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ABSTRACT

Web application security is an important problem in today’s
internet. A major cause of this status is that many program-
mers do not have adequate knowledge about secure coding, so
they leave applications with vulnerabilities. An approach to
solve this problem is to use source code static analysis to find
these bugs, but these tools are known to report many false
positives that make hard the task of correcting the applica-
tion. This paper explores the use of a hybrid of methods to
detect vulnerabilities with less false positives. After an initial
step that uses taint analysis to flag candidate vulnerabilities,
our approach uses data mining to predict the existence of false
positives. This approach reaches a trade-off between two ap-
parently opposite approaches: humans coding the knowledge
about vulnerabilities (for taint analysis) versus automatically
obtaining that knowledge (with machine learning, for data
mining). Given this more precise form of detection, we do au-
tomatic code correction by inserting fixes in the source code.
The approach was implemented in the WAP tool 1 and an ex-
perimental evaluation was performed with a large set of open
source PHP applications.

Categories and Subject Descriptors

C.2.0 [General]: Security and protection; D.2.4 [Software/
Program Verification]: Validation; D.2.4 [Software/ Pro-
gram Verification]: Statistical methods

Keywords

Web applications; security; input validation vulnerabilities;
false positives; source code analysis; automatic protection;
software security; data mining.

1. INTRODUCTION
In two decades of existence, the Web evolved from a plat-

form to access hypermedia to a framework for running com-
plex web applications. These applications appear in many
forms, from small home-made to large-scale commercial ser-
vices such as Gmail, Office 365, and Facebook. From the

1http://awap.sourceforge.net/
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security point of view, web applications have been a major
source of problems. For example, a recent report indicates an
increase of web attacks of around 33% in 2012 [35].

An important reason for the insecurity of web applications
is that many programmers lack the appropriate knowledge
about secure coding, so they leave applications with flaws [7].
However, the mechanisms for web application security fall in
two extremes. On one hand, there are techniques that put the
programmer aside, e.g., web application firewalls and other
runtime protections [11, 24, 38]. On the other hand, there are
techniques that discover vulnerabilities but put the burden of
removing them on the programmer, e.g., black-box testing [1,
3, 12] and static analysis [13, 15, 28].

The paper explores an approach for automatically protect-
ing web applications while keeping the programmer in the
loop. The approach consists in analyzing the web application
source code searching for vulnerabilities and inserting fixes
in the same code to correct these flaws. The programmer is
kept in the loop by being allowed to understand where the
vulnerabilities were found and how they were corrected. This
contributes directly for the security of web applications by re-
moving vulnerabilities, and indirectly by letting the program-
mers learn from their mistakes. This last aspect is enabled
by inserting fixes that follow common security coding prac-
tices, so programmers can learn these practices by seeing the
vulnerabilities and how they were removed.

In this paper we explore the use of a novel hybrid of meth-
ods to detect vulnerabilities. Static analysis is an effective
mechanisms to find vulnerabilities in source code, but tends
to report many false positives (non-vulnerabilities) due to its
undecidability [16]. This problem is particularly difficult with
languages such as PHP that are weakly typed and not for-
mally specified [25]. Therefore, we complement a form of
static analysis – taint analysis – with the use of data min-
ing to predict the existence of false positives. This approach
combines two apparently opposite approaches: humans coding
the knowledge about vulnerabilities (for taint analysis) ver-
sus automatically obtaining that knowledge (with supervised
machine learning supporting data mining). Interestingly this
dichotomy has been present for long in another area of se-
curity, intrusion detection. As its name suggests, signature-
or knowledge-based intrusion detection relies on knowledge
about intrusions coded by humans (signatures), whereas ano-
maly-based detection relies on models of normal behavior cre-
ated using machine learning. Nevertheless, anomaly-based de-
tection has been much criticized [33] and has very limited com-
mercial used today. We show that the combination of the two
broad approaches of human-coded knowledge and learning can
be effective for vulnerability detection.



The paper also describes the design of the Web Application
Protection (WAP) tool, a proof of concept prototype that im-
plements our approach. WAP analyzes and removes input
validation vulnerabilities from code2 written in PHP 5, which
according to a recent report is used by more than 77% of the
web applications [14]. Currently WAP assumes that the back-
ground database is MySQL, DB2 or PostgreSQL, although it
can be extended to support others.

Designing and implementing WAP was a challenging task.
The tool does taint analysis of PHP programs, a form of
data flow analysis. To do a first reduction of the number of
false positives, the tool performs global, interprocedural and
context-sensitive analysis, which means that data flows are
followed even when they enter new functions and other mod-
ules (other files). This involves the management of several
data structures, but also to deal with global variables (that
in PHP can appear anywhere in the code, simply by preced-
ing the name with global or through the $ GLOBALS array)
and resolving module names (which can even contain paths
taken from environment variables). Handling object orienta-
tion with the associated inheritance and polymorphism was
also a considerable challenge.

To predict the existence of false positives we introduce the
novel idea of assessing if the vulnerabilities detected are false
positives using data mining. To do this assessment, we mea-
sure attributes of the code that we observed to be associated
with the presence of false positives, and use a classifier to flag
every vulnerability as false positive or not. We explore the use
of several classifiers: ID3, C4.5/J48, Random Forest, Random
Tree, K-NN, Naive Bayes, Bayes Net, MLP, SVM, and Logis-
tic Regression. Classifiers are automatically configured using
machine learning based on labeled vulnerability data.

The tool does not detect and remove every possible vul-
nerability, something that is not even possible due to the
mentioned undecidability, but to cover a considerable number
of classes of vulnerabilities: SQL injection (SQLI), cross-site
scripting (XSS), remote file inclusion, local file inclusion, di-
rectory traversal/path traversal, source code disclosure, PHP
code injection, and OS command injection. The first two con-
tinue to be among the highest positions of the OWASP Top
10 of web application security risks in 2013 [40], whereas the
rest are also known to have a high risk. The tool can be ex-
tended with more classes of flaws, but this set is enough to
demonstrate the concept.

We evaluated the tool experimentally by running it with
both simple synthetic code with vulnerabilities inserted on
purpose and with 35 open PHP web applications available in
the internet, adding up to more than 2,800 files and 470,000
lines of code. Our results suggest that the tool is capable of
finding and correcting the vulnerabilities from the classes it
was programmed to handle.

The main contributions of the paper are: (1) an approach
for improving the security of web applications by combining
detection and automatic correction of vulnerabilities in web
applications; (2) a combination of taint analysis and data min-
ing techniques to identify vulnerabilities with low false posi-
tives; (3) a tool that implements that approach for web ap-
plications written in PHP with several database management
systems; (4) a study of the configuration of the data mining
component and an experimental evaluation of the tool with a
considerable number of open source PHP applications.

2We use the terms PHP code, script, and programs inter-
changeably in the paper.

2. RELATED WORK
There is a large corpus of related work so we just summa-

rize the main areas by discussing representative papers, while
leaving many others unreferenced for lack of space.

Detecting vulnerabilities with static analysis.
Static analysis tools automate the auditing of code, either

source, binary or intermediate. In the paper we use the term
static analysis in a narrow sense to designate static analysis
of source code to detect vulnerabilities [13, 15, 28, 34].

