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Abstract—Identifying users and user devices is as important
in web applications as in many other contexts. In web appli-
cations, user identification usually involves an authentication
process, e.g., providing a username and a password. Identi-
fication is also possible without explicit authentication using
cookies or device fingerprints. Device fingerprinting is also
useful for other purposes, e.g., to serve as a second factor
of authentication. Recently some interest appeared in the
problem of cross-device fingerprinting, i.e., of the identification
of the same user in different devices using fingerprinting.
We target a variation of the problem that we call related
group fingerprinting. We define a related group as a set of
persons (e.g., a family) that share the same home network.
We devised a related group fingerprinting scheme that we
evaluated experimentally with data from hundreds of users.
This evaluation suggests that group fingerprinting is feasible.

1. Introduction

Identifying users and user devices is as important in web
applications as in many other contexts. In web applications,
user identification usually involves an authentication pro-
cess, e.g., providing credentials like a username, a password,
or a token-generated code. Identification is also possible
without explicit authentication using cookies or device fin-
gerprinting.

Device fingerprinting, or web-based device fingerprint-
ing, consists in gathering multiple pieces of information
from the client’s device and browser for identification pur-
poses, e.g., the fonts and plugins installed, the model, ver-
sion, and language of the browser, etc. [1], [2].1 Device
fingerprinting is useful for several purposes. It can serve as
a second or third factor of authentication [4], complementing
the above-mentioned credentials. It can also serve to detect
lost or stolen user devices, when they contact a server
that uses this form of authentication. Both examples are
extremely important today, with the increasing number of
phishing attacks and thefts of personal devices.

We use the term fingerprint to designate a set of features
that identifies a device, browser, or user. To be useful, finger-
prints have to combine information that allows to uniquely

1. There is a related problem also called device fingerprinting that aims
at doing active identification of computers by sending them packets, e.g.,
[3]. Our problem is different: to identify devices that access a web server.

identify devices. The more diverse the feature’s values, the
more they may be unique, as their values may be less likely
shared by multiple devices. Every time a user accesses a
web page that includes fingerprinting software, the device
fingerprint is collected and compared to a database of known
devices. If the device is not in the database, it is added,
increasing the number of known devices [5], [6].

Recently some interest appeared in the problem of cross-
device fingerprinting, i.e., of the identification of the same
user accessing a website or web application from different
devices (e.g., tablet, laptop, smartphone) without explicit au-
thentication. However, this problem is challenging and may
require collecting personal user data (e.g., mouse dynamics
data), so we consider a variation of the problem that we call
related group fingerprinting. We define a related group as
a set of persons (e.g., a family) that share the same home
network. Related group fingerprinting consists in detecting
if a device belongs to a related group. We aim to solve this
problem without using personal data.

In terms of applications, related group fingerprinting
is useful for a spectrum of use cases. Usually there is
some level of trust inside related groups, so related group
fingerprinting may be used to assign levels of risk to cer-
tain operations without explicitly knowing who the user
is. For example, it may be used as an additional form of
authentication in certain online operations, like accessing
homebanking services or school websites.

We did an experimental evaluation of this scheme with
data from hundreds of users. First we developed two web-
sites for volunteers to access. The websites contained both a
short questionnaire and mechanisms to extract fingerprints.
Then we studied mainly three aspects:

(1) Is it still possible to perform device fingerprinting
given the very recent privacy mechanisms in web browsers
that prevent the extraction of browser history data, one
of the most powerful fingerprinting mechanisms [7]? We
concluded that it is still possible and studied the minimum
subset of features required (Section 4.3).

(2) Given the fingerprints collected, is it possible to
perform cross-device fingerprinting, i.e., to recognize if it is
the same user in different devices? The answer was negative
(Section 4.4).

(3) Is it possible to perform related group fingerprinting?
The answer was, this time, positive (Section 4.5).



