
Feature Set Tuning in Statistical Learning Network
Intrusion Detection

Arnaldo Gouveia1,2 Miguel Correia2
1Portugal Telecom 2INESC-ID, Instituto Superior Técnico, Universidade de Lisboa – Lisboa, Portugal

Abstract—The detection of security-related events using ma-
chine learning approaches has been extensively investigated.
In particular, machine learning applied to network intrusion
detection systems (NIDS) has attracted a lot of attention due to its
good generalization and unknown attack detection capabilities.
A number of classification techniques have been used for this
purpose, revealing good generalization properties. In this paper
we go one step further by evaluating the performance of NIDSs
when feature set tuning and reduction are realized. We evaluate
a number of state of the art learning algorithms that are raising
much interest but have not been used for intrusion detection
yet. We compare a representative set of algorithms: Ada, ROC-
based learners, two types of Classification Trees, Boosted Logistic
Regression, Generalized Linear Models, Gradient Boosting Ma-
chines, and Neural Networks. The main objective is to reduce the
number of features used – thus also the size of the data processed
– to improve speed while maintaining adequate accuracy.

I. INTRODUCTION

With the continuous growth in number and impact of
network attacks, network intrusion detection systems (NIDS)
are increasingly becoming critical security elements. From
a research standpoint, although investigated for many years
[16], NIDSs continue to get a lot of attention due to their
practical interest regarding effective detection of malicious
attacks, while processing large data volumes with machine
learning algorithms [17], [30].

Anomaly-based network intrusion detection is a particularly
promising approach as it allows detecting previously unknown
attacks. This approach resorts to machine learning to create
models of normal behavior, then detecting deviations. In such
IDSs, attacks are detected when anomalies are identified.
The generalization machine learning algorithms achieve in the
learning phase allows the identification of anomalies even if
the normal traffic observed in runtime is not identical to the
traffic of the learning phase. False positives and false negatives
are the cost of this generalization capability.

Deep learning is currently a hot topic in machine learn-
ing [1], [2]. Deep learning techniques have been achieving
excellent results in recognition of speech, faces, and images
in general, to name just a few examples [1], [22]. Although
initially the term deep learning referred to neural networks
with many layers (“deep”), today other algorithms apparently
very different are known to have similar behavior and also put
under the term. This paper also explores the use of other algo-
rithms seldom employed in NIDSs: Generalized Linear Models
(GLM) and Gradient Boosting Machines (GBM). Other more
commonly referenced algorithms are also compared, namely
Classification Trees and Neural Networks.

The goal of this comparison is evaluating the potential of
feature set tuning to improve detection speed while maintain-
ing accuracy at acceptable levels. This is especially important
in times in which NIDSs have to process the high traffic loads
that travel our networks. Feature selection is an important part
of the process of dataset tuning. Therefore it is important for
machine learning-based NIDS development in order to save
time while providing an insight into the underlying feature
details relevant to the classification process. It is a well-known
fact that not all traffic features (or attributes) are equally
useful to detect attacks/intrusions [14], [27]. Therefore feature
set tuning allows reducing the feature set, improving the
training dataset with the goal of obtaining speed gains while
maintaining an acceptable accuracy [27].

Our results show that after tuning all algorithms present
similar metrics, although the number of features reduced
depends on the algorithm. GBM has achieved the highest
feature reduction, closely followed by RPART.

The main contributions of this paper are: (1) a comparison
of intrusion detection performance with a set of relevant
machine learning algorithms; (2) a study showing how feature
set tuning allows reducing datasets and maintaining accuracy
at similar acceptable levels. In this paper, we test tune the UNB
ISCX Intrusion Detection Evaluation Dataset while validating
a number of representative machine learning algorithms from
the literature.

II. THE DATASET

The UNB ISCX Intrusion Detection Evaluation Dataset
was developed in an attempt to provide a quality dataset for
network intrusion detection research [23]. The approach for
defining this dataset involved identifying features that would
allow effective detection, while minimizing processing costs.

Cost-based models have often been used regarding feature
definition in fraud based detection. Stolfo et al. [25] have
shown that cost-based assertions developed for fraud detection
can be generalized and applied to network intrusion detection
as a criteria for feature finding. With this approach in mind,
the authors defined a set of features intrinsically related to
specific classes of traffic anomalies like Probing, Remote to
Local, Denial of Service, and User to Remote attacks. By
maximizing cost in specific cost models, a number of features
have been identified by the authors and used in the UNB ISCX
Intrusion Detection Evaluation Dataset. In this context the
features chosen were the best candidates for maximizing the
types of cost characteristic to intrusions: (1) damage cost: the
amount of damage caused by an attack if intrusion detection is
not attained. (2) challenge cost: the cost to act upon a potential978-1-5090-3216-7/16/$31.00 c©2016 IEEE

Class Train dataset attacks Test dataset only attacks
Probing portsweep, ipsweep, satan,

guesspasswd, spy, nmap
snmpguess, saint, mscan,
xsnoop

DoS back, smurf, neptune, land,
pod, teardrop, buffer over-
flow, warezclient, warez-
master

apache2, worm, udpstorm,
xterm

R2L imap, phf, multihop snmpget, httptunnel, xlock,
sendmail, ps,

U2R loadmodule, ftp write,
rootkit

sqlattack , mailbomb, pro-
cesstable, perl

TABLE I. ATTACKS IN THE UNB ISCX TRAIN / TEST DATASETS (ALL
ATTACKS FROM THE FIRST EXIST ALSO IN THE SECOND)

intrusion when it is detected; and (3) operational cost: the
resources needed identify the attacks.

