently there is no
benefit in having more than 3 classes.
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Figure 3. Average makespan considering failures



Finally, the simulations confirm the expected result that
the checkpointing mechanism has a positive effect in the
makespan when there are resource failures, more when the
number of failures is higher.

The simulations performed do not permit to see the ben-
efits of always having fresh information about the resources
(in GRIDTS) over having information that may be some-
what old or hard to collect (in the knowledge-based sched-
ulers - MFTF).

5 Conclusion
This paper presented a decentralized and fault-tolerant

grid infrastructure (GRIDTS), in which the resources pick
the tasks to execute. The communication is made using a
tuple space, benefiting from it being decoupled in time and
space. GRIDTS combines different fault tolerance tech-
niques – checkpointing, transactions, replication – to pro-
vide fault-tolerant scheduling.

We compared the performance of GRIDTS using a large
number of simulations in GridSim. The decentralized
scheduling mechanism proved to be quite efficient when
compared with others in the literature, while not request-
ing a service to obtain up-to-date information about the re-
sources.

We envisage that GRIDTS can be easily implemented
and integrated with current grid systems. We plan to do
an implementation in the near future, possibly integrating it
with OurGrid [1]. The scalability of the infrastructure will
be improved by designing a scalable tuple space.
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