
Experimental Comparison of Local and Shared Coin Randomized Consensus
Protocols∗

Henrique Moniz, Nuno Ferreira Neves, Miguel Correia, and Paulo Verı́ssimo
University of Lisboa, Portugal

{hmoniz, nuno, mpc, pjv}@di.fc.ul.pt

Abstract

The paper presents a comparative performance study of
the two main classes of randomized binary consensus pro-
tocols: a local coin protocol, with an expected high com-
munication complexity and cheap symmetric cryptography,
and a shared coin protocol, with an expected low communi-
cation complexity and expensive asymmetric cryptography.
The experimental evaluation was conducted on a LAN envi-
ronment, by varying several system parameters, such as the
fault types and number of processes. The analysis shows
that there is a significant gap between the theoretical and
the practical performance results of these protocols, and
provides an important insight into what actually happens
during their execution.

1. Introduction

Consensus is a cornerstone problem in distributed sys-
tems. It is related to several important fault-tolerant ser-
vices, including the state-machine replication, atomic com-
mitment, group membership and total order broadcast [10].
Basically it can be described as follows: each process starts
with a private value that is used as a proposal for consensus,
and then, when a conclusion is reached, all processes obtain
the same decision on one of the proposed values. Behind
this simple definition, consensus ends up being a complex
problem, specially if one starts to consider potential fail-
ures of the individual components of the system. In fact,
consensus was proven impossible to solve deterministically
in asynchronous systems –i.e., systems with no bounds on
the computation and communication times– where a single
process crash can occur (the FLP result) [12].

The consensus problem is even more stringent if not only
crash but also arbitrary failures can take place. Dealing with

∗This work was partially supported by the EU through NoE IST-4-
026764-NOE (RESIST) and project IST-4-027513-STP (CRUTIAL), and
by the FCT through project POSI/EIA/60334/2004 (RITAS) and the Large-
Scale Informatic Systems Laboratory (LASIGE).

this class of failures, often dubbed Byzantine failures, has a
practical interest because they include malicious actions of
human origin, such as attacks and intrusions. Since these
attacks can be directed against the synchrony properties of
the system, for example by introducing artificial delays with
denial of service attacks, it is usually advisable to assume
an asynchronous model when this kind of failures are be-
ing considered. The consequence of this decision is that the
system becomes bound to the FLP result. Nevertheless, re-
cently there has been a significant interest in developing so-
lutions for systems with these characteristics because they
are capable of automatically tolerate intrusions, which con-
tributes to an overall improved security [13, 19].

Therefore, in practice, solving consensus in a weak sys-
tem model in which FLP applies, requires something that
is usually called to circumvent FLP. Throughout the years
several techniques have been used for this purpose. All
these techniques, with the exception of randomization, re-
quire the extension of the basic system model with addi-
tional time assumptions, either explicitly (e.g., partial syn-
chrony models [11]) or implicitly (e.g., failure detectors [7]
and wormholes [9]). Randomization, on the other hand,
solves consensus probabilistically rather than deterministi-
cally, and allows the system to preserve a completely asyn-
chronous nature. This technique, however, has often been
considered too inefficient, mainly because it leads to pro-
tocols with large expected time and message complexities.
Only recently a randomized consensus protocol that runs
in a reduced number of rounds has been proposed [4] and
other algorithms have been shown to be efficient in practical
settings with realistic faultloads [16].

Virtually all randomized consensus protocols are based
on a random operation, tossing a coin, which returns values
0 or 1 with equal probability. These protocols can be di-
vided in two classes depending on how the tossing operation
is performed: there are those that use a local coin mecha-
nism in each process (starting with Ben-Or’s work [1]), and
those based on a shared coin that gives the same values to
all processes (initiated with Rabin’s work [17]). Typically,
local coin protocols are simpler but terminate in an expected



exponential number of rounds, while shared coin protocols
require an additional coin sharing scheme but can terminate
in an expected constant number of rounds [6, 4].

In this paper, we compare the performance of the two
classes of randomized protocols in a LAN setting, in order
to get a better understanding about the trade-offs involved
in their construction. To our knowledge, this is the first time
such analysis in being made. To conduct this investigation,
we have selected one protocol from each class, and studied
their behavior under different conditions, such as distinct
faultloads, using the latency and throughput metrics.

For the shared coin class, the chosen protocol was the
most efficient protocol of the kind that we are aware of,
ABBA [4]. This protocol uses an interesting and innovative
combination of cryptographic primitives, like threshold sig-
natures and a threshold coin-tossing scheme, which makes
it have a very good time complexity – it reaches decision in
one or two rounds with a high probability. For the local coin
class was selected the Bracha’s classical protocol [3]. This
protocol resorts to almost no cryptographic operations, but
potentially runs in an exponential number of rounds. Nev-
ertheless, it has been shown to be efficient in practice, when
used as part of an intrusion-tolerant stack of protocols [16].

Both protocols solve binary consensus, i.e., the values
proposed and decided are binary digits, 0 or 1. This is a
natural choice since most randomized consensus protocols
are binary. Randomized multi-valued consensus and other
variants are usually implemented on top of binary consen-
sus protocols (see, e.g., [5, 10]).

The experimental evaluation lead to several interesting
conclusions. The local coin protocol was the fastest in all
experiments. However, the shared coin protocol is appar-
ently more scalable, since its performance degraded less
when the number of processes was increased. The local
coin protocol was also more sensitive to a network band-
width decrease than the other, which indicates that it should
perform worse in environments where the bandwidth is lim-
ited (e.g., a WAN). The average number of rounds executed
in practice was close to 1 in both protocols, although theo-
retically the local coin protocol runs in an exponential num-
ber of rounds.