The UNB ISCX dataset is composed of sequences of
entries in the form of records labeled as either normal or
attack. Each entry contains a set of characteristics of a flow,
i.e., of a sequence of IP packets starting at a time instant
and ending at another, between which data flows between
two IP addresses using a transport-layer protocol (TCP, UDP)
and an application-layer protocol (HTTP, SMTP, SSH, IMAP,
POP3, or FTP). The dataset is fairly balanced with prior class
probabilities of 0.465736 for the normal class and 0.534264
for the anomaly class.

The attacks represented in the UNB ISCX dataset fall into
four classes:

Denial of Service Attacks (Dos). In this class of attacks the
attacker renders computing or memory resources too busy or
too full to handle legitimate requests or denies legitimate users
access to a machine, e.g., land, syn flood, etc.

User to Root Attacks (U2R). This is a class of attacks in which
the attacker starts out with access to a normal user account on
the system and is able to exploit some vulnerability to gain
unauthorized root access to the system. e.g., loadmodule or
perl.

Remote to Login Attacks (R2L). This type of attack occurs
when an external attacker exploits some vulnerability to gain
local access as a user in that machine, e.g., ftp write, http
tunnel, password guess, etc.

Probing Attacks. These are attempts to gather information
about any systems for the purpose of circumventing its security
controls, e.g., network scans, port sweep, nmap, satan, mscan,
etc.

The UNB ISCX dataset is composed of two sub-datasets: a
train dataset, used for training a NIDS, and a test dataset, used
for testing. Both have the same structure and contain all four
types of attacks. However, the test dataset has more attacks as
shown in Table I, to allow evaluating the ability of algorithms
to generalize. The train dataset has around 2.2 GB of data,
whereas the test dataset has 0.8 GB.

Each record of the dataset is characterized by features that
fall into three categories: basic, content, and traffic. These
features are represented in Table II.

Feature Detail
duration length of the flow in seconds
protocol-type type of the protocol, e.g., TCP, UDP, ICMP
service network service, e.g., HTTP, telnet
src-bytes num. of data bytes from source to destination
dst-bytes num. of data bytes from destination to source
flag status of the flow, normal or error
lang 1 if flow is for the same host/port; 0 otherwise
wrong-fragment num. of erroneous fragments
urgent num. of urgent packets
hot num. of hot indicators
num-failed-logins num. of failed login attempts
logged-in 1 if successfully logged in; 0 otherwise
num-compromised num. of compromised conditions
root-shell 1 if root shell is obtained; 0 otherwise
su-attempted 1 if su root command attempted; 0 otherwise
num-root num. of root accesses
num-file-creations num. of file creation operations
num-shells num. of shell prompt
num-access-files num. of operations on access control files
num-outbound-cmds num. of outbound commands in a ftp session
is-host-login 1 if the login belongs to the hot list; 0 otherwise
is-guest-login 1 if the login is a guest login; 0 otherwise
count num. of connections to the same host as current
serror-rate % of connections that have SYN errors
rerror-rate % of connections that have REJ errors
same-srv-rate % of connections to the same service
diff-srv-rate % of connections to different services
srv-count num. of connections to the same service as current
srv-serror-rate % of connections that have SYN errors
srv-rerror-rate % of connections that have REJ errors
srv-diff-host-rate % of connections to different hosts
dst-host-count num. of connections to the same destination host
dst-host-srv-count num. of connections to the same service as current
dst-host-same-srv-rate % of connections to the same service
dst-host-diff-srv-rate % of connections to different services
dst-host-same-src-port-rate % of connections from same source and port
dst-host-srv-diff-host-rate % of connections to different services
dst-host-serror-rate % of connections that have SYN errors
dst-host-srv-serror-rate % of connections that have SYN errors per service
dst-host-rerror-rate % of connections that have REJ errors
dst-host-srv-rerror-rate % of connections that have REJ errors per service

TABLE II. FEATURES USED TO CHARACTERIZE EACH FLOW IN THE
DATASET: BASIC (TOP), CONTENT (MIDDLE), TRAFFIC (BOTTOM).

Actual Normal Actual Anomaly
Predicted Normal TP FN

Predicted Anomaly FP TN

TABLE III. CONFUSION TABLE MODEL FOR METRICS

III. PERFORMANCE METRICS

We use a set of metrics to compare the algorithms and
the effect of feature tuning. These metrics are mostly obtained
from the confusion matrix (see Table III). A positive is the
detection of a malicious flow, and a negative a non-detection.
The detection of lack of detection can be right (true) or wrong
(false).

Accuracy. Accuracy measures how well a classification test
identifies an event class. The accuracy is the sum of true
results (both true positives and true negatives) divided by
the total number of observations (sum of all true positives,
true negatives, false positives and false negatives): Acc =
(TP + TN)/(TP + TN + FP + FN). Accuracy ranges from
0 to 1, being the 1 the most favourable for a strictly balanced
dataset.