The most interesting static analysis tools do semantic anal-
ysis based on the abstract syntax tree (AST) of a program.
Data flow analysis tools follow the data paths inside a pro-
gram to detect security problems. The most commonly used
data flow analysis technique for security analysis is taint anal-
ysis, which marks data that enters the program as tainted
and detects if it reaches sensitive functions (e.g., mysql query
in PHP). Taint analysis tools like CQUAL [28] and Splint
[9] (both for C code) use two qualifiers to annotate source
code: the untainted qualifier indicates either that a func-
tion/parameter returns trustworthy data (e.g., a sanitization
function) or that a parameter of a function only accepts trust-
worthy data (e.g., mysql query); the tainted qualifier means
that a function or a parameter return non-trustworthy data
(e.g., functions that read user input).

Pixy [15] uses taint analysis for verifying PHP code, but
extends it with alias analysis that takes into account the ex-
istence of aliases, i.e., of two or more variable names that are
used to denominate the same variable. SaferPHP uses taint
analysis to detect certain semantic vulnerabilities in PHP code:
denial of service due to infinite loops and unauthorized oper-
ations in databases [34]. WAP also does taint analysis and
alias analysis for detecting vulnerabilities, although it goes
further by also correcting the code. Furthermore, Pixy does
only module-level analysis, whereas WAP does global analy-
sis (i.e., the analysis is not limited to a module/file, but can
involve several).

Vulnerabilities and data mining.
Data mining has been used to predict the presence of soft-

ware defects [2, 5, 17]. These works were based on code at-
tributes such as numbers of lines of code, code complexity
metrics, and object-oriented features. Some papers went one
step further in the direction of our work by using similar met-
rics to predict the existence of vulnerabilities in source code
[20, 32, 37]. They used attributes such as past vulnerabilities
and function calls [20], or code complexity and developer ac-
tivities [32]. On the contrary of our work, these others did
not aim to detect bugs and identify their location, but to
assess the quality of the software in terms of prevalence of
defects/vulnerabilities.

Shar and Tan presented PhpMinerI and PhpMinerII, two
tools that use data mining to assess the presence of vulnera-
bilities in PHP programs [29, 30]. These tools extract a set
of attributes from program slices, then apply data mining al-
gorithms to those attributes. The data mining process is not
really done by the tools, but by the WEKA tool [41]. More
recently the authors evolved this idea to use also traces or
program execution [31]. Their approach is an evolution of
the previous works that aimed to assess the prevalence of vul-
nerabilities, but obtaining a higher accuracy. WAP is quite
different because it has to identify the location of vulnerabili-
ties in the source code, so that it can correct them with fixes.



Moreover, WAP does not use data mining to identify vulnera-
bilities but to predict if vulnerabilities found by taint analysis
are really so or if, on the contrary, they are false positives.

Correcting vulnerabilities.
We propose to use the output of static analysis to remove

vulnerabilities automatically. We are aware of a few works
that use approximately the same idea of first doing static
analysis then doing some kind of protection, but mostly for
the specific case of SQL injection and without attempting to
insert fixes in a way that can be replicated by a programmer.
AMNESIA does static analysis to discover all SQL queries –
vulnerable or not– and in runtime checks if the call being made
satisfies the format defined by the programmer [10]. Buehrer
et al. do something similar by comparing in runtime the parse
tree of the SQL statement before and after the inclusion of
user input [6]. WebSSARI does also static analysis and inserts
runtime guards, but no details are available about what the
guards are or how they are inserted [13]. Merlo et al. present
a tool that does static analysis of source code, performs dy-
namic analysis to build syntactic models of legitimate SQL
queries, and generates code to protect queries from input that
aims to do SQLI [19]. None of these works use data mining
or machine learning.

Dynamic analysis and protection.
Static analysis is only one among a set of techniques to de-

tect vulnerabilities. Dynamic analysis or testing techniques
find bugs or vulnerabilities while executing the code [12]. Web
vulnerability scanners use vulnerability signatures to detect if
they exist in a web site, but this approach has been shown
to lead to high ratios of false negatives [36]. Fuzzing and
fault/attack injection tools also search for vulnerabilities but
they try a wide range of possible inputs, instead of just vul-
nerability signatures [3, 1].

There are also dynamic taint analysis tools that do taint
analysis in runtime. For example, PHP Aspis does dynamic
taint analysis of PHP applications with the objective of block-
ing XSS and SQLI attacks [22]. Similarly to AMNESIA and
[6], CANDID compares the structure of a SQL query before
and after the inclusion of user input [4]. However, it does not
do static analysis but dynamic analysis to infer the original
structure of the query.

3. INPUT VALIDATION VULNERABILITIES
This section presents briefly the vulnerabilities handled by

the WAP tool. The main problem in web application security
lies in the improper validation of user input, so this is the
kind of vulnerabilities we currently consider. Inputs enter an
application through entry points (e.g., $ GET) and exploit a
vulnerability by reaching a sensitive sink (e.g., mysql query).
Most attacks involve mixing normal input with metacharac-
ters or metadata (e.g., ’, OR), so applications can be protected
by placing sanitization functions in the paths between entry
points and sensitive sinks.

SQL injection (SQLI) vulnerabilities are caused by the use
of string-building techniques to execute SQL queries. Figure
1 shows PHP code vulnerable to SQLI. This script inserts in
a SQL query (line 4) the username and password provided by
the user (lines 2, 3). If the user is malicious he can provide as
username admin’ - - , causing the script to execute a query that
returns information about the user admin without the need

1: $conn = mysql connect(“localhost”,“username”,“password”);
2: $user = $ POST[‘user’];
3: $pass = $ POST[‘password’];
4: $query = “SELECT * FROM users WHERE username=‘$user’
AND password=‘$pass’ ”;
5: $result = mysql query($query);

Figure 1: Login PHP script that is vulnerable to SQLI.

of providing a password: SELECT * FROM users WHERE
username=‘admin’ - - ’ AND password=‘foo’

This vulnerability can be removed either by sanitizing the
inputs (e.g., preceding with a backslash metacharacters such
as the prime) or by using prepared statements. We opted by
the former because it requires simpler modifications to the
code. Sanitization depends on the sensitive sink, i.e., on the
way in which the input is used. For SQL and the MySQL
database, PHP provides themysql real escape string function.
The username could be sanitized in line 2: $user = mysql real
escape string($ POST[‘user’]); (the same should be done in
line 3).

Cross-site scripting (XSS) attacks execute malicious code
(e.g., JavaScript) in the victim’s browser. Differently from
the other attacks we consider, a XSS attack is not against a
web application itself, but against its users. There are three
main classes of XSS attacks depending on how the malicious
code is sent to the victim (reflected or non-persistent, stored
or persistent, and DOM-based) but we describe only reflected
XSS for briefness. A script vulnerable to XSS can have a
single line: echo $ GET[’username’];. The attack involves
convincing the user to click on a link that accesses the web
application, sending it a script that is reflected by the echo
instruction and executed in the browser. This kind of attack
can be prevented by sanitizing the input and/or by encoding
the output. The latter consists in encoding metacharacters
such as < and > in a way that they are interpreted as normal
characters, instead of HTML metacharacters.