The related group fingerprinting scheme was designed
based on the analysis of the experimental data obtained
(see Section 3). For privacy reasons, this data does not
include personal data like biometric data or browser history.
Similarly to other fingerprinting schemes, each time a user
accesses the website, a fingerprint is extracted and stored,
in case the device fingerprint is not yet in the database.
Moreover, the group of the device is also obtained and
stored in case it had not been stored before, i.e., it is not
in the set of groups of that particular device. A group is
essentially a network to which a device is connected to.
The group identifier is: the IP of the device of the used
browser as observed by the server, in case the IP is owned
by an Internet Service Provider (ISP); or the name of the
organization obtained from the whois command, in case
it is a company, governmental agency, etc. Notice that a
device can belong to several groups, for example, if it is a
smartphone connected to a home network, to a 4G network,
and to an office network, which are 3 different groups.

The contributions of this paper are the following: (1) the
definition of the problem of related group fingerprinting;
(2) a scheme to perform related group fingerprinting; (3)
an experimental study of this scheme; (4) an experimental
study of device and cross-device fingerprinting.

2. Context and Related Work

This section briefly surveys existing work on web-based
fingerprinting. Browser fingerprinting is commonly used as
part of anti-fraud and advertisement systems, as it may avoid
the need of authentication with credentials provided by the
user and the use of cookies [5]. Similarly to cookies, fin-
gerprinting can be used both for legitimate and illegitimate
ends. Legitimately, it may be used to combat fraud, con-
firming if someone who is trying to login into a web-based
server is in fact a legitimate user rather than an attacker who
got hold of stolen credentials. It can also be used to combat
click fraud, i.e., illegitimate clicking of advertisements to
increase payment [8]. Illegitimately, it may be used to track
the actions of a person, violating his privacy in some sense.
The EFF (Electronic Frontier Foundation) has implemented
a fingerprinting algorithm, Panopticlick, which anonymously
logs the configuration and version information of user oper-
ating system (OS), browser, and plugins, and compares it to
a database of many other users’ configurations [9]. The goal
is to understand how identifiable users are, and evaluate the
capabilities of Internet tracking and advertising companies
who try to record user’s activities. In this experience, 94.2%
of the browsers using Flash or Java were considered unique
in the sample used.

Much user data, such as fonts installed or cookies, can
be obtained using JavaScript, which is an object-oriented
scripting language used for various purposes as interactive
web contents, asynchronous communication and dynamic
document content alteration [10]. Allowing dynamic con-
tent to be executed on web browsers grants developers the
ability of creating rich and interactive web interfaces. By
enabling asynchronous communication with servers, it is

possible to constantly update data without a page refresh.
JavaScript provides APIs that grant access to device and
browser-related properties. JavaScript has become a power-
ful fingerprinting tool [5]. It allows obtaining information
such as architecture, OS language, system time, and screen
resolution. The two JavaScript APIs that have been mainly
investigated and exploited for fingerprinting purposes are:
(1) Navigator object that represents the properties of the
device and browser environment (browser name and version,
supported plugins and MIME types, and OS and browser
architecture); Screen object that contains information about
the settings of the device’s screen displaying the browser
(screen resolution, and color and pixel depth). JavaScript
has been used for fingerprinting in other ways, exploiting
performance [6], the HTML5 canvas [11], and browsing
history [7], [8].

The previous techniques may be designated as browser
fingerprinting, in the sense that they aim to identify a
browser running on a device. The problem of device finger-
printing or cross-browser fingerprinting is different because
there may be several browsers installed on a device. There
is some preliminary work on doing such cross-browser
fingerprinting that aims to identify a device irrespectively
of the browser being used [12]. These techniques rely on
features that have to be independent of the browser, for
example: OS name and version, layout engine type and
version, list of fonts, screen resolution, and time zone. That
work shows that it is possible to do cross-browser (or device)
fingerprinting based on such features. It also shows that their
scheme is resilient to the modification of one of the features,
i.e., that the scheme still identifies devices correctly if one
of the individual fingerprints changes. To the best of our
knowledge there is no work on cross-device or related group
fingerprinting.

There has been some work on preventing device tracking
and fingerprinting due to privacy concerns [13]. Track-
ingFree is an anti-tracking browser system that, instead of
blocking the use of identifiers like cookies and flash files,
isolates these identifiers into different units or browser prin-
cipals, blocking third-party tracking [14]. PriVaricator uses a
policy randomization process [15]. For offset measurements
as offsetHeight, offsetWidth and getBoundingClientRect,
instead of returning the original offset value, the proposed
policy approach is to return, respectively, zero, a random
number between 0 and 100, and the original offset value
with ±5% noise. This approach both generates plausible
offset values as well as creates enough noise to confuse
fingerprinting. Bloom cookies use Bloom filters as a privacy-
preserving data structure to provide a better tradeoff between
privacy, personalization, and network efficiency [16].