No information rate. The no-information rate metric is the
proportion of the most common class.

Kappa. The kappa statistic is a measure of agreement between

observations, where an observation is a validation round. We
use this metric as defined by Cohen [6]: κ = (Po − Pe)(1 −
Pe), where Po is the observed accuracy and Pe the expected
accuracy under random agreement [29]. The most favourable
case for kappa is perfect agreement, which would equate to a
kappa value of 1.

Sensitivity (or True Positive Rate). Sensitivity is the probability
that a test will indicate a positive condition among the set of
positives: TPR = TP /(TP +FN). Sensitivity ranges from 0 to
1 with 1 being the most favorable case for a strictly balanced
dataset.

Specificity (or True Negative Rate). Specificity measures the
proportion of negatives that are correctly identified as such:
TNR = TN/(TN + FP). Specificity ranges from 0 to 1, with
1 being the most favorable case for a strictly balanced dataset.

Positive Predicted Value. The Positive Predicted Value (PRV)
is the proportion of true positive results referenced to the sum
of true positives and false positives results: PPV = TP /(TP +
FP). PRV ranges from 0 to 1, with 1 being the most favorable
case for a strictly balanced dataset.

Negative Predicted Value. The Negative Predicted Value (NPV)
is the proportion of true negative results referenced to the
sum of true negatives and false negative results: NPV =
TN/(TN + FN). NPV ranges from 0 to 1, with 1 being 1
the most favorable case for a strictly balanced dataset.

Positive Likelihood Ratio. In medicine, likelihood ratios are
used for confirming a diagnostic test. They use the sensitivity
and specificity of the test to determine whether a test result
confirms the probability that a condition (such as a disease
state) exists [28]. In intrusion detection this metric can be
used as a confirmation that positive indicators are supported by
malicious and intentional activity and it has been used in IDS
related research [12]. It is given by LR+ = Sensitivity/(1−
Specificity). Values greater than 1 and greater confirm the
existence of intentional malicious behaviour activity with ever
increasing probability as LR+ grows.

Balanced Accuracy. Balanced accuracy is given by cTP /(TP+
FP)+ (1− c)TN/(TN +FN), where c belongs to the interval
[0, 1] translating the imbalance (c and 1 − c are in practice
the priors). If the classifier performs equally well on either
class, this term reduces to the conventional accuracy (number
of correct predictions divided by number of predictions):
TP /(2(TP + FP)) + TN/(2(TN + FN)). Balanced Accuracy
ranges from 0 to 1, with 1 being the most favorable case for
a strictly balanced dataset.

IV. THE METHOD

The core of the experiment is a comparison of a set of
representative machine learning algorithms in the context of
network intrusion detection. The steps followed were:

• Selection of a dataset of network traffic designed for
network intrusion detection evaluation;

• Tune the training of the algorithms and extract the
subset of the most relevant features using the R

caret package varImp() function. When no tun-
ing parameters are provided by caret, default values
are used;

• Train and test with a feature reduced dataset.

We start with the first and leave the rest for Section V.

A. Feature Importance Determination

From an optimization perspective it is relevant to know
what is the importance of the various features (or variables)
used in the learners in terms of their contribution to the final
performance result. A number of approaches have been used
in the past for this purpose, namely Correlation-based Feature
Selection, Information Gain, Gain Ratio, and the ROC based
variable importance [3]. In this paper we investigate the use of
the area under curve (AUC) of the receiver operating character-
istic (ROC) curve as a performance measure for NIDS based on
some machine learning learners. The variable importance list
has been obtained with the varImp() function of the caret
R package, which uses a ROC AUC maximization approach.
Feature #15 of the original dataset was discarded because it
was constant in both train and test datasets. The importance
scale is presented in a percentual relative range for the 20 most
relevant features in each algorithm.

B. Model Independent Feature Importance Selection

If there is no model-specific way to estimate feature
importance (or the argument useModel = FALSE is used
in varImp()), the importance of each feature is evalu-
ated individually using a metric-based approach. This ap-
proach is model-independent. In face of this argument the
useModel = FALSE option has been the choice for running
the varImp() function in the models in which this option
applies, namely Classification Trees and Random Forests.

ROC curve analysis is the approach used for reducing
the feature set. For 2-class problems like intrusion detection
(classes attack/no-attack), a series of cutoffs is applied to
the algorithm data to predict the class. The sensitivity and
specificity are computed for each cutoff and the ROC curve
area is computed as the measure of variable importance. For
a specific class, the maximum area under the curve across the
relevant pair-wise AUCs is used as the variable importance
metric. The model selected as the best is the candidate with
the highest accuracy. If more than one tuning parameter is
optimal then the function will try to choose the combination
that corresponds to the least complex model [15].