The rest of the paper of organized as follows. Section 2
describes the basic system model. Section 3 formally de-
fines the binary consensus problem. Both protocols are de-
scribed in Section 4. Section 5 presents a detailed compara-
tive performance evaluation between the two protocols. The
related work is discussed in Section 6. Finally, Section 7
concludes the paper.

2 Basic System Model

The basic system model describes the properties that are
common to both algorithms. Specific characteristics of the

algorithms are described in their respective sections as ex-
tensions to this model.

The system is composed by a set of n processes P =
{p0, p1, ...pn−1}. The processes are said to be correct if
they follow the protocol until termination (i.e., they do not
fail). Processes that fail are said to be corrupt. A maxi-
mum of f = bn−1

3 c processes can be corrupt during the
lifetime of the system. There are no constrains on the ac-
tions taken by corrupt processes – they can, for instance,
stop executing, omit messages, or send invalid messages, ei-
ther alone or in collusion with other corrupt processes. This
class of unconstrained faults is usually called arbitrary or
Byzantine. The system is asynchronous meaning that no as-
sumptions are made about the bounds on processing times
or communication delays. It is assumed that the communi-
cation channels are unreliable, which indicates, for instance,
that messages can be lost or (maliciously) modified while
in transit in the network. We assume the adversary cannot
break the cryptography employed in the protocols.

3 The Binary Consensus Problem

In the binary consensus problem, a set of processes pi

proposes some initial value vi ∈ {0, 1} and then they must
decide on a common value. Since we are considering the
randomized model, the termination of the protocol in only
guaranteed in a probabilistic way. More formally, the binary
consensus problem is specified with the following proper-
ties:

Agreement If all correct processes propose the same value
v, then any correct process that decides, decides v.

Validity No two correct processes decide differently.

Termination All correct processes eventually decide with
probability 1.

4. The Binary Consensus Protocols

This section gives an overview of the two protocols that
were studied (more details can be obtained in the original
papers [3, 4]). Bracha’s protocol has a high time and com-
munication complexity but (almost) entirely avoids the use
of cryptography, while the ABBA protocol has a low time
and communication complexity but uses several asymmet-
ric (or public-key) cryptography primitives. Both protocols
require some extensions to the basic system model which
are discussed in the corresponding subsections. Addition-
ally, they also employ message validation techniques whose
purpose is to force corrupt processes to broadcast messages
with values that are congruent with the values proposed by
the other processes (or otherwise, the malicious values are
detected and ignored by the correct processes).



4.1. Bracha’s Local Coin Protocol

Bracha’s binary consensus protocol exchanges O(n3)
point-to-point messages per round and the expected num-
ber of rounds until termination is 2n−f under the strong ad-
versary model1. The algorithm itself does not use any kind
of cryptographic operations, albeit its dependence on a reli-
able communication channel implies the use of a relatively
inexpensive cryptographic hash function.

Communication Primitives. The protocol needs some
extensions to the basic system model to provide the binary
consensus properties. More specifically, it requires a reli-
able channel abstraction, and on top of this abstraction a
reliable broadcast primitive.

The reliable channel abstraction offers point-to-point
communication between any pair of correct processes with
the reliability and integrity properties. Reliability means
that messages are eventually received, and integrity says
that messages are delivered without modifications (i.e.,
messages with changes are detected and removed). In prac-
tical terms, these properties can be enforced using retrans-
missions and Message Authentication Codes (MACs). A
MAC is a cryptographic checksum which can be calculated
with a hash function and a shared key [15]. Therefore, it is
assumed that every pair of processes (pi, pj) share a secret
key kij . The way these keys are given to the processes is
out of the scope of the protocol, but it may require some
kind of trusted dealer or key distribution protocol. Nev-
ertheless, since this task is performed during initialization,
it does not affect performance during the execution of the
protocol. Standard Internet protocols can be employed to
implement the reliable channels. In the experiments, relia-
bility was achieved with TCP and integrity with the IPSec
Authentication Header protocol [14].

The reliable broadcast primitive keeps corrupt processes
from broadcasting conflicting values to different processes.
It ensures that: (1) all correct processes deliver the same
messages, and (2) if the sender is correct then the message
is delivered. This primitive can be implemented in differ-
ent ways. In our case, we have used the following proto-
col [3]. The sender starts by broadcasting a (INITIAL, m)
message to all processes. Upon receiving this message a
process transmits a (ECHO, m) message to all processes. It
then waits for at least bn+f

2 c + 1 (ECHO, m) messages or
f + 1 (READY, m) messages, and then it sends a (READY,
m) message to all processes. Finally, a process waits for
2f + 1 (READY, m) messages to deliver m.

1In the strong adversary model it is assumed that the adversary com-
pletely controls the network scheduling, having the power to decide the
timing and the order in which the messages are delivered to the processes.

Protocol Execution. The protocol proceeds in 3-step
rounds, running as many rounds as necessary for a decision
to be reached. Each process pi executes a round as follows:

Step 1 Reliable broadcast the initial proposal value. Wait
for n − f valid messages for this step (the meaning
of valid is explained in the next section). Set the new
proposal value to reflect the majority of the received
values. If all the n−f messages have the same value v,
then decide, but continue the execution of the protocol
to allow the other processes also to finish.

Step 2 Reliable broadcast the proposal value. Wait for n−
f valid messages for this step. The new proposal value
is set to v ∈ {0, 1} if more than n/2 of the received
messages have the same value v. Otherwise, the new
proposal value is set to a default value ⊥.

Step 3 Reliable broadcast the proposal value. Wait for
n − f valid messages for this step. If at least 2f + 1
messages have the same value v 6=⊥, then the process
decides v (if it had not decided previously). Other-
wise, if at least f + 1 have the same value v 6=⊥, then
the process sets the new proposal value to v and a new
round is initiated. If none of the previous conditions
apply, then the process sets the new proposal value to
a random bit with value 1 or 0, each with probability
1
2 , and a new round is initiated.

