
Randomized Intrusion-Tolerant Asynchronous Services∗

Henrique Moniz, Nuno Ferreira Neves, Miguel Correia, and Paulo Verı́ssimo
University of Lisboa, Portugal

{hmoniz, nuno, mpc, pjv}@di.fc.ul.pt

Abstract

Randomized agreement protocols have been around for
more than two decades. Often assumed to be inefficient
due to their high expected communication and time com-
plexities, they have remained largely overlooked by the
community-at-large as a valid solution for the deployment
of fault-tolerant distributed systems. This paper aims to
demonstrate that randomization can be a very competi-
tive approach even in hostile environments where arbitrary
faults can occur. A stack of randomized intrusion-tolerant
protocols is described and its performance evaluated un-
der different faultloads. The stack provides a set of relevant
services ranging from basic communication primitives up to
atomic broadcast. The experimental evaluation shows that
the protocols are efficient and no performance reduction is
observed under certain Byzantine faults.

1. Introduction

With the increasing need of our society to deal with
computer- and network-based attacks, the area of intrusion
tolerance has been gaining momentum over the past few
years [25]. Arising from the intersection of two classical
areas of computer science, fault tolerance and security, its
objective is to guarantee the correct behavior of a system
even if some of its components are compromised and con-
trolled by an intelligent adversary.

A pivotal problem in fault- and intrusion-tolerant dis-
tributed systems is consensus. This problem has been spec-
ified in different ways, but basically it aims to ensure that n
processes are able to propose some values and then all agree
on one of these values. The relevance of consensus is con-
siderable because it has been shown equivalent to several
other distributed problems, such as state machine replica-
tion [23] and atomic broadcast [9]. Consensus, however,
cannot be solved deterministically in asynchronous systems

∗This work was partially supported by the EU through NoE IST-4-
026764-NOE (RESIST) and project IST-4-027513-STP (CRUTIAL), and
by the FCT through project POSI/EIA/60334/2004 (RITAS) and the Large-
Scale Informatic Systems Laboratory (LASIGE).

if a single processe can crash (also known as the FLP impos-
sibility result [12]). This is a significant result, in particular
for intrusion-tolerant systems, because they usually assume
an asynchronous model in order to avoid time dependen-
cies. Time assumptions can often be broken, for example,
with denial of service attacks.

Throughout the years, several techniques have been pro-
posed to circumvent the FLP result. Most of these solutions,
however, require changes to the basic system model, with
the explicit inclusion of stronger time assumptions (e.g.,
partial synchrony models [10]), or by augmenting the sys-
tem with devices that hide in their implementation these as-
sumptions (e.g., failure detectors [7] or wormholes [19]).
Randomization is another technique that has been around
for more than two decades [2, 20]. One important advantage
of this technique is that no time assumptions are needed –
to circumvent FLP, it uses a probabilistic approach where
the termination of consensus is ensured with probability 1.
Although this line of research produced a number of impor-
tant theoretical achievements, including many algorithms,
in what pertains to the implementation of practical appli-
cations, randomization has been historically overlooked be-
cause it has usually been considered to be too inefficient.

The reasons for the assertion that “randomization is in-
efficient in practice” are simple to summarize. Randomized
consensus algorithms, which are the most common form
of these algorithms, usually have a large expected num-
ber of communication steps, i.e., a large time-complexity.
Even when this complexity is constant, the expected num-
ber of communication steps is traditionally significant even
for small numbers of processes, when compared, for in-
stance, with solutions based on failure detectors. Many of
these algorithms also rely heavily on public-key cryptogra-
phy, which increases the performance costs, especially for
LANs or MANs in which the time to compute a digital sig-
nature is usually much higher than the network delay.