C. Computational Environment

The data preparation phase, involving feature pre-
processing, has been done using WEKA 3.6. WEKA stands
for the Waikato Environment for Knowledge Analysis, which
was developed at the University of Waikato of New Zealand.
All the remaining experiments were performed with the R
environment for statistical computing supported by the R
Foundation for Statistical Computing [19]. R is widely used
among statisticians and data miners for developing statistical
software and data analysis. We used the following R packages:
caret 6.0-68, rpart 4.1-10, neural net 1.32, C50 0.1.0-24, gbm
2.1.1, pROC 1.8 and rooc 1.2.

V. THE ALGORITHMS

The list of learners we considered is not exhaustive, but it
contains a representative subset of good performance learners.
This section presents the study itself. For each algorithm we
explain briefly how it works and how it was tuned in order to
obtain results as good as possible. The implementations of the
algorithms used were those in R and its packages.

A. Ada (Boosted Classification Trees)

Ada is used in conjunction with other (weak) learning
algorithms to improve their performance using boosting [10].
In this case we employ Ada as a booster of classification trees,
used as weak learners.

In Boosted Classification Trees the training events that are
misclassified (a signal event fell on a background leaf or vice-
versa) have their weights increased (boosted), and a new tree
is formed. This procedure is then repeated for the new tree.
In this way many trees are built up. The score from the mth

individual tree Tm is taken as +1 if the event falls on a signal
leaf and −1 if the event falls on a background leaf. The final
score is taken as a weighted sum of the scores of the individual
leaves [20].

Tuning. Cross-Validated (10 fold) re-sampling (also 10 fold)
has been used. For classification using package ada the tun-
ing parameters are: Number of Trees (iter), Max Tree
Depth (maxdepth) and nu (learning rate). The Tuning param-
eter nu was held constant at a value of 0.1. Accuracy was used
to select the optimal model using the largest value. The final
values used for the model were iter = 150, maxdepth
= 3 and nu = 0.1.

B. Ranking Classifier

This is a classification method based on receiver operat-
ing characteristics (ROC). The method value rocc is chosen
by caret from package rocc with the tuning parameter
xgenes. Briefly speaking, features are selected according to
their contribution to the ranked AUC value using the training
set. The function performs classification by leave-one-out-
cross-validation (LOOCV) using the ROC based classifier:
features are combined to a group by the mean ROC value
expression. Afterwards these samples are ranked according to
their contribution to the AUC value. The feature group that
yields optimal accuracy in the training samples is then used to
classify new samples.

Tuning. The only tuning parameter available in caret is the
number of variables retained in each LOOCV cycle: xgenes.
Accuracy was used to select the optimal model using the
largest value. The final value used for the model was xgenes
= 2.

C. Classification Trees

Classification and regression trees were first described by
by Brieman et al. [5]. Classification or Decision Trees (DTs)
are a non-parametric supervised learning method used for
classification and regression. Decision trees create a model
that predicts the value of a target variable by learning simple
decision rules inferred from the data features. The deeper the

tree, the more complex the decision rules and the fitter the
model [5]. We considered two algorithms: C5.0 and Rpart.

C5.0. This is a classification tree model that works by splitting
the sample based on the field that provides the maximum
information gain. The C5.0 model can split samples based on
the largest information gain. The sample subset that is get from
the former split is split after. The process will continue until
the sample subset cannot be split. Finally a pruning process
is executed examining the lowest level split upwards. Those
sample subsets that do not have a significant contribution to
the model information gain will be dropped.

Tuning. Cross-Validation (10 fold) has been used. The op-
tion for method definition in caret has been method =
C5.0Tree. This method has no available tuning parameters
in caret.

Rpart. Rpart can be generated through the rpart package.
Rpart builds classification or regression models of a very
general structure using a two stage procedure; the resulting
models can be represented as binary trees. One of the decision
trees implementation used was the one in R’s rpart package.

Tuning. Cross-Validated (10 fold) re-sampling (3 fold) has been
used. The option for caret has been method = rpart2.
This method in caret has only available as tuning parameters
maxdepth (maximum tree depth). Accuracy was used to
select the optimal model using the largest value. The final
value used for the model was maxdepth = 3.

D. Boosted Logistic Regression

Logistic regression was developed by Duncan and Walker
[26] and Cox [7]. The Boosted Logistic regression learner has
been described first hand by Friedman et al. [10]. Logistic
regression measures the relationship between the categorical
dependent variable and one or more independent variables by
estimating the classes using a logistic function, which is the
cumulative logistic distribution. Boosting sequentially applies
a classification algorithm to weighted versions of the training
data and then takes a weighted majority vote of the sequence
of classifiers thus produced. In the context of caret package
it can be used as a classifier.

Tuning. Cross-Validated (10 fold) re-sampling (also 10 fold)
has been used. The method LogitBoost in caret admits
nIter (number of boosting terations) as tuning parameter.
The optimal number of iterations found for optimizing the
accuracy figure was 31.

E. Generalized Linear Models

Generalized linear models (GLM) are a generalization of
linear regression. Linear regression models the dependency of
a response y on a vector of features x(y ∼ xTβ + β − 0).
These models are built with the assumptions that y has a
Gaussian distribution with a variance of σ2 and the mean
is a linear function of x with an offset of some constant
β − 0, i.e., y = N (xTβ + β − 0;σ2). These assumptions
can be overly restrictive for real-world data that does not
necessarily have a Gaussian distribution. GLM generalizes
linear regression in the following way: it adds a non-linear link

function that transforms the expectation of response variable,
so that link (y) = xTβ + β − 0 and allows variance to
depend on the predicted value by specifying the conditional
distribution of the response variable or the family argument.