Message Validation. A message received in the first step
of the first round is always considered valid. A message re-
ceived in any other step k, for k > 1, is valid if its value
is congruent with any subset of n − f values accepted at
step k − 1. Suppose that process pi receives n − f mes-
sages at step 1, where the majority has value 1. Then at step
2, it receives a message with value 0 from process pj . Re-
member that the message a process pj broadcasts at step 2
is the majority value of the messages it received at step 1.
That message cannot be considered valid by pi since value 0
could never be derived by a correct process pj that received
the same n− f messages at step 1 as process pi. If process
pj is correct, then pi will eventually receive the necessary
messages for step 1, which will enable it to form a subset of
n− f messages that validate the message with value 0.

4.2. The ABBA Shared Coin Protocol

The ABBA binary consensus protocol exchanges O(n2)
point-to-point messages per round and reaches a decision
in 1 or 2 rounds with high probability. The protocol makes
extensive use of asymmetric cryptography to ensure the cor-
rectness of the execution.



Communication and Cryptographic Primitives. The
protocol needs the following extensions to the basic sys-
tem model: reliable channels for point-to-point communi-
cation, and two cryptographic primitives – dual threshold
signatures and a threshold coin-tossing scheme.

The reliable channels in the ABBA protocol only need to
provide the reliability property (i.e., that messages are even-
tually received) between every pair of correct processes2.
The integrity of the messages is guaranteed by the use of
public-key signatures inside the protocol itself. Therefore,
the TCP protocol can be employed in the implementation of
these channels.

An (n, k, f) dual-threshold signature scheme is a tech-
nique where n processes, from which up to f can be corrupt,
hold shares of a private key. The processes can generate
shares of signatures on particular messages, and k of such
shares are both necessary and sufficient to assemble a valid
signature. Every process has the ability to individually ver-
ify every generated share and the assembled signature. In
practice, this scheme can be (and was) implemented using
a vector of RSA signatures [4].

An (n, k, f) dual-threshold coin-tossing scheme is also
a technique where there are n processes and at most f of
them may be corrupt. Processes hold shares of an unpre-
dictable function F that maps the coin name C to a binary
value F (C) ∈ {0, 1}. The processes can generate shares
of the coin and k of those shares are both necessary and
sufficient to assemble the function F . The implemented
threshold coin-tossing scheme is the Diffie-Hellman based
solution of Cachin et al. [4].

Protocol Execution. Except for the first round where
there is an additional communication step, the protocol pro-
ceeds in rounds of three steps each. Let cid be a unique
identifier for each execution of the protocol. Every process
pi executes the protocol as follows:

Step 0 (first round only) Broadcast a pre-process mes-
sage containing the initial proposal value vi along with
an (n, f + 1, f)-signature share on the message (cid,
pre-process, vi). Wait for 2f + 1 valid pre-process
messages.

Step 1 If in round r = 1, the new proposal value vi is the
majority value of the received pre-process messages.
If in round r > 1, wait for n − f coin messages and
let vi = b if there was a main-vote in round r − 1 for
b ∈ {0, 1}. Otherwise, let vi = F (C), where C =
(cid, r). Broadcast a pre-vote with value vi along with

2Even tough “Bracha’s reliable channels” have one more property than
the “ABBA reliable channels”, we decided to call them with the same name
in order to avoid an extra channel qualifier, and therefore to keep the pre-
sentation as simple as possible.

an (n, n − f, f)-signature share on the message (cid,
pre-vote, r, vi).

Step 2 Wait for n − f valid pre-votes. If there were n − f
pre-votes for b ∈ {0, 1}, then set vi = b. Otherwise,
set vi = abstain. Broadcast a main-vote with value
vi along with an (n, n − f, f)-signature share on the
message (cid, main-vote, r, vi).

Step 3 Wait for n−f valid main-votes. If there were n−f
main-votes for b, then decide b and continue for one
more round up to step 2. Otherwise, generate a share
of the coin with name C = (cid, r). Broadcast the
coin share in a coin message, and proceed for round
r = r + 1.

Message Validation. In round r = 1, a pre-vote for value
b is valid when accompanied by an (n, f + 1, f)-threshold
signature on the message (cid, pre-process, b). In round
r > 1, a pre-vote for value b is valid when accompanied by
either an (n, n − f, f)-threshold signature on the message
(cid, pre-vote, r-1, b) (hard pre-vote), or an (n, n − f, f)-
threshold signature on the message (cid, main-vote, r-1, ab-
stain) (soft pre-vote). A hard pre-vote is cast when there
was a main-vote for either 0 or 1 in round r − 1. A soft
pre-vote is cast when all the main-votes in round r−1 were
abstain. The soft pre-vote value is F (cid, r − 1).

A main-vote for value abstain in round r is valid when it
is accompanied by either the validations of two conflicting
round r pre-votes (i.e., one pre-vote for value 0, and an-
other for 1). A main-vote for value b ∈ {0, 1} in round r is
valid when it is accompanied by an (n, n − f, f)-threshold
signature on the message (cid, pre− vote, r, b).

Besides these validations, all received signature shares
also need to be verified to accept the corresponding mes-
sages. This also includes the coin shares generated in step
3. They need to be verified before being assembled into a
coin function F (C).

5. Performance Evaluation

This section provides a thorough performance-wise anal-
ysis of the local coin (LCP) and shared coin (SCP) protocols
on a local area network. The algorithms were evaluated un-
der several different environmental conditions that can be
adjusted as system parameters.