3. The Fingerprinting Approach

This section presents our approach. Section 3.1 presents
our device fingerprinting scheme, as it is the basis of our
related group fingerprinting scheme. Section 3.2 discusses
how the problem of cross-device fingerprinting might be



solved. Finally, Section 3.3 presents our related group fin-
gerprinting scheme.

3.1. Device Fingerprinting

With the help of JavaScript we are able to extract mul-
tiple properties from user devices. As previously mentioned
in Section 2, the cross-browser fingerprinting method of [12]
used features such as lists of installed fonts, OS version, and
screen resolution. That work concluded that it was possible
to create a unique fingerprint based on a set of these features
and that, even if one of them changed, the scheme would
still identify the device. This suggests that some of the
fingerprints may change with time and, in fact, this is true
for most of them. For instance, the OS version tends to
change due to system updates.

3.2. Cross-Device Fingerprinting

Cross-device fingerprinting is about identifying the same
user using different devices. If cross-browser fingerprinting
requires features that are independent of the browser, cross-
device fingerprinting requires features that are common
across devices (e.g., tablet, laptop). This is equivalent to
say that the fingerprints have to be related with who the
user is and how he acts. We can envisage three options:

(1) Fingerprints with configurations that the users use
across devices: our experience suggested that this would not
work, still we evaluated experimentally if it was possible to
create fingerprints with such data (Section 4.4).

(2) Fingerprints with static biometric data (fingerprints
from fingers, face geometry, iris, etc. [17]): such biometric
data is used for authentication so it would work, but we
are interested in schemes that do not require the user to
authenticate and that are not blunt violations of privacy, so
we excluded them.

(3) Fingerprints with dynamic biometric data (keystroke
dynamics [18], mouse dynamics [19], etc.): this would be
possible but it would require that the user interacted with
the application for some time for collecting the fingerprint,
making it application-dependent, not very practical, and
problematic from the privacy angle, so we discarded it.

3.3. Related Group Fingerprinting

As already explained, the purpose of related group fin-
gerprinting is to identify if a device belongs to a related
group, i.e., to a group of persons who live together, e.g.,
a family. In practice, we define a related group as a set
of persons that share the same home network. We use the
term group to designate a set of devices that share the same
company or organization network. A device may belong to
several groups and related groups (e.g., a company network,
and a home network).

We assume that home networks use private IP address-
ing, i.e., are behind a network address translation (NAT)
router. Therefore, the identifier of a related group is the

public IP address of the NAT router, which is the sender
IP observed by the application’s web server in the IP
datagrams it receives from the device. Using, for instance,
the whois command it is possible to understand if an IP
address belongs to an ISP, so if the corresponding group
is a candidate for being considered a related group. The
identifier of a group that is not a home group is the name of
the network, e.g., the content of the field netname returned
by the whois command. The name cannot be an IP address,
as the company or organization may have many public IP
addresses.

The decision if a group is a related group can be based
on one or more criteria, for instance:

(1) ISP-provided IP address: a related group must have
an IP address assigned by an ISP as observed in whois, as
we do not envisage a related group having another kind of
IP address;

(2) Limited number of devices: a related group cannot
contain more than Dthresh devices (e.g., 15), to exclude
other networks with an IP owned by an ISP (e.g., the ISP
network itself);

(3) Used mostly out of business hours: accesses from the
network are mostly made out of business hours (at night,
during weekends), again to exclude other networks.

Algorithm 1: Related group fingerprinting algorithm for
collecting a fingerprint (executed by the server)

Input: HTTP request M received from the client
if M is the initial request from the client then

add fingerprinting scripts to the reply;

else
if M contains fingerprint then

F ← get fingerprint(M );
if F /∈ database then

G← get group(M );
add device(database,F ,G);

else
add group to device(database,F ,G);

The related group fingerprinting scheme is represented in
Algorithm 1. The algorithm uses Criterion 1 and is executed
by the server when a message with a fingerprint is received
from a browser. The algorithm does not return anything,
only adds data to the server database. The main types of
queries to that database are the following:

• Is group G a related group?
• To which related group(s) does the device with

fingerprint F belong to?