We present the other vulnerabilities handled by WAP only
briefly for lack of space (a longer explanation can be found
on a companion web page [18]). A remote file inclusion (RFI)
vulnerability allows attackers to embed a remote file contain-
ing PHP code in the vulnerable program. Local file inclusion
(LFI) differs from RFI by inserting in a script a file from the
file system of the web application, not a remote file. A di-
rectory traversal or path traversal (DT/PT) attack consists
in an attacker accessing unpredicted files, possibly outside
the web site directory. Source code disclosure (SCD) attacks
dump source code and configuration files. An operating sys-
tem command injection (OSCI) attack consists in forcing the
application to execute a command defined by the attacker. A
PHP code injection (PHPCI) vulnerability allows an attacker
to supply code that is executed by an eval statement.

4. THE APPROACH
The approach proposed involves detecting and correcting

vulnerabilities in the source code, which is tightly related to
information flows: detecting problematic information flows
in the source code; modifying the source code to block these
flows. The notion of information flow is central to two of the
three main security properties: confidentiality and integrity
[27]. Confidentiality is related to private information flowing
to public objects, whereas integrity is related to untrusted
data flowing to trusted objects. Availability is an exception
as it is not directly related to information flow.

The approach proposed in the paper is, therefore, about
information-flow security in the context of web applications.
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Figure 2: Information flows that exploit web vulnerabili-

ties. The arrows indicate information flows.

We are mostly concerned with the server-side of these applica-
tions, which is normally written in a programming language
such as PHP, Java or Perl. Therefore, the problem can be
considered to be a case of language-based information-flow se-
curity, which is a topic much investigated in recent years [26,
13, 21]. Attacks against web vulnerabilities can be expressed
in terms of violations of information-flow security. Figure 2
shows the information flows that exploit each of the vulnera-
bilities of Section 3. The information flows are labeled with
the vulnerabilities that usually permit them. There are a few
rarer cases that are not represented (e.g., RFI or LFI can also
be used to violate confidentiality, but this is not usual). XSS
is different from other vulnerabilities because the victim is not
the web application itself, but a user.

Our approach can be considered to be a way of enforcing
information-flow security at language-level. The tool detects
the possibility of existing the information flows represented in
the figure, and modifies the web application source code to
prevent them.

The approach can be implemented as a sequence of steps:

1. Taint analysis: parse the source code; generate the ab-
stract syntax tree (AST); do taint analysis based on the
AST and generate trees describing candidate vulnerable
control-flow paths (starting in an entry point and finish-
ing in a sensitive sink);

2. Data mining: obtain attributes from the candidate vul-
nerable control-flow paths and use a classifier to predict
if each candidate vulnerability is a false positive or not;

3. Code correction: given the control-flow paths trees of
vulnerabilities predicted not to be false positives, iden-
tify the vulnerabilities, the fixes to insert and the places
where they have to be inserted; assess the probabilities
of the vulnerabilities being false positives and modify
the source code with the fixes (depending on the proba-
bilities);

4. Feedback: provide feedback to the programmer based
on the data collected in the previous steps (vulnerable
paths, vulnerabilities, fixes, false positive probability).

5. TAINT ANALYSIS
The taint analyzer is a static analysis tool that operates

over an AST. The ASTs are created by a lexer and a parser
for PHP 5 that we created using ANTLR (ANother Tool for
Language Recognition) [23]. ANTLR also builds tree walkers.
These classes are used to navigate through the nodes of the
tree programmatically and collect data about the program
represented by the AST.

Taint analysis is performed using the tree walkers to navi-
gate through the AST. In the beginning of the taint analysis
all symbols (variables, functions) are untainted unless they are
an entry point (e.g., $a in $a = $ POST[‘a’]). The tree walk-
ers build a tainted symbol table (TST) in which every cell is a

program statement from which we want to collect data. Each
cell contains a subtree of the AST plus some data. For each
symbol several data items are stored, e.g., the symbol name
and the line number of the statement. While the tree walk-
ers are building the TST, they also build a tainted execution
path tree (TEPT). Each branch of the TEPT corresponds to
a tainted variable (never an untainted variable) and contains
one node for each statement that passes the taintedness from
the entry point until the tainted variable.

The taint analysis consists in traveling though the TST. If
a variable is tainted this state is propagated to symbols that
depend on it, e.g., function parameters or variables that are
updated using it. This requires updating the TEPT with the
variables that become tainted. On the contrary, the state
of a variable is not propagated if it is untainted or if it is an
argument of a PHP sanitization function. The process finishes
when all symbols are analyzed this way.

During the analysis, whenever a variable that is passed to a
sensitive sink becomes tainted, the code corrector is activated
in order to prepare the correction of the code. However, the
code is updated and stored in a file only at the end of the
process, when the analysis finishes and all the corrections that
have to be made are known.

WAP does global, interprocedural and context-sensitive anal-
ysis. Interprocedural means that it analyzes the propagation
of taintedness when functions are called, instead of analyzing
functions in isolation. The analysis being global means that
the propagation of taintedness is also propagated when func-
tions in different modules are called. Being context-sensitive
means that the result of the analysis of a function is propa-
gated only to the point of the program where the call was made
(context-insensitive analysis propagates results to all points of
the program where the function is called) [15].

Table 1 shows the functions used to fix SQL injection vul-
nerabilities (the rest can be found at [18]). For SQLI the tool
uses sanitization functions provided by PHP (column on the
right hand side of the table), but also replaces some prob-
lematic, deprecated, tainted sensitive sinks (mysql db query,
mysqli execute) by non-deprecated functions with similar func-
tionality (mysql query, mysqli stmt execute).

Vuln. Entry points Sensitive sinks Sanitization functions

$ GET mysql query
mysql real escape string$ POST mysql unbuffered query

$ COOKIE mysql db query
SQLI $ REQUEST mysqli query

mysqli real escape string
HTTP GET VARS mysqli real query
HTTP POST VARS mysqli master query
HTTP COOKIE VARS mysqli multi query
HTTP REQUEST VARS mysqli stmt execute

mysqli stmt bind param
mysqli execute

Table 1: Sanitization functions used to fix PHP code for

SQLI vulnerabilities.

6. PREDICTING FALSE POSITIVES
The static analysis problem is known to be related to Tur-

ing’s halting problem, so undecidable for non-trivial languages
[16]. In practice this difficulty is solved by making only par-
tial analysis of some language constructs, leading static anal-
ysis tools to be unsound. In the analysis made by WAP this
problem can appear, for instance, with string manipulation
operations. The issue is what to do to the state of a tainted
string (resp. untainted) that is processed by operations that,
e.g., return a substring or concatenate it with another string.
Both operations can untaint (resp. taint) the string, but it is
uncertain if they do it or not. We opted by letting the string



tainted (resp. tainting it), which may lead to false positives
but not false negatives.

The analysis might be further refined by considering, for
example, the semantics of string manipulation functions, as
in [39]. However, coding explicitly more knowledge in a static
analysis tool is hard and requires a lot of effort, which typically
has to be done for each class of vulnerabilities ([39] considers
a single class of vulnerabilities, SQL injection). Moreover, the
humans who code the knowledge have first to obtain it, which
can be complex.