The experiments were conducted on a testbed consist-
ing of 11 Dell PowerEdge 850 computers. The character-
istics of the machines are the same: a single Pentium 4
CPU with 2.8 GHz of clock speed, and 2Gb of RAM. The
machines were connected by a Dell PowerConnect 2724
network switch with 10/100/1000 Mbps bandwidth capac-
ity. The operating system was Linux, with kernel version
2.6.11. The protocols were implemented using the C lan-
guage and were compiled with gcc.



5.1. Performance Metrics and System Pa-
rameters

The metrics are the set of criteria used to compare the
performance of the protocols. The system parameters are
the configurable variables of the system that define specific
execution environments.

The two main performance metrics utilized in most ex-
periments were the latency (L) and the maximum through-
put (Tmax). Latency is always relative to a particular pro-
cess pi, and is denoted as the interval of time between the
moment pi proposes a value to a consensus execution and
the moment pi decides the consensus value. More than la-
tency, however, we evaluate the protocols in terms of the
burst latency (Lburst). Given a burst of k concurrent con-
sensus executions, the burst latency is the interval of time
between the moment pi proposes the first value and the mo-
ment it decides the kth value. The throughput is the num-
ber of decisions per second obtained for a burst of a given
size k. It is calculated by dividing the burst size k by the
burst latency Lburst. The maximum throughput Tmax is
the value at which the throughput stabilizes (i.e., does not
change with increasing burst sizes).

An additional metric is used in some experiments, the
number of rounds until decision. This metric, however,
should be taken with a grain of salt since a higher num-
ber of rounds does not necessarily mean that a protocol is
slower. An algorithm may need a higher number of rounds
to achieve termination, but these steps may be executed
faster.

The system parameters selected for the experiments were
the faultload, distribution of process proposals, group size,
network bandwidth, and cryptography.

The faultload defines the types of faults that are injected
in the system during its execution. In the failure-free fault-
load, all processes behave correctly. The fail-stop fault-
load makes f processes crash before the measurements are
taken. In the Byzantine faultload, f processes try to keep the
correct processes from reaching a decision by attacking the
protocol execution. This is accomplished as follows. In the
LCP coin protocol, a Byzantine process in steps 1 and 2 al-
ways proposes the opposite value that it would propose if it
were behaving correctly, and in step 3 always proposes the
default value ⊥. In the SCP, since a Byzantine process has
no possibility of proposing an invalid value without detec-
tion (because of the employed asymmetric cryptography), it
transmits messages with invalid signatures and justifications
in order to force extra computation in the correct processes.

The proposal distribution defines the initial values to be
proposed by the processes. The uniform proposal distri-
bution makes all processes propose the same initial value
1. In the corrosive proposal distribution, processes with
an odd process identifier propose 1 and the others propose
0. The random proposal distribution chooses for the initial

proposal of each process a randomly selected value.
The group size defines the number of processes n in the

system. In our case it can take three values: 4, 7, and 10.
The network bandwidth is the amount of data that can

be transmitted between every pair of processes in a given
period of time. It can take three values: 10 Mb/s, 100 Mb/s,
and 1000 Mb/s. The default network bandwidth used in the
experiments was 1000 Mb/s.

Cryptography defines the type of cryptography em-
ployed by the protocols. The LCP can only either use the
IPsec AH protocol (with SHA-1) or no cryptography at all
(in this case the protocol correctness is affected but this set-
ting is utilized for the sake of comparative evaluation only).
The SCP uses RSA with three possible key sizes: 512, 1024,
and 2048 bits. The cryptographic default settings are set to
IPSec for the LCP, and 1024-bit RSA keys for the SCP.

5.2. Basic Latency Measurements

The results presented in this subsection are a starting
point for the rest of the performance analysis. They show
the latency values for both consensus protocols with differ-
ent group sizes and proposal distributions. The remaining
parameters were set to the default values and no faults were
injected (i.e., the failure-free faultload).

The measurements were taken the following way: a sig-
naling machine, which does not participate in the protocols,
is selected to control the benchmark execution. It broad-
casts m 1-byte UDP messages to the n processes involved in
the experiment, each one separated by a five second interval
(in this case m was set to 100). Whenever one of these mes-
sages arrives to a specific process, it executes whatever pro-
tocol is relevant for the current experiment (LCP or SCP).
Processes record the interval of time denoted by the instant
they receive the signal message and the instant they get a
decision. This period is the latency value for each process.
The average latency is obtained by taking the mean value
of the sample of measured values.

Local Coin (µs) Shared Coin (µs)
n = 4 n = 7 n = 10 n = 4 n = 7 n = 10

uniform 824 2187 4132 21590 31315 43633
corrosive 2453 6172 12075 33834 38529 55169
random 2056 5812 11501 24320 36325 49206

Table 1. Average latency in microseconds
(µs) for different group sizes and proposal
distributions.

The results of this experiment are shown in Table 1. It
can be observed that the LCP is very fast, reaching a deci-
sion in less than 1 ms with 4 processes and a uniform pro-
posal distribution. The SCP is comparatively slower, de-
spite having a lower communication complexity. In these
environmental settings, the lower number of exchanged



messages of the SCP clearly does not compensate for the
computationally intensive asymmetric cryptography.

Nevertheless, even tough the LCP is significantly faster
than the SCP, its latency grows at a faster rate as the group
size increases. While the latency of the LCP roughly dou-
bles at successive larger group sizes, the latency for the SCP
grows at roughly 50%. This indicates that SCP could po-
tentially outperform LCP in groups with high numbers of
processes.

5.3. Protocol Behavior under Different
Faultloads

This section studies the behavior of the protocols when
subject to different faultloads. Two system parameters were
varied in this experiment: the faultload and the number of
processes. The proposal distribution was fixed to random,
and the rest of the parameters were set to the default values.
The metrics used to assess the performance of the protocols
were the latency, throughput, and number of rounds.