There are a few pathological cases that deserve some
discussion:

(1) What happens if the IP address of a home network
with users accessing the web application changes? In that
case, the server will keep data about two related groups,
identified by the old and the new IP addresses, although the
related group is actually the same. We do not envisage this
to be problematic to most applications, if these events are
not too frequent, which is the case in major ISPs.



(2) What happens if two different devices from unrelated
persons have the same fingerprint? In that case the database
will recognize the two as a single device that will belong
to a set of groups that contains the groups of both devices.
We do not expect this to be problematic if these collisions
are rare.

4. Experimental Evaluation

This section presents the experiments we did in order
to understand the problem and to assess our related group
fingerprinting scheme. We start by presenting the testing tool
and the datasets we obtained.

4.1. Testing Tool and Datasets

In order to test and analyse our fingerprinting mecha-
nisms, we needed to find a way of collecting an experimental
dataset from a group of users willing to contribute. We came
up with the possibility of creating a website with which
users could interact. They would access this website as a
very simple and quick task, allowing us to collect all the
necessary features for the fingerprint. In fact, two different
websites were developed. The first aimed to interact with
as many users as possible, so it collected both fingerprints
and requested the users to answer a few questions. This
experiment generated Dataset I. We later registered, for this
same dataset, a total of 410 distinct users who willingly
participated in the experiment. The second website had
a different purpose, which was to study the fingerprints
stability and did not require users to answer any questions.
Only 5 users participated in this experiment, that consisted
in accessing that website for two weeks using the installed
browsers on their devices. The data collected from this ex-
periment resulted in our Dataset II. Both websites provided
the browsers JavaScript code to collect information from the
devices.

Table 1 shows the fingerprinting features obtained using
the two experimental websites and a brief description (Fp1 is
not shown as it designates the timestamp, that is not really a
feature). Dataset I is composed of 531 fingerprints, whereas
Dataset II has a total of 168 fingerprints collected from the
above-mentioned 5 users. This means that we had a total of
699 complete accesses to the two websites. The data was
collected in January and February 2016.

In order to perform the study, we needed to know
which fingerprints belonged to the same user, therefore the
websites asked for data that was then used to create a user
ID. The purpose was to have data that uniquely identified the
user without his privacy being compromised. Therefore, we
asked for two pieces of reasonably harmless personal data
– the users first name and the last 3 digits of his cellphone
number – and calculated a SHA-256 hash of that data in the
browser [20]. This hash results in the user ID and is sent
to the server (unlike the name and digits that do not leave
the browser at all), guaranteeing the confidentiality of the
user data. This ID is used to compare and confirm results,
identifying which results belong to the same user.

TABLE 1. FINGERPRINTING FEATURES COLLECTED IN THE
EXPERIMENTS

Ref. Feature Description

Fp2 Plugins Plugins installed in the browser, e.g., Java and Flash
Fp3 UserAgent HTTP header field that identifies the browser and

provides system details
Fp4 Browser Browser used when accessing the website
Fp5 Cookies En-

abled
True or false according to the cookies being enabled
or disabled in the browser

Fp6 Display Color depth, pixel depth, screen width and height
Fp7 System Fonts List of installed system fonts
Fp8 Browser Lang Language preferred by the browser
Fp9 OS Operating system in which the browser is running
Fp10 Time Zone Time zone of the browser based on its geo-location
Fp11 Touch True or false whether the device has touch screen
Fp12 IP Address IP of the device (public address if NATed)
Fp13 Latitude Latitude of the browser (if user allows browser to

provide the location)
Fp14 Longitude Longitude of the browser (same condition)
Fp15 HTTP Accept HTTP header field that gives the accepted media types

(for the HTTP response)
Fp16 HTTP Accept

Encode
HTTP header field that gives the accepted content
encodings

Fp17 HTTP Accept
Language

HTTP header field that gives the set of preferred
natural languages

Fp18 Platform Platform of the browser, e.g., MacIntel or Win32
Fp19 Do Not Track Do Not Track enabled or disabled in the browser

Out of the 531 entries of Dataset I, 410 different IDs
were registered. In other words, 410 users participated in
this experiment. Also, from a total of 531 data entries,
506 devices were classified as being unique, meaning that
only 25 entries (4.71%) were repeated for a certain device
(indicating a different browser). To study and analyze the
retrieved user data, a testing tool was developed. This
tool calculates parameters such as the Hamming distance
between two data entries and the entropy values for each
feature of the fingerprint.