Tuning. Cross-Validated (10 fold) re-sampling (also 10 fold)
has been used. The GLM model, specified by ”method =
glm”, offers no tuning parameters in caret.

F. Gradient Boosting Machines

Gradient Boosting Machines (GBM) is an algorithm de-
signed to produce a model built by an ensemble of weak
prediction models. It builds the model in a stage-wise fashion
and is generalized by allowing an arbitrarily differentiable loss
function. GBM fits consecutive trees as weak predictors where
each solves for the net error of the prior. The idea of gradient
boosting originated in Breiman’s observation that boosting can
be interpreted as an optimization algorithm using a suitable
cost function [4].

Tuning. Cross-Validated (10 fold) re-sampling (also 10 fold)
has been used. The tuning parameters offered by the caret
package are: n.trees (number of boosting iterations),
interaction.depth (maximum tree depth), shrinkage
(shrinkage), n.minobsinnode (minimum terminal node
size). The maximum depth of a tree is a tree specific parameter
used to control over-fitting as higher depth will allow the model
to learn algorithmic rules very specific to a particular sample.
In the tuning phase a set of maximum depth of 2, 3 and 4
have been used.

A non-negative integer that defines the number of trees,
(trees) has been tested with two values: 5 and 10. The
learning rate, as a boosting parameter, has been set to 0.1.
This determines the impact of each tree on the final out-
come. Lower values are generally preferred as they make
the model robust to the specific characteristics of the tree
allowing it to generalize well, although with a cost in terms of
processing time. Several good and approximate models have
been obtained. We presented the results for one with number
of trees=10, mean depth=4, min leaves=15 and
max leaves=16.

G. Neural Networks

The variety of deep learning architectures is vast and in-
cludes examples such as Autoencoders, Multilayer Perceptron,
Recurrent Neural Networks (RNNs), Restricted Boltzmann
Machines (RBMs), Self Organizing Maps (SOMs) and Con-
volutional Neural Networks. In the scope of this category of
classifiers a more shallow option of an one hidden layer neural
net has been used, namely the nnet model of the caret
package.

Tuning. Ten fold cross-validation was used. Tuning parameter
size was tuned with values of 8 and 16. The value for decay
was tuned with values of 1e-04 and 1e-03. Accuracy values
were used to select the optimal model using their largest value
after 500 iterations. The final values chosen for the model were
size = 16 and decay = 1e-04.

VI. RESULT ANALYSIS AND DISCUSSION

The results for all algorithms are presented in Table IV for
the case of no feature selection, and Table V for the case of
a reduced set of features. The values for accuracy, balanced
accuracy, kappa and positive likelihood ratio are shown in
Figures 1, 2, 3 and 4. As the dataset has class priors near
50%, the balanced accuracy exhibits the same behaviour as
the accuracy. It is commonly accepted that a good model has
to have low training error and low generalization error (or
test error). However the need for generalization often leads to
accuracy levels that are not near 1 for most algorithms, for a
balanced dataset.

Overall speaking the accuracy and balanced accuracy ex-
hibit reasonably good values, although in bands that potentially
preclude the onus of overfitting. On the other hand, the values
of kappa fall in ranges that are considered moderate (range
0.41 to 0.60) to substantial agreement (range 0.61 to 0.80)
[29].

Domingos [8] states a number of conditions for learners to
produce useful results. Among others we have the following:
(1) Overfitting is to be avoided. For instance the presence of
noise may aggravate overfitting, i.e., existence of mislabeled
instances contradicting the class labels of another similar
record may be a liability in this sense. (2) Representativeness
does not imply learnability. Lack of representative instances in
the training data may be useless but at the same time there may
be representative data that may not be learnable. Therefore,
features have to aid learnability. (3) Feature engineering is a
key factor for obtaining good results.

As in our case the learner models do not overfit and the
number of features is reduced, we may conclude that either
the discarded features do not contribute to representativeness
or they do not impact significantly the learner’s performance
because they do not contribute enough to learnability. As the
features were engineered with specific cost-related criteria the
latter seems to be a better candidate to explain the results. Also
one may raise the question on how these set of classifiers may
behave with other datasets. From our perspective the answer is
already given by Domingos [8] when he states the conditions
for a classifier to be useful.

There is an obvious similitude in the set of features and
their relative importance concerning the Ada and ROC learners
as seen in Table VI. This behaviour is most likely due to the
known equivalence between Ada boosted learners and rank
based learners (which use the same ROC AUC criteria) [21].
Although similarity verifies as expressed in Tables IV and
V, performance results are not identical which is a direct
consequence of the dissimilitude of the learners themselves.

It also noteworthy that there is virtually no difference
between the results regarding Tables IV and V for the Boosted
Logistic Regression (used as a classifier as remarked before),
certainly due to specific properties of boosting. In this context
Duchi et al. [9] have shown that for some types of Logistic
Boosting the selective elimination of features had only a
marginal effect on the test error.