The experiment was carried out by having the n pro-
cesses run several concurrent consensus executions. A sig-
naling machine, which does not participate in the execu-
tion of the protocols, sends a 2-byte UDP message to all
n processes, containing a number k. When a processes re-
ceives this message, it starts k simultaneous consensus ex-
ecutions. Every process measures the interval of time be-
tween the instant it receives the signal message, and the in-
stant it reaches the kth decision. This interval of time is the
latency of the burst of k consensus executions (Lburst). The
burst throughput is obtained by dividing the burst size k by
the burst latency Lburst. For every tested burst size k, the
displayed result reflects the average value of 10 executions.

The results for each faultload are presented in three sep-
arate pairs of graphs. The first graph of each pair studies the
latency and the second the throughput. An analysis on the
number of rounds is presented at the end of this subsection.

Failure-free Faultload. The results when there are no
faults are shown in Figures 1 and 2, respectively for the
LCP and the SCP protocols. Each curve represents a dif-
ferent group size n.

0

500

1000

1500

2000

2500

3000

0 50 100 150 200

concurrent consensus executions

la
te

n
c
y

(m
s
)

0

100

200

300

400

500

600

0 50 100 150 200

concurrent consensus executions

th
ro

u
g
h
p
u
t

(d
e
c
is

io
n
s
/s

)

Local coin, with no failures
random proposals

Figure 1. Burst latency and throughput for the
LCP with no failures

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100

concurrent consensus executions

la
te

n
c
y

(m
s
)

0

5

10

15

20

25
30

35

40

45

50

0 20 40 60 80 100

concurrent consensus executions

th
ro

u
g
h
p
u
t

(d
e
c
is

io
n
s
/s

)

Shared coin, with no failures
random proposals

Figure 2. Burst latency and throughput for the
SCP with no failures

From the graphs it is possible to observe that the burst
latency Lburst is linear with the number of concurrent con-
sensus executions. The stabilization points in the through-
put curves indicate the maximum throughput Tmax for each
n. It can be seen that the LCP is much faster than the SCP,
achieving much lower latency and higher throughput values,
irrespective of the group size.

For the LCP, for 200 concurrent consensus executions,
Lburst has a value of 439 ms with n = 4, 1126 ms with n =
7, and 2492 ms with n = 10. The maximum throughput
Tmax is around 455 decisions/s with n = 4, 175 decisions/s
with n = 7, and 81 decisions/s with n = 10.

As for the SCP, for 100 concurrent consensus executions,
Lburst has a value of 7454 ms with n = 4, 10713 ms with
n = 7, and 11625 ms with n = 10. The maximum through-
put Tmax is around 13 decisions/s with n = 4, 9 decisions/s
when n = 7, and 8 decisions/s when n = 10.

Fail-stop Faultload. Figures 3 and 4 display the perfor-
mance of the protocols when there are f crashed processes
in the system. Each curve shows the latency and throughput
for a different group size n.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200

concurrent consensus executions

la
te

n
c
y

(m
s
)

0

100

200

300

400

500

600

700

800

0 50 100 150 200

concurrent consensus executions

th
ro

u
g
h
p
u
t

(d
e
c
is

io
n
s
/s

)

Local coin, with f crashed processes
random proposals

Figure 3. Burst latency and throughput for the
LCP with f crashed processes

For the LCP, the performance is noticeably better with
f crashed processes than it is in the failure-free scenario.
This happens because with fewer processes there is less
contention on the network and more bandwidth is available
to exchange the messages. This result gives a hint that the
performance bottleneck of the LCP is indeed the communi-
cation (as opposed to the computation). In more detail, for



0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100

concurrent consensus executions

th
ro

u
g
h
p
u
t

(d
e
c
is

io
n
s
/s

)

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100

concurrent consensus executions

la
te

n
c
y

(m
s
)

Shared coin, with f crashed processes
random proposals

Figure 4. Burst latency and throughput for the
SCP with f crashed processes

200 concurrent consensus executions, Lburst has a value of
329 ms with n = 4, 890 ms with n = 7, and 1820 ms with
n = 10. The maximum throughput Tmax is around 608 de-
cisions/s with n = 4, 225 decisions/s with n = 7, and 110
decisions/s with n = 10.

As for the SCP, the performance results when there are
f crashed processes also show a significant improvement
over the failure-free scenario. In this case, however, the
reduced network contention does not explain entirely what
happens. In more detail, for 100 concurrent consensus ex-
ecutions, Lburst has a value of 3215 ms with n = 4, 3959
ms with n = 7, and 4981 ms with n = 10. The maximum
throughput Tmax is around 31 decisions/s with n = 4, 25
decisions/s when n = 7, and 20 decisions/s when n = 10.

While this can not be inferred from the graphs, what re-
ally speeds up the SCP is the fact that, with only n − f
processes proposing values, all the correct processes see ex-
actly the same n−f messages at every protocol step, result-
ing always in 1-round decisions for all protocol executions
(this behavior also happens in the LCP, but its performance
is affected to a lesser degree by it). In the failure-free sce-
nario, even with an overwhelming majority of executions
reaching decision in only one round, it only takes a single
execution needing more than one round to considerably de-
lay the burst latency, hence the performance improvement
in the fail-stop case.

Byzantine Faultload. Figures 5 and 6 depict the proto-
cols’ performance when there are f processes trying to dis-
rupt their execution. Each curve shows the latency and
throughput for a different group size n.