Users who accessed the website had to answer a few
questions for statistical purposes. Users were questioned
about both personal information (e.g., age group, gender)
and information concerning device/browser interaction. Fig-
ure 1a shows that over 60% of the participants were between
18 and 25 years old. We can also see that almost 3/4 of the
participants were male, in Figure 1b. Figures 1c, 1d, 1e
and 1f show the percentage of answers for the rest of the
questions.

4.2. Metrics

This section presents four metrics we use to analyze the
experimental data: Hamming distance, entropy, precision,
and accuracy.

We use a generalization of the Hamming distance to
measure the difference between two fingerprints, or the error
in case they are two fingerprints of the same device [21]. The
Hamming distance between two strings of equal length is
the number of positions at which the corresponding symbols
are different. We consider a fingerprint to be a vector of
feature values, 18 values in our case (Table 1). For use
with fingerprints, we generalized the metric so that what
is compared are not symbols, but the feature values. For
the collected 531 data entries, we created a 531x531 matrix



(a) Participants age group (b) Participants gender

(c) Q1: How many days per week do you
use this device? (%)

(d) Q2: Number of hours per day that
you use this device? (%)

(e) Q3: How do you use this de-
vice? (%)

(f) Q4: Is this the browser
you use the most (on this de-
vice)? (%)

Figure 1. Statistics for Dataset I

where each position contains the Hamming distance value
between two different fingerprints.

The entropy allows us to calculate how unique a certain
feature is based on the amount of information it contains
[9], [12], [22]. Using this metric it is possible to understand
which combination of features produces unique fingerprints
and those that are more useful to reach that uniqueness [22].
To calculate the entropy for each fingerprint feature, we use
Shannon’s entropy formula [23]. For a given feature f , the
probability of ocurrence of the ith value ρi, and the number
of fingerprints n (with n = 531 for Dataset I), the entropy
H or the produced information is given by (in bits): H(f) =
−
∑n

i=1 ρi × log2 ρi . For example, if there was a feature
f ′ with different values for all 531 browser fingerprints of
Dataset I, it would have the maximum entropy of H(f ′) =
8.97 bits. Furthermore, a fingerprint for that dataset might
be composed of that single feature, as it would uniquely
identify every browser and device.

To evaluate the importance of features in the fingerprint,
we calculate their entropy for Dataset I. The higher the en-
tropy the more unique the fingerprint is. Figure 2 shows the
10 features with the highest entropy values. The maximum
entropy value corresponds to the IP address and is 8.52 bits,
meaning that if we randomly choose a browser from the
531 browsers, it will share the same IP address with at
most one browser in the other 28.52 = 367 browsers. As
we can see in Figure 2, after the IP address, the user agent,
display properties and fonts have the highest entropy values.
However, entropy is not the single consideration to take into
account when selecting features to compose fingerprint; e.g.,

Figure 2. Features with top 10 entropy values

TABLE 2. ENTROPY VALUES

Fingerprint Ref. Entropy Value (bits) Num. Unique Values

Fp2 2.66 28
Fp3 7.84 330
Fp4 3.23 29
Fp5 0.04 2
Fp6 5.54 143
Fp7 5.42 129
Fp8 2.33 17
Fp9 3.15 17
Fp10 0.41 8
Fp11 0.96 2
Fp12 8.52 415
Fp13 3.08 155
Fp14 3.08 154
Fp15 1.18 4
Fp16 0.54 6
Fp17 4.40 80
Fp18 2.32 9
Fp19 0.88 6

the IP address is a dynamic feature so it is not adequate.
The question we are interested in is essentially: given