Table VII shows in detail the performance differential
from the complete feature set case to the reduced feature set
case. For decision trees algorithms RPART and C5.0 there

RPART

C50

ADA

ROC

0.7892

0.7453

0.7908

0.7527

0.7937

0.7453

0.7982

0.7526

Full set of features
Reduced set of features

NN

GBM

GLM

BLR
0.7544

0.7525

0.7827

0.7670

0.7544

0.7560

0.7808

0.7715

Fig. 1. Accuracy values.

RPART

C50

ADA

ROC

0.8116

0.7733

0.8124

0.7794

0.8155

0.7733

0.8185

0.7794

Full set of features
Reduced set of features

NN

GBM

GLM

BLR
0.7813

0.7809

0.8060

0.7923

0.7813

0.7779

0.8041

0.7963

Fig. 2. Balanced accuracy values.

is clearly a lack of significantive change from the full set
case to the reduced feature set case, with the exception of
Neg Pred Value for RPART. This is likely due to the
efficiency characteristics of decision trees, already noticed for
small datasets and for the C4.5 classifier (predecessor of the
C5.0 used here) [13].

In the case of neural networks (NN) feature reduction did
not affect significantly the metrics obtained. It is known that
neural networks are sensitive to the variety of train features
used [11], [18], [24]. This relates to the setting of the internal
network weights that are directly influenced by the input
information. In our case as the number of features was reduced,
the information for training is also less. As such this is not an
expected result, although admittedly possible if the discarded
features have brought no information.

The values for the Positive Likelihood Ratio, as illustrated

RPART

C50

ADA

ROC

0.5915

0.5126

0.5940

0.5254

0.5997

0.5126

0.6074

0.5254

Kappa

Full set of features
Reduced set of features

NN

GBM

GLM

BLR
0.5288

0.5266

0.5799

0.5514

0.5288

0.5273

0.5762

0.5595

Fig. 3. Kappa values.

RPART

C50

ADA

ROC

2.79

2.27

2.83

2.36

2.86

2.28

2.96

2.36

Full set of features
Reduced set of features

NN

GBM

GLM

BLR
2.38

2.34

2.71

2.51

2.38

2.48

2.69

2.57

Fig. 4. Positive Likelihood Ratio values.

in Figure 4 are of the same order of magnitude in all cases.
In fact from the full feature set to the reduced feature set
its relevance in confirming the assertion of the conclusion of
positiveness supported on the other metrics is fundamentally
maintained.

The effect of feature tuning was a reduction of the number
of features. The number of features reduced for each algorithm
is shown in the last row of Table VI. It is clear that similar
results for similar performance metrics can be obtained at
savings of a variable number of features (see also Tables IV
and V). GBM has come up as the most feature-efficient learner,
closely followed by RPART.

One common criteria for model acceptance is that the
overall accuracy shall be higher than the no-information rate.

This latter metric was equal to 0.5709 in all algorithms (so
it was omitted from the tables). It is remarkable that in any
tested case the p-value or, equivalently, the probability that the
accuracy results are obtained by chance are nearly null. This
means that there is a significative relation between the features
and their attributed class. In all cases the overall accuracy
validates at over a 90% significance level with a p-value nearly
null: 2.2−16.

VII. CONCLUSIONS

Several conclusions can be extracted from the comparative
analysis of the algorithms. A number of metrics have been
used for this comparison, as seen in Tables IV and V. The
set of algorithms tested proved to convey equivalent learn-
ing models and results under the same test conditions. This
supports the conclusion of Shiravi at al. [23] regarding the
quality of the UNB ISCX dataset. One of the main objections
raised to this dataset was related to the disparity of results
obtained. However, our results with the dataset seem to indicate
similar results given the same experimental conditions with an
extended variety of machine learning algorithms.

We have confirmed the validity of the ROC criteria for
feature reduction. In this regard comparing the performance
of classifiers with and without feature reduction proved
favourable for the feature reduction case where performance
metrics have shown to remain stable without loosing general-
ization power due to an eventual marked increase in accuracy.
Examining the results from the feature reduction we observed
that the resulting set of features and their importance varies
considerably from learner to learner.

Our results show that feature optimality is classifier-
dependent, at least for the ROC selection criteria. GBM has
come up as the most feature-efficient learner, closely followed
by RPART. Despite the disparity of results regarding features to
discard, the learners have show substantial similitude regarding
the metrics observed. This fact may hint at the value of ROC
based ranking learners in choosing the best features case to
case, learner to learner.

ACKNOWLEDGEMENTS

This work was supported by national funds through Fun-
dação para a Ciência e a Tecnologia (FCT) with reference
UID/CEC/50021/2013 (INESC-ID).

REFERENCES

[1] G. Anthes. Deep learning comes of age. Communications of the ACM,
56(6):13–15, 2013.

[2] I. Arel, D. C. Rose, and T. P. Karnowski. Deep machine learning:
A new frontier in artificial intelligence research. IEEE Computational
Intelligence Magazine, 5(4):13–18, 2010.

[3] A. P. Bradley. The use of the area under the roc curve in the evaluation
of machine learning algorithms. Pattern Recognition, 30(7):1145–1159,
July 1997.