For the LCP, the curves show that the performance is
negatively affected by the Byzantine failures. For 200 con-
current consensus executions, Lburst has a value of 592 ms
with n = 4, 2290 ms with n = 7, and 6772 ms with
n = 10. The maximum throughput Tmax is around 337
decisions/s with n = 4, 87 decisions/s with n = 7, and 30
decisions/s with n = 10. While it is not possible for f mali-
cious processes to prevent correct processes from reaching a
decision, it is still possible for them to increase the number
of rounds needed to reach a decision. This can be directly

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200

concurrent consensus executions

la
te

n
c
y

(m
s
)

0

50

100

150

200

250

300

350

400

0 50 100 150 200

concurrent consensus executions

th
ro

u
g
h
p
u
t

(d
e
c
is

io
n
s
/s

)

Local coin, with f Byzantine processes
random proposals

Figure 5. Burst latency and throughput for the
LCP with f Byzantine processes

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

concurrent consensus executions

th
ro

u
g
h
p
u
t

(d
e
c
is

io
n
s
/s

)

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100

concurrent consensus executions

la
te

n
c
y

(m
s
)

Shared coin, with f Byzantine processes
random proposals

Figure 6. Burst latency and throughput for the
SCP with f Byzantine processes

linked to the lack of cryptographic verifications on the re-
ceived messages, which affects the robustness. In practice,
this means that the processes usually have to wait for extra
messages beyond the n−f threshold because the malicious
processes are proposing values that fail the validation. A
good example can be found in step 3 of the the protocol.
In alternative to b ∈ {0, 1}, the processes are allowed to
propose an ‘undecided’ default value ⊥ for which the veri-
fication step is somewhat relaxed (it only needs n − f − n

2
valid different proposals from the majority value in step 2 to
be considered valid by a correct process), which Byzantine
processes exploit in order to try to postpone a decision for
one extra round.

For the SCP, it is clear from the curves that there is not
a noticeable performance penalty in relation to the failure-
free scenario. In more detail, for 100 concurrent consen-
sus executions, Lburst has a value of 5987 ms with n = 4,
11712 ms with n = 7, and 13139 ms with n = 10. The
maximum throughput Tmax is around 16 decisions/s with
n = 4, 9 decisions/s when n = 7, and 8 decisions/s when
n = 10. These results are directly related to the extensive
use of public-key cryptography which provides superior ro-
bustness to the protocol when compared to the LCP. In this
case, a Byzantine process has no room to “lie” since it has
to justify all of its proposals with a vector of signatures re-
ceived from the other processes. The best a malicious pro-
cess can do is to force correct processes to verify more sig-
natures by sending proposals with invalid justifications. A
correct process has to verify an extra vector of signatures
beyond the n − f threshold for each invalid justification it



receives before gathering n − f valid proposals. Neverthe-
less, this does not have a significant performance impact be-
cause the cost of verifying signatures is much smaller than
the cost of constructing signatures.

Number of Rounds. Table 2 shows the average number
of rounds the protocols need to execute in order to reach a
decision and terminate. The results are the average number
of rounds until decision of all consensus executions of the
above experiments, which add up to approximately 6000
executions per each tested group size/faultload pair.

Local Coin
n = 4 n = 7 n = 10

failure-free 1,004 (0,42) 1,005 (0,14) 1,009 (0,19)
fail-stop 1,000 (0) 1,000 (0) 1,000 (0)

Byzantine 1,462 (1,52) 1,569 (1,69) 2,289 (2,79)

Shared Coin
n = 4 n = 7 n = 10

failure-free 1,013 (0,23) 1,018 (0,27) 1,010 (0,20)
fail-stop 1,000 (0) 1,000 (0) 1,000 (0)

Byzantine 1,016 (0,25) 1,017 (0,26) 1,012 (0,22)

Table 2. Average number of rounds for ap-
proximately 6000 executions. The standard
deviation is shown in parenthesis.

The first noticeable result is that the average number of
rounds is much lower than what is suggested by previous
theoretical results even when considering Byzantine faults.
For instance, the expected theoretical number of rounds for
the LCP with a strong adversary is 2n−f . The obtained aver-
age number of rounds with 10 processes (of which 3 of them
are malicious) is a little bit above 2 rounds (2,289) which is
very far from the theoretical result (128 rounds). A reason
that can explain this difference between the observed and
theoretical results is related to the kind of failures that are
being considered. The theoretical result is obtained using
the strong adversary model, where the adversary controls
the scheduling of the network, which means that it can de-
lay specific messages in order to postpone termination.

The performance of both protocols is similar except for
the Byzantine case, in which the SCP is much more robust.
In fact, there is practically no difference in the number of
rounds of the SCP between the failure-free and Byzantine
faultloads. The SCP also shows no degradation with an in-
creasing number of processes, while the LCP shows some
degradation, but only in the Byzantine scenario.

The fact that both protocols always reach decision in one
round with f crashed processes has a simple explanation.
When f processes crash it is guaranteed that at every step
of the protocols, the correct processes always see the same
set of expected n − f messages. Since the proposed values
at each step are based on this set of n − f messages, they

will always propose the same values every step of the way,
thus achieving a decision by the first round.

5.4. Cryptography vs. Bandwidth

Although the previous results already give some idea of
the impact of the cryptographic and bandwidth parameters
on the performance of the protocols, this section provides
a comprehensive analysis of the relative costs of communi-
cation and computation. In this experiment the only vary-
ing parameters are the bandwidth and the cryptographic set-
tings. The tested bandwidth values are 1000, 100, and 10
Mbit/s. The measurements made for the LCP use IPSec ac-
tivated and deactivated. For the SCP, the experiments are
taken with three RSA key sizes: 512, 1024, and 2048 bits.
No failures were injected during the experiments, the group
size was 4 processes, and the proposal distribution was set
to uniform.

Figure 7 depicts the performance of the LCP with each
curve corresponding to a specific bandwidth/IPSec combi-
nation. It shows that cryptography (IPsec) has almost no
impact on the performance of the protocol, and that reduc-
ing the available bandwidth results in a great performance
cost. Every time the bandwidth is downgraded, the latency
and throughput suffer a significant degradation. Consider-
ing 200 concurrent consensus executions, the throughput
has a value of approximately 1300 decisions/s with a band-
width of 1000 Mbit/s, 170 decisions/s with 100 Mbit/s, and
60 decisions/s for with 10 Mbit/s.