Data mining allows a different approach. Humans label
samples of code as vulnerable or not, then machine learning
techniques are used to configure the tool with the knowledge
acquired though that process. Data mining then uses that
data to analyze the code. The key idea is that there are
symptoms in the code, e.g., the presence of string manipu-
lation operations, that suggest that flagging a certain pattern
as a vulnerability may be a false positive. The assessment has
mainly two steps:

1. definition of the classifier – pick a representative set of
vulnerabilities identified by the taint analyzer, verify if
they are false positives or not, extract a set of attributes,
analyze their statistical correlation with the presence of
a false positive, evaluate candidate classifiers to pick the
best for the case in point, define the parameters of the
classifier;

2. classification of vulnerabilities – given the classifier, for
every vulnerability found by WAP classify it as a false
positive or not; this step is done by the WAP tool,
whereas the other is part of the configuration of the tool.

6.1 Classification of vulnerabilities
Any process of classification involves two aspects: the at-

tributes that allow classifying a sample, and the classes in
which these samples are classified.

We identified the attributes by analyzing manually the vul-
nerabilities found by WAP’s taint analyzer. We studied these
vulnerabilities to understand if they were false positives. This
involved both reading the source code and executing attacks
against each vulnerability found to understand if it was at-
tackable (true positive) or not (false positive). This data set
is further discussed in Section 6.3.

From this analysis we found three main sets of attributes
that led to false positives:

String manipulation: attributes that represent PHP func-
tions or operators that manipulate strings. These are: sub-
string extraction, concatenation, addition of characters, re-
placement of characters, and removal of white spaces. Recall
that a data flow starts at an entry point, where it is marked
tainted, and ends at a sensitive sink. The taint analyzer flags
a vulnerability if the data flow is not untainted by a sanitiza-
tion function before reaching the sensitive sink. These string
manipulation functions may result in the sanitization of a data
flow, but the taint analyzer does not have enough knowledge
to change the status from tainted to untainted, so if a vulner-
ability is flagged it may be a false positive. The combinations
of functions/operators that untaint a data flow are hard to
establish, so this knowledge is not simple to retrofit into the
taint analyzer.

Validation: set of attributes related to validation of user
inputs, often involving an if-then-else construct, a know source
of undecidability. We define the following attributes: data
type (calls to is int(), is string()), is value set (isset()), control

pattern (preg match()), test of belong to a white-list, test of
belong to a black-list, error and exit functions that output an
error if the user inputs do not pass a test. Similarly to what
happens with string manipulations, any of these attributes
can sanitize a data flow and lead to a false positive.

SQL query manipulation: attributes that have to do with
the insertion of data in SQL queries (SQL injection only).
We define attributes to: string inserted in a SQL aggregate
function (AVG, SUM, MAX, MIN, etc.), string inserted in
a FROM clause, test if data is numeric, and data inserted
in a complex SQL query. Again any of these constructs can
sanitize data of an otherwise considered tainted data flow.

For the string manipulation and validation sets the possible
values for the attributes were two, corresponding to the pres-
ence (Y) or no presence (N) of at least one of these constructs
in the sequence of instructions that propagates input from an
entry point to a sensitive sink. The SQL query manipulation
attributes can take a third value, not assigned (NA), when the
vulnerability observed is other than SQLI.

We use only two classes to classify the vulnerabilities flag-
ged by the taint analyzer: Yes (it is a false positive) and No (it
is not a false positive, but a real vulnerability). Table 2 shows
some examples of candidate vulnerabilities flagged by the taint
analyzer, one per line. For each candidate vulnerability the
table shows the values of some of the attributes (Y or N)
and the class, which has to be assessed manually (supervized
machine learning). The data mining component is configured
using data like this.

6.2 Classifiers and metrics
As already mentioned, our data mining component uses ma-

chine learning algorithms to extract knowledge from a set
of labeled data. This knowledge is afterwards used to clas-
sify candidate vulnerabilities detected by the taint analyzer
as false positives or not. In this section we present the ma-
chine learning algorithms that we studied to identify the best
to classify candidate vulnerabilities, which is the one imple-
mented in WAP. We also discuss the metrics used to evaluate
the merit of the classifiers.

Machine learning classifiers.
We studied machine learning classifiers of three classes:
Graphical/symbolic algorithms. The algorithms of this cat-

egory represent knowledge using a graphical model. ID3,
C4.5/J48, Random Tree and Random Forest are classifiers in
which the graphical model is a decision tree. They use the in-
formation gain rate metric to decide how relevant an attribute
is to classify an instance in a class, which is represented as a
leaf of the tree. An attribute with a small information gain
has a big entropy (degree of impurity of attribute or infor-
mation quantity that the attribute offers to the obtention of
the class), so it is less relevant for a class than another with a
higher information gain. C4.5/J48 is a evolution of ID3 that
does pruning of the tree, i.e., removes nodes with less relevant
attributes (with a bigger entropy). The Bayesian Network is
an acyclic graphical model, where the nodes are represented
by random attributes from the data set.

Probabilistic algorithms. This category includes Naive Bayes
(NB), K-Nearest Neighbor (K-NN) and Logistic Regression
(LR). They classify an instance in the class that has the high-
est probability. NB is a simple statistical classifier based on
the Bayes formula and the assumption of conditional indepen-
dence of the probability distributions of the attributes. K-NN



Potential vulnerability String manipulation Validation SQL query manipulation

Type Webapp
Extract String Add Replace Remove Type IsSet Pattern While Black Error Aggreg. FROM Numeric Complex

Class
substring concat. char string whitesp. checking entry point control list list / exit function clause entry point query

SQLI CurrentCost Y Y Y N N N N N N N N Y N N N Yes
SQLI CurrentCost Y Y Y N N N N N N N N N N N N Yes
SQLI CurrentCost N N N N N N N N N N N N N N N No
XSS emoncms N Y N Y N N N N N N N NA NA NA NA Yes
XSS Mfm-0.13 N Y N Y Y N N N N N N NA NA NA NA Yes
XSS St. ZiPEC 0.32 N Y N N N N N N N N N NA NA NA NA No
RFI DVWA 1.0.7 N N N N N N N N Y N Y NA NA NA NA Yes
RFI SRD N N N Y N N Y N N N N NA NA NA NA No
RFI SRD N N N Y N N Y Y N N N NA NA NA NA No
OSCI DVWA 1.0.7 N Y N Y N N N N N Y N NA NA NA NA Yes
XSS St. vicnum15 Y N N N N N N Y N N N NA NA NA NA Yes
XSS Mfm-0.13 N N N N N N N N N Y N NA NA NA NA Yes

Table 2: Attributes and class for some vulnerabilities.

classifies an instance in the class of its neighbors. LR uses
regression analysis to classify an instance.

Neural network algorithms. This category has two algo-
rithms: Multi-Layer Perceptron (MLP) and Support Vector
Machine (SVM). These algorithms are inspired on the func-
tioning of the neurons of the human brain. MLP is an artificial
neural network classifier that maps sets of input data (values
of attributes) onto a set of appropriate outputs (our class at-
tribute, Yes or No). SVM is a evolution of MLP.

Classifier evaluation metrics.
To evaluate the classifiers we use ten metrics that are com-

puted based mainly on four parameters of each classifier. These
parameters are better understood in terms of the quadrants
of a confusion matrix (Table 3). This matrix is a cross refer-
ence table where its columns are the observed instances and
its rows the predicted results (instances classified by a clas-
sifier). For example, the cell False negative (fn) contains the
number of instances that were wrongly classified as No (not
FP), but were false positives, i.e., should be classified in the
class Yes (FP). The evaluation metrics and tests are:

True positive rate of prediction (tpp). Measures how good
the classifier is at predicting false positives. tpp = tp/(tp+fn).