[4] L. Breiman. Arcing the Edge. Technical report, Statistics Department,
University of California, Berkeley, June 1997.

[5] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

[6] J. Cohen. A coefficient of agreement for nominal scales. Educational
and Psychological Measurement, 20(1):37 – 46, 1960.

[7] D. R. Cox. The regression analysis of binary sequences. Journal of the
Royal Statistical Society. Series B (Methodological), pages 215–242,
1958.

[8] P. Domingos. A few useful things to know about machine learning.
Commun. ACM, 55(10):78–87, Oct. 2012.

[9] J. Duchi and Y. Singer. Boosting with structural sparsity. In Proceedings
of the 26th Annual International Conference on Machine Learning,
pages 297–304. ACM, 2009.

[10] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression:
a statistical view of boosting. The Annals of Statistics, 28(2):337–407,
2000.

[11] G. D. Garson. Interpreting neural-network connection weights. AI
Expert, 6(4):46–51, Apr. 1991.

[12] J. Grana, D. Wolpert, J. Neil, D. Xie, T. Bhattacharya, and R. Bent.
A likelihood ratio anomaly detector for identifying within-perimeter
computer network attacks. J. Netw. Comput. Appl., 66(C):166–179,
May 2016.

[13] L. B. Holder. Intermediate decision trees. In Proceedings of the 14th
International Joint Conference on Artificial Intelligence - Volume 2,
pages 1056–1062, 1995.

[14] N. Kayacik and M. Heywood. Selecting Features for Intrusion De-
tection: A Feature Relevance Analysis on KDD 99 Intrusion Detection
Datasets. In The 3rd Annual Conference on Privacy, Security and Trust,
2005.

[15] M. Kuhn. Building predictive models in R using the caret package. R
Project, 2008.

[16] B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network intrusion
detection. IEEE Network, 8(3):26–41, 1994.

[17] H. A. Nguyen and D. Choi. Application of data mining to network
intrusion detection: Classifier selection model. In 11th Asia-Pacific
Network Operations and Management Symposium, pages 399–408,
2008.

[18] J. D. Olden and D. A. Jackson. Illuminating the “black box”: a
randomization approach for understanding variable contributions in
artificial neural networks. Ecological modelling, 154(1):135–150, 2002.

[19] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2012.

[20] B. P. Roe, H.-J. Yang, and J. Zhu. Boosted decision trees, a powerful
event classifier. In Statistical problems in particle physics, astrophysics
and cosmology. Proceedings, Conference, pages 139–142, 2005.

[21] C. Rudin and R. E. Schapire. Margin-based ranking and an equiva-
lence between adaboost and rankboost. Journal of Machine Learning
Research, 10:2193–2232, Dec. 2009.

[22] J. Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85–117, 2015.

[23] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani. Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection. Computers & Security, 31(3):357–374, May 2012.

[24] M. Stevenson, R. Winter, and B. Widrow. Sensitivity of feedforward
neural networks to weight errors. IEEE Transactions on Neural
Networks, 1(1):71–80, Mar 1990.

[25] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan. Cost-
based modeling for fraud and intrusion detection: Results from the jam
project. In Proceedings of the 2000 DARPA Information Survivability
Conference and Exposition, pages 130–144, 2000.

[26] D. B. D. Strother H. Walker. Estimation of the probability of an event
as a function of several independent variables. Biometrika, 54(1/2):167–
179, 1967.

[27] S. Suthaharan and T. Panchagnula. Relevance feature selection with
data cleaning for intrusion detection system. In Southeastcon, 2012
Proceedings of IEEE, pages 1–6, March 2012.

[28] J. A. Swets. The relative operating characteristic in psychology. Science,
182(4116):990–1000, 1973.

[29] A. Viera and J. Garrett. Understanding interobserver agreement: The
kappa statistic. Family Medicine, 37, 5 2005.

[30] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels,
and E. Kirda. Beehive: large-scale log analysis for detecting suspicious
activity in enterprise networks. In Proceedings of the 29th ACM Annual
Computer Security Applications Conference, 2013.

Regression Metrics ADA ROC C5.0 RPART BLR GLM GBM NN
Accuracy 0.7892 0.7453 0.7908 0.7526 0.7544 0.7525 0.7827 0.7670
Kappa 0.5915 0.5126 0.5940 0.5254 0.5288 0.5266 0.5799 0.5514
Specificity 0.6533 0.5756 0.6602 0.5906 0.5922 0.5806 0.6415 0.6135
Sensitivity 0.9699 0.9711 0.9646 0.9682 0.9703 0.9812 0.9706 0.9712
Neg Pred Value 0.9665 0.9636 0.9612 0.9611 0.9637 0.9763 0.9667 0.9659
Pos Pred Valuee 0.6777 0.6323 0.6809 0.6399 0.6414 0.6375 0.6705 0.6538
Likelihood Ratio(+) 2.79 2.27 2.83 2.36 2.38 2.34 2.71 2.51
Balanced Accuracy 0.8116 0.7733 0.8124 0.7794 0.7813 0.7809 0.8060 0.7923

TABLE IV. PERFORMANCE WITHOUT REDUCTION BY FEATURE SELECTION.