Local coin protocol
n=4, with no faults
uniform proposals

1Gbit/s, IPSec

100Mbit/s, IPSec

10Mbit/s, IPSec

1Gbit/s, no crypto

100Mbit/s, no crypto

10Mbit/s, no crypto

1

10

100

1000

10000

0 50 100 150 200

concurrent consensus executions

la
te

n
c
y

(m
s
)

1

10

100

1000

10000

0 50 100 150 200

concurrent consensus executions

th
ro

u
g
h
p
u
t

(d
e
c
is

io
n
s
/s

)

Figure 7. Burst latency and throughput for
the LCP with different bandwidth and cryp-
tographic parameters

The performance of the SCP is shown in Figure 8. This
scenario is quite different from the LCP. While reducing the
network bandwidth has a negative effect on performance,
this cost is not as accentuated as the cost of increasing the
key size. Regardless of the available bandwidth, the mea-
surements with 2048-bit keys rank the bottommost among
all the experiments, and the measurements with 512-bit
keys rank among the first four spots. More closely, for 200
concurrent consensus executions, the measured throughput
with a bandwidth of 1000 Mb/s was approximately 46, 30,
and 10 decisions/s for 512, 1024, and 2048 bit keys, respec-
tively. With 100 Mb/s it was 39, 23, and 8 decisions/s for



512, 1024, and 2048 bit keys, and with 10 Mb/s was 19, 16,
and 6 decisions/s for 512, 1024, and 2048 bit keys.

Shared coin protocol
n=4, with no faults
uniform proposals

1Gbit/s, 512 bits
100Mbit/s, 512 bits
10Mbit/s, 512 bits

1Gbit/s, 1024 bits
100Mbit/s, 1024 bits
10Mbit/s, 1024 bits

1Gbit/s, 2048 bits
100Mbit/s, 2048 bits
10Mbit/s, 2048 bits

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250

concurrent consensus executions

la
te

n
c
y

(
m

s
)

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250

concurrent consensus executions

th
ro

u
g

h
p

u
t

(
d

e
c
is

io
n

s
/

s
)

Figure 8. Burst latency and throughput for
the SCP with different bandwidth and cryp-
tographic parameters

The SCP, despite getting significantly closer to the LCP
in terms of performance each time the network settings were
downgraded, it never matched the performance of the LCP
with identical network bandwidth. Nevertheless, in a WAN
setting where there is much less bandwidth available, and
there is a significantly higher network delay, it seems plau-
sible for the SCP to outperform the LCP. Besides benefiting
from its relatively lower number of exchanged messages,
the network latency would offset the cryptographic compu-
tation costs of the SCP.

5.5. Summary of Results

The most important conclusions from the experimental
evaluation are summarized in the following points:

• The LCP is significantly faster than the SCP with sim-
ilar system parameters for all the environmental set-
tings tested.

• The SCP, while slower, proved to be more scalable
since its performance degraded to a lesser degree than
the LCP with an increasing number of processes.

• The SCP is more robust than the LCP since it was not
affected in terms of performance when malicious faults
were injected in the system. The LCP evidenced a lit-
tle degradation with respect to the number of rounds,
latency and throughput.

• The measured average number of rounds of both proto-
cols was quite small, being close to one with no faults,
and exactly one with f crashed processes. With re-
spect to the situation with f malicious processes, the
SCP scored similar to the failure-free scenario, and the
LCP showed a small degradation which was accentu-
ated when the number of processes was higher.

• The performance bottleneck for the LCP, when many
consensuses were executed concurrently, was the net-
work because of its high number of exchanged mes-
sages and use of cheap cryptography. For the SCP, the
bottleneck was the CPU because it exchanged a small
number of messages and utilized expensive asymmet-
ric cryptography. This makes the LCP a good con-
tender for LAN settings, and the SCP a strong candi-
date for WAN environments, if the objective is to exe-
cute many consensuses simultaneously.

6. Related Work

The two classes of randomized (i.e., that employ random
numbers) binary consensus protocols studied in this paper
were introduced in 1983 in two seminal papers due to Ben-
Or and Rabin [1, 17]. Ben-Or presented two algorithms,
tolerating respectively crash and Byzantine (or arbitrary)
faults. The Byzantine protocol had sub-optimal resilience
(tolerated f faulty processes out of n = 5f + 1) and termi-
nated in an expected exponential number of rounds. Rabin’s
protocol tolerated Byzantine faults and the resilience was
also sub-optimal (f out of n = 10f + 1). In the years that
followed, several randomized binary consensus protocols
were presented, both following Ben-Or’s local coin-style
protocol [3] and Rabin’s shared coin approach [18, 2, 6].
A detailed survey on this early work can be found in [8].

Research in randomized binary protocols has been
mostly theoretical. Among the several goals pursued, we
emphasize the quests for optimal resilience, constant ex-
pected round complexity, and better coin sharing schemes.
Protocols with optimal resilience, i.e., that tolerate f out of
3f + 1 faulty processes, were presented quite early, both
for local coins [3] (one of the protocols considered in this
paper) and for shared coins [18]. Constant expected round
complexity was for a long time an objective of this line of
research. The first protocol to attain this goal was presented
by Canetti and Rabin [6]. This protocol is based on shared
coins, but has a constant expected round complexity at the
cost of an enormous number of transmitted messages (many
thousands even for low numbers of processes). One of the
protocols considered in this paper, ABBA, also terminates
in a constant expected number of rounds but this number is
low and the number of messages sent is much lower than
Canetti and Rabin’s [4]. In relation to coin sharing, the
original Rabin’s protocol had a need for a preliminary dis-
tribution of data among the processes for each coin tossed
[17], something that can be quite impractical for real appli-
cations. This requirement was later removed. More recent
protocols do not need this initial distribution of data [6, 4].