Nevertheless, two important points have been chroni-
cally ignored. First, consensus algorithms are not usually
executed in oblivion, they are run in the context of a higher-
level problem (e.g., atomic broadcast) that can provide a
friendly environment for the “lucky” event needed for faster

Vector Consensus Atomic Broadcast

Multi-valued Consensus

Binary Consensus

Reliable Broadcast Echo Broadcast

TCP

IPSec AH

Protocols
implemented
in RITAS

Standard
Internet
services

Figure 1. The RITAS protocol stack.

termination (e.g., many processes proposing the same value
can lead to a quicker conclusion). Second, for the sake
of theoretical interest, the proposed adversary models usu-
ally assume a strong adversary that completely controls the
scheduling of the network and decides which processes re-
ceive which messages and in what order. In practice, a real
adversary does not possess this ability, but if it does, it will
probably perform attacks in a distinct (and much more sim-
pler) manner to prevent the conclusion of the algorithm – for
example, it could block the communication entirely. There-
fore, in practice, the network scheduling can be “nice” and
lead to a speedy termination.

The paper describes the implementation of a stack of
randomized intrusion-tolerant protocols and evaluates their
performance under different faultloads. One of the main
purposes is to show that randomization can be efficient
and should be regarded as a valid solution for practical
intrusion-tolerant distributed systems.

This implementation is called RITAS which stands for
Randomized Intrusion-Tolerant Asynchronous Services. At
the lowest level of the stack (see Figure 1) there are two
broadcast primitives: reliable broadcast and echo broad-
cast. On top of these primitives, the most basic form of
consensus is available, binary consensus. This protocol lets
processes decide on a single bit and is, in fact, the only
randomized algorithm of the stack. The rest of the proto-
cols are built on the top of this one. Building on the binary
consensus layer is the multi-valued consensus, allowing the
agrement on values of arbitrary range. At the highest level
there is vector consensus, which lets processes decide on a
vector with values proposed by a subset of the processes,
and atomic broadcast, which ensures total order. The pro-
tocol stack is executed over a reliable channel abstraction
provided by standard Internet protocols – TCP ensures re-
liability, and IPSec guarantees cryptographic message in-
tegrity [13]. All these protocols have been previously de-
scribed in the literature [3, 22, 9]. The implemented proto-
cols are, in most cases, optimized versions of the original
proposals that have significantly improved the overall per-
formance (see Section 2 for a description of some of these
optimizations).

The protocols of RITAS share a set of important struc-
tural properties. They are asynchronous in the sense that no
assumptions are made on the processes’s relative execution
and communication times, thus preventing attacks against
assumptions in the domain of time (a known problem in
some protocols that have been presented in the past). They
attain optimal resilience, tolerating up to f = �n−1

3 � mali-
cious processes out of a total of n processes, which is impor-
tant since the cost of each additional replica has a significant
impact in a real-world application. They are signature-free,
meaning that no expensive public-key cryptography is used
anywhere in the protocol stack, which is relevant in terms
of performance since this type of cryptography is several
orders of magnitude lower than symmetric cryptography.
They take decisions in a distributed way (there is no leader),
thus avoiding the costly operation of detecting the failure of
a leader, an event that can considerably delay the execution.

The paper has two main contributions: 1) it presents the
implementation of a stack of randomized intrusion-tolerant
protocols discussing several optimizations – to the best of
our knowledge, the implementation of a stack with the four
above properties is novel; 2) it provides a detailed evalu-
ation of RITAS in a LAN setting, showing that it has in-
teresting latency and throughput values; for example, the
binary consensus protocol always runs in only one round
(three communication steps) with realistic faultloads, and
the atomic broadcast has a very low ordering overhead (only
2.4%) when the rate of transmitted messages is high; more-
over, some experimental results show that realistic Byzan-
tine faults do not reduce the performance of the protocols.

2. System Model and Protocol Definitions

The system is composed by a group of n processes
P = {p0, p1, ..., pn−1}. Processes are said to be correct
if they do not fail, i.e., if they follow their protocol until
termination. Processes that fail are said to be corrupt. No
assumptions are made about the behavior of corrupt pro-
cesses – they can, for instance, stop executing, omit mes-
sages, send invalid messages either alone or in collusion
with other corrupt processes. This class of unconstrained
faults is usually called arbitrary or Byzantine. It is assumed
that at most f = �n−1

3 � processes can be corrupt, which
implies that n ≥ 3f +1. The system is asynchronous in the
sense that there are no assumptions about bounds on pro-
cessing times or communication delays.