Regression Metrics vs. learner ADA ROC C5.0 RPART BLR GLM GBM NN
Accuracy 0.7937 0.7453 0.7982 0.7527 0.7544 0.7560 0.7808 0.7715
Kappa 0.5997 0.5126 0.6074 0.5254 0.5288 0.5273 0.5762 0.5595
Specificity 0.6614 0.5756 0.6753 0.5906 0.5922 0.6234 0.6398 0.6216
Sensitivity 0.9696 0.9711 0.9617 0.9682 0.9703 0.9324 0.9684 0.9709
Neg Pred Value 0.9666 0.9636 0.9592 0.9612 0.9637 0.9246 0.9642 0.9660
Pos Pred Valuee 0.6828 0.6323 0.6900 0.6400 0.6414 0.6504 0.6689 0.6585
Likelihood Ratio(+) 2.86 2.28 2.96 2.36 2.38 2.48 2.69 2.57
Balanced Accuracy 0.8155 0.7733 0.8185 0.7794 0.7813 0.7779 0.8041 0.7963

TABLE V. SUMMARY PERFORMANCE WITH A REDUCED FEATURE SET DETERMINED BY FEATURE SELECTION.

Feature vs. Learner ADA ROC C5.0 RPART GLM GBM BLR NN
dst-host-count 60.05 60.05 0 1.89 30.62 0 60.05 20.73
dst-bytes 100.00 100.00 46.67 0 0 26.50 100.00 0
count 83.64 83.64 41.89 15.61 67.87 7.56 83.64 55.17
src-bytes 99.92 99.92 100.00 100.00 0 100.00 99.92 63.93
dst-bytes 0 0 0 92.04 0 0 0 54.91
duration 0 0 1.35 0 15.57 0.82 0 20.10
srv-count 0 0 0 8.68 0 1.48 0 34.79
logged-in 87.21 87.21 45.44 0 0 0 87.21 24.64
num-shells 0 0 43.88 0 0 0 0 0
num-compromised 0 0 53.64 0 42.17 0 0 0
dst-host-srv-rerror-rate 0 0 0 0 0 0 0 0
dst-host-same-srv-rate 93.00 93.00 45.55 0 0 0.62 93.00 16.34
srv-serror-rate 77.25 77.25 0 0 34.93 0 77.25 11.17
wrong-fragment 0 0 0 0 100.00 0 0 13.70
hot 0 0 48.22 0 69.71 2.80 0 0
service 44.62 44.62 7.14 0 0 0 44.62 100.00
rerror-rate 0 0 0 0 0 0 0 13.59
serror-rate 80.78 80.78 0 0 0 0 80.78 11.57
urgent 0 0 0 0 0 0 0 0
dst-host-same-src-port-rate 44.34 44.34 55.57 0 63.76 4.11 44.34 34.36
is-guest-login 0 0 0 0 77.82 0 0 0
dst-host-srv-count 98.55 98.55 49.73 5.91 72.05 5.96 98.55 36.81
protocol-type 40.28 40.28 52.98 6.70 64.45 5.32 40.28 29.51
num-root 0 0 0 0 42.43 0 0 0
srv-rerror-rate 0 0 0 0 38.99 0 0 0
dst-host-rerror-rate 0 0 47.93 0 28.79 0 0 0
srv-diff-host-rate 45.80 45.80 0 0 27.78 0 45.80 0
num-file-creations 0 0 0 0 21.26 0 0 0
dst-host-srv-serror-rate 76.06 76.06 2.52 0 17.25 0 76.06 0
dst-host-serror-rate 81.80 81.80 0 0 16.59 0 81.80 11.07
same-srv-rate 94.68 94.68 43.92 81.85 15.27 0 94.68 0
diff-srv-rate 88.63 88.63 0 80.33 0 0 88.63 0
dst-host-srv-diff-host-rate 54.95 54.95 49.74 4.95 0 0 54.95 15.90
dst-host-diff-srv-rate 84.92 84.92 5.33 0 0 0 84.92 17.33
num-failed-logins 0 0 49.36 0 0 0 0 0
flag 91.11 91.11 47.75 75.56 47.30 0 91.11 88.48
Number of discarded features 20 20 20 29 20 30 20 20

TABLE VI. RELATIVE IMPORTANCE FOR EACH FEATURE BY LEARNER REPRESENTED IN A RELATIVE PERCENTUAL SCALE.

Regression Metrics vs. learner ADA ROC C5.0 RPART BLR GLM GBM NN
Accuracy 1 0 1 0 0 0 0 0
Kappa 1 0 2 0 0 0 -1 0
Specificity 1 0 2 0 0 7 0 1
Sensitivity 0 0 0 0 0 -5 0 0
Neg Pred Value 0 0 0 0 0 -6 0 0
Pos Pred Value 1 0 1 0 0 2 0 0
Balanced Accuracy 0 0 1 0 0 0 0 0

TABLE VII. SUMMARY OF DIFFERENCES BETWEEN ORIGINAL AND FEATURE REDUCED DATASETS. VALUES ARE EXPRESSED IN PERCENTAGE. VALUES
LESS THAN ONE ARE REPRESENTED AS NULLS.