Although there are many randomized binary consensus
protocols described in the literature, we are aware of a sin-
gle implementation: the ABBA protocol, which has been



implemented in the context of the SINTRA system [5]. This
implementation was done in Java. No measurements of the
performance of ABBA were presented, only measurements
of an atomic multicast protocol that executed many instanti-
ations of ABBA. Moreover, these measurements were made
only for the mean time between message receptions and did
not include many system conditions like we have done here.
Only failure-free executions were considered.

Recently the authors presented a study of the perfor-
mance of a stack of protocols built on top of a binary ran-
domized consensus [16]. The stack included primitives like
multi-valued consensus, vector consensus and atomic mul-
ticast. The objective was to assess how such a stack would
perform in practice with realistic faultloads. The study de-
scribed in the present paper has a distinct purpose because
it compares two different classes of randomized binary con-
sensus protocols.

7. Conclusion and Future Work

Randomized consensus protocols can be divided in two
classes, depending how the “coin tossing” operation is per-
formed: using a local coin or a shared coin. Most work in
this area has been theoretical and, in terms of theoretical
metrics, shared coin protocols usually perform much better,
i.e., they typically have a lower complexity. However, the
fact that these protocols usually utilize asymmetric cryptog-
raphy can have a considerable impact on the performance,
especially in LANs, where the communication delay is low.
Getting a better understanding about these tradeoffs was one
of the main motivations for the present work.

Our experimental evaluation lead to several important
conclusions. The first is that the local coin protocol has
a much better latency and throughput than the shared coin
protocol in a LAN, both with and without crash or Byzan-
tine failures. Another conclusion is that the higher num-
ber of messages sent by the local coin protocol tends to in-
crease the latency and decrease the throughput when many
consensuses are executed in parallel, especially when the
bandwidth is reduced. Shared coin protocols are somewhat
less sensitive to these factors, since much of their cost is in
computing cryptographic operations in the machines.

These final results give the idea that shared coin pro-
tocols potentially perform better than local coin protocols
in a WAN, since the available bandwidth is usually much
lower than the minimum we considered in the experiments
(10Mbit/s). Moreover, since the communication delay is
typically much higher, the extra rounds will have an impor-
tant cost. As future work, we plan to make an experimental
assessment of the protocols in a WAN environment.

References

[1] M. Ben-Or. Another advantage of free choice: Completely
asynchronous agreement protocols. In Proc. of the 2nd ACM
Symp. on Principles of Distributed Computing, 1983.

[2] M. Ben-Or. Fast asynchronous Byzantine agreement. In
Proceedings of the 4th ACM Symp. on Principles of Dis-
tributed Computing, pages 149–151, Aug. 1985.

[3] G. Bracha. An asynchronous b(n − 1)/3c-resilient consen-
sus protocol. In Proc. of the 3rd ACM Symp. on Principles
of Distributed Computing, pages 154–162, Aug. 1984.

[4] C. Cachin, K. Kursawe, and V. Shoup. Random oracles
in Contanstinople: Practical asynchronous Byzantine agree-
ment using cryptography. In Proc. of the 19th ACM Symp.
on Principles of Distributed Computing, 2000.

[5] C. Cachin and J. A. Poritz. Secure intrusion-tolerant repli-
cation on the Internet. In Proceedings of the International
Conference on Dependable Systems and Networks, pages
167–176, June 2002.

[6] R. Canetti and T. Rabin. Fast asynchronous Byzantine agree-
ment with optimal resilience. In Proc. of the 25th Annual
ACM Symp. on Theory of Computing, pages 42–51, 1993.

[7] T. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43, 1996.

[8] B. Chor and C. Dwork. Randomization in Byzantine agree-
ment. In Advances in Computing Research 5: Randomness
and Computation, pages 443–497. JAI Press, 1989.

[9] M. Correia, N. F. Neves, L. C. Lung, and P. Verı́ssimo.
Low complexity Byzantine-resilient consensus. Distributed
Computing, 17(3):237–249, 2005.

[10] M. Correia, N. F. Neves, and P. Verssimo. From consensus to
atomic broadcast: Time-free Byzantine-resistant protocols
without signatures. The Computer Journal, 2006.

[11] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM,
35(2):288–323, Apr. 1988.

[12] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
the ACM, 32(2):374–382, Apr. 1985.

[13] J. S. Fraga and D. Powell. A fault- and intrusion-tolerant file
system. In Proceedings of the 3rd International Conference
on Computer Security, pages 203–218, Aug. 1985.

[14] S. Kent and R. Atkinson. Security architecture for the inter-
net protocol. IETF Request for Comments: RFC 2093, Nov.
1998.

[15] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 1997.

[16] H. Moniz, M. Correia, N. F. Neves, and P. Verssimo. Ran-
domized intrusion-tolerant asynchronous services. In Pro-
ceedings of the International Conference on Dependable
Systems and Networks, June 2006.

[17] M. O. Rabin. Randomized Byzantine generals. In Proceed-
ings of the 24th Annual IEEE Symposium on Foundations of
Computer Science, pages 403–409, Nov. 1983.

[18] S. Toueg. Randomized Byzantine agreements. In Proceed-
ings of the 3rd ACM Symposium on Principles of Distributed
Computing, pages 163–178, Aug. 1984.

[19] P. Verı́ssimo, N. F. Neves, and M. Correia. Intrusion-tolerant
architectures: Concepts and design. In Architecting Depend-
able Systems. Springer-Verlag, 2003.