False positive rate of prediction (fpp). Measures how the
classifier deviates from the correct classification of a candidate
vulnerability as false positive. fpp = fp/(fp+ tn).

Precision of prediction (prfp). Measures the actual false
positives that are correctly predicted in terms of percentage
of total number of false positives. prfp = tp/(tp+ fp).

True positive of detection (tpd). Measures how the classifier
is good at detecting real vulnerabilities. tpd = tn/(tn+ fp).

False positive of detection (fpd). Measures how the classifier
deviates from the correct classification of a candidate vulner-
ability that was a real vulnerability. fpd = fn/(fn+ tp).

Precision of detection (prd). Measures the actual vulner-
abilities (not false positives) that are correctly predicted in
terms of a percentage of the total number of vulnerabilities.
prd = tn/(tn+ fn).

Accuracy (acc). Measures the total of instances well classi-
fied. acc = (tp+ tn)/(tp+ tn+ fp+ fn).

Precision (pr). Measures the actual false positives and vul-
nerabilities (not false positives) that are correctly predicted
in terms of a percentage of total number of cases. pr =
average(prfp, prd).

Kappa statistic (kappa). Measures the concordance between
the classes predicted and observed. Can be stratified in five
categories: worst, bad, reasonable, good, very good, excellent.

Observed
Yes (FP) No (not FP)

Predicted
Yes (FP) True positive (tp) False positive (fp)
No (not FP) False negative (fn) True negative (tn)

Table 3: Confusion matrix (to be filled for each classifier).

kappa = (po − pe)/(1 − pe), where po = acc and pe = (P ∗
P ′ + N ∗ N ′)/(P + N)2 to P = (tp + fn), P ′ = (tp + fp),
N = (fp+ tn) and N ′ = (fn+ tn).

Wilcoxon signed-rank test (wilcoxon). Test to compare clas-
sifier results with pairwise comparisons of the metrics tpp and
fpp or tpd and fpd, with a benchmark result of tpp, tpd > 70%
and fpp, fpd < 25% [8].

6.3 Selection of classifiers
Machine learning classifiers can have different performances.

Here we use the previous metrics to select the best classifiers
for our case. Our current data set has 76 vulnerabilities la-
beled with 15 attributes: 14 to characterize the candidates
vulnerabilities and 1 to classify it as being false positive (Yes)
or real vulnerability (No). For each candidate vulnerability,
we used a version of WAP to collect the values of the 14 at-
tributes and we manually classified them as false positives or
not. Needless to say, understanding if a vulnerability was real
or a false positive was a tedious process. The 76 potential vul-
nerabilities were distributed by the classes Yes and No with
32 and 44 instances, respectively. Figure 3 shows the number
of occurrences of each attribute.

The 10 classifiers are implemented inWEKA, an open source
data mining tool [41]. We use the tool for training and testing
the ten classifiers with a commonly-used 10-fold cross valida-
tion estimator. This estimator divides the data into 10 buck-
ets, trains the classifier with 9 of them and tests it with the
10th. This process is repeated 10 times to test every bucket
with the classifier trained with the rest. This method accounts
for heterogeneities in the data set.

Table 4 shows the evaluation of the classifiers. The first
observation is the rejection of the K-NN and Naive Bayes al-
gorithms by the Wilcoxon signed-rank test. The rejection of
the K-NN algorithm is explained by the classes Yes and No
not being balanced, where the first class has less instances (32)
than the second class (44), which leads to unbalanced numbers
of neighbors and consequently to wrong classifications. The
Naive Bayes rejection seems to be due to its naive assumption
that attributes are conditionally independent and the weak
occurrence of certain attributes.
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Figure 3: Number of occurrences registered by attribute

in the original data set.



Measures
ID3 C4.5/J48

Random Random
K-NN

Naive Bayes
MLP SVM

Logistic
(%) Forest Tree Bayes Net Regression

tpp 75.0 81.3 78.1 78.1 71.9 68.8 78.1 75.0 81.3 84.4
fpp 0.0 13.6 4.5 0.0 0.0 13.6 13.6 0.0 4.5 2.3
prfp 100.0 81.3 92.6 100.0 100.0 78.6 80.6 100.0 92.9 96.4

tpd 100.0 86.4 95.5 100.0 100.0 86.4 86.4 100.0 95.5 97.7
fpd 25.0 18.8 21.9 21.9 28.1 31.3 21.9 25.0 18.8 15.6
prd 84.6 86.4 85.7 86.3 83.0 79.2 84.4 84.6 87.5 89.6

acc 89.5 82.2 88.2 90.8 82.9 78.9 82.9 89.5 89.5 92.1
(% #) 68 64 67 69 63 60 63 68 68 70

pr 91.0 84.2 88.6 92.0 86.8 78.9 82.8 91.0 89.8 92.5

kappa
77.0 67.0 75.0 81.0 63.0 56.0 64.0 77.0 78.0 84.0

very good very good very good excellent very good good very good very good very good excellent

wilcoxon accepted accepted accepted accepted rejected rejected accepted accepted accepted accepted

Table 4: Evaluation of the machine learning models applied to the original data set.

The first four columns of the table are the decision tree mod-
els. These models select for the tree nodes the attributes that
have higher information gain. The C4.5/J48 model prunes
the tree to achieve better results. The branches that have
nodes with weak information gain (higher entropy), i.e., the
attributes with less occurrences, are removed (see Figure 3).
However, an excessive tree pruning can result in a tree with
too few nodes to do a good classification. This was what hap-
pened in our study, where J48 was the worst decision tree
model. The results of ID3 validate our justification because
this model is the J48 model without tree pruning and we can
observe this model has better results comparing its accuracy
and precision with J48: 89.5% against 82.2% and 91% against
84.2%, respectively. The best of the tree decision models is
the Random Tree. The table shows that this model has the
highest accuracy (90.8% that represents 69 of 76 instances
well classified) and precision (92%), and the kappa value is in
accordance (81% - excellent). This result is asserted by the
100% of prpf that tells us that all false positive instances were
well classified in class Yes; also the 100% of tpd tells us that
all instances classified in class No were well classifier.

The Bayes Net classifier is the third worst model in terms of
kappa, which is justified by the random selection of attributes
to the nodes of its acyclic graphical model. The selected at-
tributes have high entropy so they insert noise in the model
that results in bad performance.

The last three columns of Table 4 correspond to three mod-
els with good results. MLP is the neural network with best
results and, curiously, with the same results as ID3. Logistic
Regression (LR) was the classifier with best results. Table 5
shows the confusion matrix of LR, with values equivalent to
those in Table 4. This model presents the highest accuracy
(92.1%, which corresponds to 70 of 76 instances well classi-
fied), precision (92.5%) and an excellent value of kappa (84%).
The prediction of false positives (first 3 rows of the Table 4) is
very good with a great true positive rate of prediction (tpp =
84.6%, 27 of 32 instances), very low false alarms (fpp = 2.3%,
1 of 44 instances) and an excellent precision of prediction of
false positives (prfp = 96.4%, 27 of 28 instances). The de-
tection of vulnerabilities (next 3 rows of the Table 4) is also
very good, with a great true positive rate of detection (tpd
= 97.7%, 43 of 44 instances), low false alarms (fpd = 15.6%,
5 of 32 instances) and a very good precision of detection of
vulnerabilities (prd = 89.6%, 43 of 48 instances).