two fingerprints F and F ′, does F ′ correspond to the same
entity (device, browser, or user, depending on the case)
than F? We say that there is a false positive (FP) if the
fingerprinting mechanism says the entity is the same (a
positive P), that there is a match (Hamming distance is zero),
and this is false. We say that there is a false negative (FN)
if the mechanism says the entities are different (a negative
N) and it is the same. In the case of related groups the
relevant condition is not being the same entity but to belong
to the related group, otherwise the idea is the same. Given
these definitions we are interested in two metrics [24]. The
first is the precision, which measures the confidence we can
have when the mechanism says it is the same entity, there
is a match. The second is the accuracy, which measures
in some sense the correctness of the mechanism in terms of
the rate between correct matches and the total (we abuse the
notation and use TP to mean the number of true positives,
P for the number of positives, etc.): precision = TP

TP+FP

and accuracy = TP+TN
P+N .

4.3. Device Fingerprinting

For device fingerprinting, we aimed to answer the fol-
lowing questions:



Question 1 – Device Fingerprinting: Is it possible to
uniquely identify a certain device using only the features
of Table 1?

This question is related to the challenge we mentioned
of current privacy mechanisms in web browsers preventing
the use of some of the most efficient features, namely
browsing history [7]. Given these restrictions we limited the
fingerprinting features to those of Table 1.

To determine whether it is possible or not to perform
device fingerprinting, we have developed a program that
calculates both the Hamming distance and the entropy val-
ues for each fingerprint feature. This same program also
determines how many unique devices exist in the chosen
dataset (Dataset I), and returns a list with these devices.

The program identified 506 unique devices, as there
were 25 pairs of entries for which the Hamming distance
was zero. Therefore, there were no false positives or false
negatives. This means that the precision and the accuracy
were both 1.

Question 2 – Fingerprinting Resilience: Does the fingerprint
of a certain device tolerate changes in features?

This question is related to the issue of some of the
features changing with time. The objective is to understand
if these changes still allow fingerprinting.

To test the fingerprinting resilience we used the same
program from Question 1. The difference was in the used
data sample, as we created 3 new datasets based on Dataset
I. Each of these datasets is identical to Dataset I except that
we removed one of the following features at a time: System
Fonts, OS, and Plugins. For the 3 datasets there were no false
negatives (FN), as the mechanism never failed to identify
two fingerprints corresponding to the same device as being
so. However, there were false positives (FP) as there was
some confusion in identifying some of the devices.

The best results were found with the exclusion of the
OS feature, with 506 unique devices, which corresponds to
a precision and accuracy of 1. By excluding plugins, we
also obtained a very good result, with 505 unique devices
and 1 false positive, which means a precision of 0.998 and
an accuracy of 1. Lastly, without system fonts, 491 unique
devices were detected, 15 false positives, which gives a
precision of 0.97 and an accuracy of 1.

This allow us to conclude that with Dataset I the device
fingerprinting mechanism tolerates well the change of one
feature, as even the lowest precision is quite high (0.97).
With changes to more than one feature results would be
necessarily worse.

Question 3 – Fingerprint Stability: Are there any significant
changes in the data over the days? Are the features more or
less static?

With the purpose of studying the stability of the fin-
gerprint, we used Dataset II, and tried to determine if it
presented any changes over time. For the 16 devices present
in this dataset, the only features that changed were the IP
address and the geo-location (latitude and longitude), as
some of the devices accessed the website from different
networks and places. This is good as stability is needed

TABLE 3. FINGERPRINT FEATURE SUBSETS

Subset Features in the Fingerprint Unique
Devices Precision

1 Fp3, Fp6, Fp7 358 0.72
2 Fp3, Fp6, Fp7, Fp17 457 0.91
3 Fp3, Fp6, Fp7, Fp17, Fp4 487 0.96
4 Fp3, Fp6, Fp7, Fp17, Fp4, Fp9 487 0.96
5 same as above plus Fp2 505 1.00

for device fingerprinting and related group fingerprinting to
work as expected.

Question 4 – Minimum Subset: What is the minimum subset
of fingerprint features able to successfully identify a user in
Dataset I?