The processes are assumed to be fully-connected. Each
pair of processes (pi, pj) shares a secret key sij . It is out
of the scope of the paper to present a solution for distribut-
ing these keys, but it may require a trusted dealer or some
kind of key distribution protocol based on public-key cryp-
tography. Nevertheless, this is normally performed before
the execution of the protocols and does not interfere with
their performance. Each process has access to a random bit

generator that returns unbiased bits observable only by the
process (if the process is correct).

Some protocols use a cryptographic hash function H(m)
that maps an arbitrarily length input m into a fixed length
output. We assume that it is impossible (1) to find two val-
ues m �= m′ such that H(m) = H(m′), and, (2) given
a certain output, to find an input that produces that output.
The output of the function is often called a hash.

The rest of the section briefly describes the function of
each protocol and how it works. Since all protocols have
already been described in the literature, no formal specifi-
cations are given, and some details are only provided to ex-
plain the optimizations. We have developed formal proofs
showing that the optimized protocols behave according to
their specification, but we could not present them in the pa-
per due to lack of space.

2.1. Reliable Channel

The two layers at the bottom of the stack implement a
reliable channel (see Figure 1). This abstraction provides
a point-to-point communication channel between a pair of
correct processes with two properties: reliability and in-
tegrity. Reliability means that messages are eventually re-
ceived, and integrity says that messages are not modified in
the channel. In practical terms, these properties can be en-
forced using standard Internet protocols: reliability is pro-
vided by TCP, and integrity by the IPSec Authentication
Header (AH) protocol [13].

2.2. Reliable Broadcast

The reliable broadcast primitive ensures two properties:
(1) all correct processes deliver the same messages; (2) if
the sender is correct then the message is delivered. The im-
plemented reliable broadcast protocol was originally pro-
posed by Bracha [3]. The protocol starts with the sender
broadcasting a message (INIT, m) to all processes. Upon
receiving this message a process sends a (ECHO, m) mes-
sage to all processes. It then waits for at least �n+f

2 � + 1
(ECHO, m) messages or f +1 (READY, m) messages, and
then it transmits a (READY, m) message to all processes.
Finally, a process waits for 2f + 1 (READY, m) messages
to deliver m. Figure 2 illustrates the three communication
steps of the protocol.

2.3. Echo Broadcast

The echo broadcast primitive is a weaker and more
efficient version of the reliable broadcast. Its properties
are somewhat similar, however, it does not guarantee that
all correct processes deliver a broadcasted message if the
sender is corrupt [24]. In this case, the protocol only en-
sures that the subset of correct processes that deliver will do
it for the same message.

Figure 2. Overview of the messages ex-
changed in each protocol.

The implemented protocol – that we call matrix echo
broadcast – is based on the echo multicast proposed by Re-
iter [22], in which digital signatures are replaced by vectors
of hashes in order to improve the performance. The proto-
col starts with the sender broadcasting a (INIT, m) message.
Upon receiving this message, each process pi builds a vec-
tor Vi with Vi[j] = H(m, sij) for every 0 ≤ j < n. The
hash function H is applied to a concatenation of m with the
secret key shared with each process, sij . This is a simple
and efficient form of Message Authentication Code, which
guarantees that message integrity can be checked by pj [17].
Then, pi transmits a (VECT, i, Vi) message to the sender.
The sender gathers n−f vectors and uses them to construct
a matrix M (each Vj becomes line j of the matrix). Next,
the sender transmits to each process pj a message (MAT,
V ′

j) where vector V ′
j is the column of the matrix with in-

dex j. Upon receiving vector V ′
i , pi verifies the hashes and

delivers the message if at least f + 1 hashes are correct.