Observed
Yes (FP) No (not FP)

Predicted
Yes (FP) 27 1
No (not FP) 5 43

Table 5: Confusion matrix of the Logistic Regression clas-

sifier applied to our original data set.

Balanced data set.
To perform a better evaluation of the models with the sug-

gestion given by the K-NN model that the classes are not bal-
anced, we re-evaluated all models after applying the SMOTE
filter to balance the classes [41]. This filter for smaller classes
doubles its instances so it creates a balance. The result of
applying the filter was an increase to 108 instances. Figure 4
shows the number of occurrences in this new data set. Com-
paring with the Figure 3, all attributes have increased their
number of occurrences.
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Figure 4: Number of occurrences registered by attribute

in the balanced data set.

Table 6 shows the results of the re-evaluation with balanced
classes. All models increased their performance and pass the
Wilcoxon signed-rank test. The K-NN model has much better
performance because the classes are now balanced. However,
the kappa, accuracy and precision metrics show that the Bayes
models continue to be the worst. The decision tree models
present good results, with the Random Tree model again the
best of them and the C4.5/J48 model still the worst. Observ-
ing Figure 4 there are attributes with very low occurrences
that will be pruned in the C4.5/J48 model. To increase the
performance of this model we remove the lowest information
gain attribute (the biggest entropy attribute) and re-evaluate
the model. There is an increase in its performance to 92.6% of
pr, 93,7% of acc and 85.0% (excellent) of kappa, that is equal
to the performance of the Random Tree model. Again the
neural networks and LR models have very good performance,
whereas SVM is the best of the three with approximately 92%
of accuracy and pr, and 100% of precision in prediction of false
positives (prfp) and detection of real vulnerabilities (tpd).

Main attributes.
To conclude the study of the best classifier we need to under-

stand which attributes contribute most to a candidate vulner-
ability being a false positive. For that purpose we extracted
from our data set 32 false positive instances and classified
them in three sub-classes, one for each of the sets of attributes
of Section 6.1: string manipulation, SQL query manipulation
and validation. Then, we used WEKA to evaluate this new



Measures
ID3 C4.5/J48

Random Random
K-NN

Naive Bayes
MLP SVM

Logistic
(%) Forest Tree Bayes Net Regression

tpp 87.3 87.5 85.9 87.5 84.4 83.6 83.6 85.9 87.5 85.9
fpp 0.0 9.1 0.0 0.0 0.0 19.5 18.2 0.0 0.0 2.3
prfp 100.0 93.3 100.0 100.0 100.0 87.5 87.5 100.0 100.0 98.2

tpd 100.0 90.9 100.0 100.0 100.0 80.5 81.8 100.0 100.0 97.7
fpd 12.7 12.5 14.1 12.5 15.6 16.4 16.4 14.1 12.5 14.1
prd 84.6 83.3 83.0 84.6 81.5 75.0 76.6 83.0 84.6 82.7

acc 92.5 88.9 91.7 92.6 90.7 82.4 82.9 91.7 92.6 90.7
(% #) 99 96 99 100 98 89 89 99 100 98

pr 92.3 88.3 91.5 92.3 90.7 81.3 82.0 91.5 92.3 90.5

kappa
85.0 77.0 83.0 85.0 81.0 64.0 64.0 83.0 85.0 81.0

Excellent Very Good Excellent Excellent Excellent Very Good Very Good Excellent Excellent Excellent

wilcoxon Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted

Table 6: Evaluation of the machine learning models applied to the balanced data set.

data set with the classifiers that performed best (LR, Random
Tree, and SVM), with and without balanced classes.

Table 7 shows the confusion matrix obtained using LR with-
out balanced classes. The 32 instances are distributed by the
three classes: string manipulation, SQL query manipulation
(SQL), and validation, with 17, 3, and 12 instances respec-
tively. The LR performance was acc = 87.5%, pr = 80.5%,
and kappa = 76% (very good). All 17 instances of the string
manipulation class were correctly classified. All 3 instances
from the SQL class were classified in the string manipulation
class, which is justified by the presence of the concatenation
attribute in all instances. The 11 instances of the validation
class were well classified, except one that was classified as
string manipulation. This mistake is explained by the pres-
ence of the add char attribute in this instance.

Observed
String manip. SQL Validation

Predicted
String manip. 17 3 1
SQL 0 0 0
Validation 0 0 11

Table 7: Confusion matrix of Logistic Regression classifier

applied to false positives data set.

This analysis lead us to the conclusion that the string ma-
nipulation class is the one that most contributes to a candidate
vulnerability being a false positive.

6.4 Implementation in WAP
The main conclusion of this study is that the Logistic Re-

gression classifier is the best for classifying false positives with
our data set. LR performed best with the original data set
and ranked very close to the two first with the balanced data
set. Therefore the Logistic Regression classifier was the one
selected for WAP. This classifier is trained with our data set
and then used to classify each vulnerability detected by the
taint analyzer as false positive or not.

We plan to add labeled data to our data set incrementally,
as we obtain it through the process of running the taint an-
alyzer and studying if the candidate vulnerabilities are really
vulnerabilities or not. Eventually this process will lead to a
large data set that we will use to re-evaluate the classifiers.
However, we believe that LR will be confirmed as the best
option so we will not need to modify WAP.

6.5 Extending WAP for more vulnerabilities
Most literature on static analysis to detect vulnerabilities

focus on one or two classes of vulnerabilities, e.g., SQLI [39]
or XSS [15]. WAP on the contrary aims to be able to detect
(and correct) a wide range of input validation vulnerabilities.
Currently WAP handles eight classes of vulnerabilities, but to
be generic it has to be configurable to handle more.

In this section we discuss how WAP can be extended to
handle more vulnerabilities. We discuss it considering WAP’s

three main components: taint analyzer, data mining compo-
nent, and code corrector.

The taint analyzer has three pieces of data about each class
of vulnerabilities: entry points, sensitive sinks, and sanitiza-
tion functions. The entry points are always a variant of the
same set (functions that read input parameters, e.g., $ GET),
whereas the rest tend to be simple to identify once the vul-
nerability class is known.

The data mining component has to be trained with new
knowledge about false positives for the new class. This train-
ing may be skipped at first and be improved incrementally
when more data becomes available. For the training we need
data about candidate vulnerabilities of that kind detected by
the taint analyzer, which have to be labeled as true or false
positives. Then, the attributes associated to the false positives
have to be used to configure the classifier.

The code corrector needs essentially data about what san-
itization function has to be used to handle that class of vul-
nerability and where it shall be inserted. Again this is doable
once the new class if known and understood.

7. CODE CORRECTION
WAP does code correction automatically after the detection

of the vulnerabilities is performed by the taint analyzer and
the data mining component. The taint analyzer returns data
about the vulnerability, including its class (e.g., SQLI) and
the vulnerable slice of code. The code corrector uses this data
to define the fix to insert and the place to insert it. Inserting
a fix involves modifying a PHP file, which is then returned to
the user of the tool.