Another interesting matter is to understand it we can
find a suitable subset of features able to identify a user. For
this we used Dataset I and the features with the highest
entropy levels (Table 2), with the exception of the IP ad-
dress, longitude and latitude (which are the most dynamic,
making them bad candidates). Table 3 registers the number
of unique devices and the precision for five different subsets
of features, for a total of 531 data entries. Clearly the
minimum subset depends on what is considered acceptable
precision.

4.4. Cross-Device Fingerprinting

In relation to cross-device fingerprinting we have a
single question:

Question 5 – Cross-Device Fingerprinting: Using Dataset
I, is it possible to perform cross-device fingerprint, i.e., to
identify the same user behind two devices using only the
features collected?

With the features we were able to collect, we cannot
tell if two distinct devices do in fact belong to the same
user. If two devices have different operating systems, for
instance, the idea of these devices belonging to the same
user is already rejected. This is the usual case as users have
more than one device but they are different, e.g., a laptop
running Windows and a tablet running Android. Therefore,
the collected features are indeed insufficient to successfully
perform a cross-device fingerprinting identification.

4.5. Related Group Fingerprinting

This section evaluates the related group fingerprinting
scheme presented in Section 3.3. For this purpose we en-
hanced both datasets with data about the IP owner obtained
using the whois command. In this study we considered that
a group is a related group using a single criterion of those
we listed: the IP address being provided by an ISP or not
(Criterion 1). The extended Dataset I emulates the database
of the related group fingerprinting scheme.

Question 6 – Related groups: What groups and related
groups exist in Dataset I and what are their characteristics?

We start by distinguishing the related groups from the
other groups by identifying IP addresses assigned by ISPs.



TABLE 4. ISPS AND THEIR NUMBER OF RELATED GROUPS

ISP No. Related Groups

MEO Mobile 17
PT 95

NOS 101
Vodafone 87
Cabovisao 5

GVT 2
Total 307

TABLE 5. GROUPS THAT ARE NOT RELATED GROUPS

Group No. Devices No. Users

UTL 100 79
INESC-ID 12 9
PT Prime 12 12

Others 30 25

We did this manually as more than 95% of the accesses
were made from our country (Portugal) and it was trivial
to identify the ISPs. Doing this at global level may require
using a database of ISPs.

We identified 6 ISPs and 26 other networks. In the ISPs
there were 307 individual IP addresses, which correspond to
that same number of related groups applying only Criterion
1 (see Table 4), and a total of 333 groups. Notice that
considering the 307 IP addresses to be related groups is a
simplification that derives from the use of a single criterion
to identify related groups; in reality some of these addresses
may be from other networks. These addresses from other
networks might be excluded using the other criteria of
Section 3.3, but this would require a larger dataset.

In relation to the groups that are not related groups, there
are three main ones (see Table 5). The major are UTL, our
university (outdated, now ULisboa), which is not a surprise
as we asked colleagues/students to access the websites, and
INESC-ID that is our research lab.

Question 7 – Related group fingerprinting: Is it possible to
identify the devices of a related group? What is the precision
and accuracy of our related group fingerprinting scheme?

To start answering this question, we analyzed data from
Dataset II for a user – one of the authors – with several de-
vices and daily accesses between January 21st and Febuary
4th, 2016. Table 6 shows some data about these accesses,
which were made from three different devices. When one of
the devices made an access from the home network of the
user, we put that entry and those below in italics to mean
that the device was recognized as being part of the related
group. This allows observing that after two days three of the
user’s devices were recognized as being part of the related
group. After that exercise, we analyzed Dataset I looking for
other users of the same related group. In fact we found two
other users from the same related group (which we know
to be persons from the same family in this case): (1) user
that made an access with an iOS (iPad) device on Sat Feb
20 2016 18:42:15 GMT; (2) user that made an access with
an Android device on Sat Feb 20 2016 18:50:43 GMT.

This analysis confirms that as expected it is possible to
identify devices from the same related group.