A fix is a call to a function inserted in the line of code of the
sensitive sink. The functionality of such function is to sani-
tize or validate the data that reaches the sensitive sink. San-
itization involves modifying the data to neutralize dangerous
metacharacters or metadata, if they are present. Validation
involves checking the data and executing the sensitive sink or
not depending on this verification. A fix is inserted in the line
of the sensitive sink instead of, for example, the line of the
entry point, to avoid it to interfere with other code that used
the sanitized variable.

Table 8 shows the fixes, how they are inserted and other re-
lated information. The san sqli fix applies PHP sanitization
functions (e.g., mysql real escape string) and lets the sensi-
tive sink be executed with its arguments sanitized. The SQLI
sanitization functions precedes any malicious meta-character
with a backslash and replaces others by their literal, e.g., \n
by ’\n’. For the XSS vulnerability class the fixes use func-
tions from the OWASP PHP Anti-XSS Library. All of them
replace malicious metacharacters by their HTML entity, for
example < by &lt;. For stored XSS the sanitization function
addslashes is used and the validation process verifies in run-
time if an attempt of exploitation occurs, outputting an alarm
message if that is the case. The fixes for the others classes of



Vulnerability
Fix Output

Sanitization Validation
Applied to Function

Alarm Stop
Addition Substitution Black-list White-list message execution

SQLI X X sensitive sink san sqli - No
Reflected XSS X sensitive sink san out - No
Stored XSS X X X sensitive sink san wdata X No
Stored XSS X X sensitive sink san rdata X No
RFI X sensitive sink san mix X Yes
LFI X sensitive sink san mix X Yes
DT /PT X sensitive sink san mix X Yes
SCD X sensitive sink san mix X Yes
OSCI X sensitive sink san osci X Yes
PHPCI The fix and the output depend of the type of the vulnerability above

Table 8: Functioning of the fixes and its output when executed.

vulnerabilities were developed by us and perform validation of
the arguments that reach the sensitive sink, using black lists
and emitting an alarm in the presence of an attack. The last
two columns of the table indicate if the fixes output an alarm
message when an attack is detected and what happens to the
execution of the web application when that action is made.
For SQLI and reflected XSS nothing is outputted and the ex-
ecution of the application proceeds. For the stored XSS an
alarm message is emitted, but the application proceeds with
its execution. For the others where the fixes perform valida-
tion, when an attack is detected an alarm is raised and the
execution of the web application stops.

8. EXPERIMENTAL EVALUATION
The objective of the experimental evaluation was to answer

the following questions: (1) Is WAP able to process a large
set of PHP applications? (Section 8.1) (2) Is it more accurate
and precise than other tools that do not combine taint anal-
ysis and data mining? (Sections 8.2–8.3) (3) Does it correct
the vulnerabilities it detects? (Section 8.4) (4) Does the tool
detect the vulnerabilities that it was programmed to detect?
(Section 8.4)

WAP was implemented in Java, using the ANTLR parser
generator. It has around 95,000 lines of code, around 78,500
of which generated by ANTLR.

8.1 Large scale evaluation
To show the ability of running WAP with a large set of

PHP applications, we run it with 35 open source packages.
Table 9 shows the packages that were analyzed and summa-
rizes the results. The table shows that more than 2,800 files
and 470,000 lines of code were analyzed, with 294 vulnerabil-
ities found (at least 28 of which false positives). The largest
packages analyzed were phpMyAdmin version 2.6.3-pl1 with
143,171 lines of code and Mutillidae version 2.3.5 with 102,567
lines of code. The code analyzed varied from well-known ap-
plications such as phpMyAdmin itself, to small applications
in their initial versions like PHP-Diary. The functionality is
equally varied, with a small content management application
like phpCMS, an event console for the iPhone (ZiPEC), and
an application to show the weather (PHP Weather). The vul-
nerabilities in ZiPEC were in the last version so we informed
the programmers that acknowledged their existence and fixed
them.

8.2 Taint analysis comparative evaluation
To answer the second question we compare WAP with Pixy

and PhpMinerII. To the best of our knowledge, Pixy is the
most cited PHP static analysis tool in the literature and Ph-
pMinerII is the only one that does data mining. Other open
PHP verification tools are available, but they are mostly sim-
ple prototypes designed in a more or less ad hoc manner. The
full comparison of WAP with the two tools can be found in
the next section. This one has the simpler goal of comparing

Web application Files
Lines of Analysis Vuln. Vulner.

code time (s) files found

adminer-1.11.0 45 5,434 27 3 3
Butterfly insecure 16 2,364 3 5 10
Butterfly secure 15 2,678 3 3 4
currentcost 3 270 1 2 4
dmoz2mysql 6 1,000 2 0 0
DVWA 1.0.7 310 31,407 15 12 15
emoncms 76 6,876 6 6 15
Ghost 16 398 2 2 3
gilbitron-PIP 14 328 1 0 0
GTD-PHP 62 4,853 10 33 111
Hexjector 1.0.6 11 1,640 3 0 0
Lithuanian-7.02.05-v1.6 132 3,790 24 0 0
Measureit 1.14 2 967 2 1 12
Mfm 0.13 7 5,859 6 1 8
Mutillidae 1.3 18 1,623 6 10 19
Mutillidae 2.3.5 578 102,567 63 7 10
ocsvg-0.2 4 243 1 0 0
OWASP Vicnum 22 814 2 7 18
paCRUD 0.7 100 11,079 11 0 0
Peruggia 10 988 2 6 22
PHP X Template 0.4 10 3,009 5 0 0
PhpBB 1.4.4 62 20,743 25 0 0
Phpcms 1.2.2 6 227 2 3 5
PhpCrud 6 612 3 0 0
PhpDiary-0.1 9 618 2 0 0
PHPFusion 633 27,000 40 0 0
phpldapadmin-1.2.3 97 28,601 9 0 0
PHPLib 7.4 73 13,383 35 3 14
PHPMyAdmin 2.0.5 40 4,730 18 0 0
PHPMyAdmin 2.2.0 34 9,430 12 0 0
PHPMyAdmin 2.6.3-pl1 287 143,171 105 0 0
Phpweather 1.52 13 2,465 9 0 0
WebCalendar 122 30,173 12 0 0
WebScripts 5 391 4 2 14
ZiPEC 0.32 10 765 2 1 7

Total 2854 470,496 473 107 294

Table 9: Summary of the results of running WAP with

open source projects.

WAP’s taint analyzer with Pixy, which does this same kind
of analysis. We consider only SQLI and reflected XSS vul-
nerabilities, as Pixy only detects these two (recall that WAP
detects vulnerabilities of eight classes).

Table 10 shows the results of the execution of the two tools
with 9 open source applications and all PHP samples of NIST’s
SAMATE Reference Dataset (http://samate.nist.gov/SRD/).
Pixy did not manage to process mutilidae and WackoPicko
because they use the object-oriented features of PHP 5.0,
whereas Pixy supports only those in PHP 4.0. WAP’s taint
analyzer (WAP-TA) detected 68 vulnerabilities (22 SQLI and
46 XSS), with 21 false positives. Pixy detected 73 vulnera-
bilities (20 SQLI and 53 XSS), with 41 false positives and 5
false negatives taking WAP-TA as reference (i.e., it did not
detect 5 vulnerabilities that WAP-TA did). We postpone the
discussion on the full version of WAP to the next section.