We completed this analysis by inspecting the extended

TABLE 6. WEBSITE ACCESSES FOR A USER OF DATASET II

Date MacOS Android1 Android2 Acc./day

Jan 21st 1 0 0 1
Jan 22nd 2 1 1 4
Jan 23rd 1 1 1 3
Jan 24th 1 1 1 3
Jan 25th 2 1 1 4
Jan 26th 2 1 1 4
Jan 27th 2 1 1 4
Jan 28th 2 1 1 4
Jan 29th 2 1 1 4
Jan 30th 2 1 1 4
Jan 31st 2 1 1 4
Feb 1st 4 0 1 5
Feb 2nd 2 1 1 4
Feb 3rd 2 1 1 4
Feb 4th 4 2 2 8

Total (devices) 31 14 15

Dataset I where we identified all the related groups. As most
devices ended up accessing the page only once, they ended
up being excluded. This way, for a total of 85 users and
101 unique devices, Table 7 summarizes the data for the
280 identified related groups. For each related group the
table shows: a number we assigned to the related group
(1st column); the ISP of the related group’s home network
(2nd); the number of devices belonging to the related group
(3rd); the number of devices from this related group that
made accesses from the home network (4th); the number
of devices from this related group that made accesses from
other networks (5th); the number of positives (P), that is
equal to the value in the 4th column (6th); and the number of
false negatives (FN), which are the devices from the related
group that did not make accesses from the home network
and therefore were not able to be assigned to the related
group, but that we know to belong to the related group due
to the user ID (7th).

Given the data in the table we calculated the precision
of the scheme for this data that was 1, and the accuracy
that was 0.999. We made one simplification that was to
consider that the number of false positives (FP) is zero,
thus the precision of 1; we do not have enough data to
confirm this but we see no reason to believe there were false
positives (devices wrongly assigned to a related group). On
the contrary, the number of false negatives (FN) used was
the one in the table that is pessimistic. In fact, as seen in
Table 6, devices may not be added to the related group in
the first contact, but they will eventually be included in the
group.

5. Conclusion

We define and explore the problem of related group
fingerprinting in web sites. We show that despite recent
mechanisms that prevent access to browser history (a pos-
itive privacy measure), it is still possible to do device (or
cross-browser) fingerprinting, at least with our main dataset
of 500+ fingerprints. Related group fingerprinting leverages
device fingerprinting and we have shown that it is possible to
do it with high precision and accuracy. We also argue that



TABLE 7. RELATED GROUP ANALYSIS FOR DATASET I

Related
Group No. ISP

No.
devices
of RG

No.
devices

accessed
home net.

No. of
RG users

w/accesses
other nets

P FN

1-15 MEO 1 1 0 1 0
16-17 MEO 2 1 1 1 1
18-78 NOS 1 1 0 1 0

79 NOS 1 1 1 1 0
80-86 NOS 2 1 1 1 1

87 NOS 2 1 2 1 1
88 NOS 3 1 2 1 2
89 NOS 5 1 3 1 4

90-106 NOS 2 2 0 2 0
107 NOS 2 2 0 2 0
108 NOS 3 2 1 2 1

109-110 NOS 4 4 0 4 0
111-180 PT 1 1 0 1 0

181 PT 1 1 1 1 0
182 PT 1 1 0 1 0
183 PT 1 1 0 1 0
184 PT 2 1 1 1 1

185-186 PT 2 1 1 1 1
187 PT 2 1 1 1 1
188 PT 3 1 2 1 2

189-194 PT 2 2 0 2 0
195 PT 2 2 1 2 0
196 PT 2 2 0 2 0
197 PT 3 2 1 2 1

198-199 PT 3 3 0 3 0
200 PT 4 4 0 4 0

201-242 Vodafone 1 1 0 1 0
243-244 Vodafone 1 1 0 1 0
245-247 Vodafone 2 1 1 1 1
248-250 Vodafone 3 1 2 1 2
251-252 Vodafone 5 1 3 1 4
253-267 Vodafone 2 2 0 2 0

268 Vodafone 3 2 1 2 1
269-270 Vodafone 3 3 0 3 0

271 Vodafone 3 3 1 3 0
272 Vodafone 6 3 3 3 3
273 Vodafone 11 6 4 6 5

274-278 Cabovisao 1 1 0 1 0
279 GVT 1 1 0 1 0
280 GVT 2 2 0 2 0

cross-device fingerprinting can not be done using similar
features.
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