Webapp
WAP-TA Pixy WAP (complete)

SQLI XSS FP SQLI XSS FP FN SQLI XSS Corrected

CurrentCost 3 4 2 3 5 3 0 1 4 5
DVWA 1.0.7 4 2 2 4 0 2 2 2 2 4
emoncms 2 6 3 2 3 0 0 2 3 5
Measureit 1.14 1 7 7 1 16 16 0 1 0 1
Mfm-0.13 0 8 3 0 10 8 3 0 5 5
Multilidae 2.3.5 0 2 0 - - - - 0 2 2
SAMATE 3 11 0 4 11 1 0 3 11 14
Vicnum15 3 1 3 3 1 3 0 0 1 1
Wackopicko 3 5 0 - - - - 3 5 8
ZiPEC 0.32 3 0 1 3 7 8 0 2 0 2

Total 22 46 21 20 53 41 5 14 33 47

Table 10: Results of running WAP’s taint analyzer (WAP-

TA), Pixy and the complete WAP (WAP-TA plus data mining).



Pixy detected the same real vulnerabilities than WAP-TA,
except 5 (1 SQLI and 4 XSS). The 10 false positives that WAP-
TA reported more than Pixy are related to the $ SERVER
entry point (in emoncms) and to the error sensitive sink (in
measureit) that Pixy does not handle. However Pixy reported
30 false positives more than WAP-TA. This big difference can
be explained in part by the interprocedural/ global/ context-
sensitive analysis performed by WAP-TA, but not by Pixy.
Another part of the justification is the bottom-up taint anal-
ysis performed by Pixy (AST navigated from the leafs to the
root of the tree), whereas WAP-TA’s is top-down (starts from
the entry points and verifies if they reach a sensitive sink).

WAP-TA has shown to be more accurate than Pixy: it had
an accuracy of 69%, whereas Pixy had only 44%.

8.3 Full comparative evaluation
This section compares the complete WAP with Pixy and

PhpMinerII. The comparison with Pixy can be extracted from
Table 10. The accuracy of WAP was 92.1%, whereas WAP-
TA’s was 69% and Pixy’s only 44%. We can not show the
results of PhpMinerII in the table because it does not really
identify vulnerabilities.

PhpMinerII does data mining of program slices that end
at a sensitive sink, independently of data being propagated
through them starting at an entry point or not. PhpMinerII
does this analysis to identify vulnerabilities, whereas WAP
uses data mining to predict false positives in vulnerabilities
detected by the taint analyzer.

We evaluated PhpMinerII with our data set using some of
the classifiers of Section 6.2. We used the same classifiers as
PhpMinerII’s authors [29, 30]. The results of this evaluation
are in Table 11. In the table it is possible to observe that the
best classifier is LR, which is the only one that passed the
Wilcoxon signed-rank test. It had also the highest precision
(pr) and accuracy (acc), and the lowest false alarm rate (fpp
= 20% ).

Measures
C4.5/J48

Naive
MLP

Logistic
(%) Bayes Regression

tpp 94.3 88.7 94.3 90.6
fpp 32.0 60.0 32.0 20.0
prfp 86.2 75.8 86.2 90.6

tpd 68.0 40.0 68.0 80.0
fpd 5.7 11.3 5.7 9.4
prd 85.0 62.5 85.0 80.0

acc 85.9 73.1 85.9 87.2
(% #) 67 57 67 68

pr 85.6 69.2 85.6 85.3

kappa
65.8 31.7 65.8 70.6

Very Good Reasonable Very Good Very Good

wilcoxon Rejected Rejected Rejected Accepted

Table 11: Evaluation of the machine learning models ap-

plied to the data set resulting from PhpMinerII.

The confusion matrix of the LR model for PhpMinerII (Ta-
ble 12) shows that it correctly classified 68 instances, 48 as
vulnerabilities and 20 as non-vulnerabilities. We can conclude
that LR is a good classifier for PhpMinerII, with an accuracy
of 87.2% and a precision of 85.3%. These results are much
better than Pixy’s, but not as good as WAP’s, which has an
accuracy of 92.1% and a precision of 92.5% (see Table 4) with
the same classifier.

Table 13 summarizes the comparison between WAP, Pixy,
and PhpMinerII.

8.4 Fixing vulnerabilities
WAP uses data mining to discover false positives among

the vulnerabilities detected by its taint analyzer. Table 10 in
Section 8.2 shows that in the set of 10 packages WAP detected
47 SQLI and reflected XSS vulnerabilities. The taint analyzer

Observed
Yes (Vuln.) No (not Vuln)

Predicted
Yes (Vuln.) 48 5

No (not Vuln) 5 20

Table 12: Confusion matrix of Logistic Regression in Ph-

pMinerII data set.

Metric WAP Pixy PhpMinerII

accuracy 92.1% 44.0% 87.2%
precision 92.5% 50.0% 85.2%

Table 13: Accuracy and precision of WAP, Pixy and Ph-

pMinerII.

raised 21 false positives that were detected by the data mining
component. All the vulnerabilities detected were corrected
(right-hand column of the table).

WAP detects several other classes of vulnerabilities that not
SQLI and reflected XSS. Table 14 expands the data of Table
10 for all the vulnerabilities detected by WAP. The 69 XSS
vulnerabilities detected include reflected and stored XSS vul-
nerabilities, which explains the difference to the 46 reflected
XSS of Table 10. Again all vulnerabilities were corrected by
the tool (last column).

Webapp
Detected taint analysis Detected

Corrected
SQLI

RFI, LFI
SCD OCSI XSS Total FP

data
DT/PT mining

currentcost 3 0 0 0 4 7 2 5 5
DVWA 1.0.7 4 3 0 6 4 17 8 9 9
emoncms 2 0 0 0 13 15 3 12 12
Measureit 1.14 1 0 0 0 11 12 7 5 5
Mfm 0.13 0 0 0 0 8 8 3 5 5
Mutillidae 2.3.5 0 0 0 2 8 10 0 10 10
OWASP Vicnum 3 0 0 0 1 4 3 1 1

SRD(1) 3 6 0 0 11 20 1 19 19
Wackopico 3 2 0 1 5 11 0 11 11
ZiPEC 0.32 3 0 0 0 4 7 1 6 6

Total 22 11 0 9 69 111 28 83 83

Table 14: Results of the execution of WAP considering

all vulnerabilities it detects and corrects.

9. CONCLUSION
The paper explores a new point in the design space of ap-

proaches and tools for web application security. It presents an
approach for finding and correcting vulnerabilities in web ap-
plications and a tool that implements the approach for PHP
programs and input validation vulnerabilities. The approach
and the tool search for vulnerabilities using a combination of
two techniques: static source code analysis and data mining.
Data mining is used to identify false positives using a machine
learning classifier selected after a thorough comparison of sev-
eral alternatives. It is important to note that this combina-
tion of detection techniques can not provide entirely correct
results. The static analysis problem is undecidable and the
resort to data mining can not circumvent this undecidability,
only provide probabilistic results. The tool corrects the code
by inserting fixes, currently sanitization and validation func-
tions. The tool was experimented both with synthetic code
with vulnerabilities inserted on purpose and with a consider-
able number of open source PHP applications. This evaluation
suggests that the tool can detect and correct the vulnerabili-
ties of the classes it is programmed to handle.
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