2.4. Binary Consensus

A binary consensus allows correct processes to agree on
a binary value. The implemented protocol is adapted from a
randomized algorithm by Bracha [3]. Each process pi pro-
poses a value vi ∈ {0, 1} and then all correct processes de-
cide on the same value b ∈ {0, 1}. In addition, if all correct
processes propose the same value v, then the decision must
be v. The protocol has an expected number of communica-
tion steps for a decision of 2n−f , and uses the underlying
reliable broadcast as the basic communication primitive.

The protocol proceeds in 3-step rounds, running as many
rounds as necessary for a decision to be reached. In the first
step each process pi (reliably) broadcasts its proposal vi,
waits for n − f valid messages and changes vi to reflect

the majority of the received values. In the second step, pi

broadcasts vi, waits for the arrival of n− f valid messages,
and if more than half of the received values are equal, vi is
set to that value; otherwise vi is set to the undefined value ⊥.
Finally, in the third step, pi broadcasts vi, waits for n − f
valid messages, and decides if at least 2f + 1 messages
have the same value v �=⊥. Otherwise, if at least f + 1
messages have the same value v �=⊥, then vi is set to v and
a new round is initiated. If none of the above conditions
apply, then vi is set to a random bit with value 1 or 0, with
probability 1

2 , and a new round is initiated.
A message received in the first step of the first round is

always considered valid. A message received in any other
step k, for k > 1, is valid if its value is congruent with any
subset of n − f values accepted at step k − 1. Suppose
that process pi receives n− f messages at step 1, where the
majority has value 1. Then at step 2, it receives a message
with value 0 from process pj . Remember that the message
a process pj broadcasts at step 2 is the majority value of the
messages received by it at step 1. That message cannot be
considered valid by pi since value 0 could never be derived
by a correct process pj that received the same n − f mes-
sages at step 1 as process pi. If process pj is correct, then
pi will eventually receive the necessary messages for step 1,
which will enable it to form a subset of n−f messages that
validate the message with value 0. This validation technique
has the effect of causing the processes that do not follow the
protocol to be ignored.

2.5. Multi-valued Consensus

A multi-valued consensus allows processes to propose a
value v ∈ V with arbitrary length. The decision is either
one of the proposed values or a default value ⊥/∈ V . The
implemented protocol is based on the multi-valued consen-
sus proposed by Correia et al. [9]. It uses the services of the
underlying reliable broadcast, echo broadcast, and binary
consensus layers. The main differences from the original
protocol are the use of echo broadcast instead of reliable
broadcast at a specific point, and a simplification of the val-
idation of the vectors used to justify the proposed values.

The protocol starts when every process pi announces its
proposal value vi by reliably broadcasting a (INIT, vi) mes-
sage. The processes then wait for the reception of n − f
INIT messages and store the received values in a vector Vi.
If a process receives at least n−2f messages with the same
value v, it echo-broadcasts a (VECT, v, Vi) message con-
taining this value together with the vector Vi that justifies
the value. Otherwise, it echo-broadcasts the default value ⊥
that does not require justification. The next step is to wait
for the reception of n − f valid VECT messages. A VECT
message, received from process pj , and containing vector
Vj , is considered valid if one of two conditions hold: (a)
v =⊥; (b) there are at least n−2f elements Vi[k] ∈ V such

that Vi[k] = Vj [k] = vj . If a process does not receive two
valid VECT messages with different values, and it received
at least n − 2f valid VECT messages with the same value,
it proposes 1 for an execution of the binary consensus, oth-
erwise it proposes 0. If the binary consensus returns 0, the
process decides on the default value ⊥. If the binary con-
sensus returns 1, the process waits until it receives n − 2f
valid VECT messages (if it has not done so already) with
the same value v and then it decides on that value.

2.6. Vector Consensus

Vector consensus allows processes to agree on a vector
with a subset of the proposed values. The protocol is the
one described in [9] and uses reliable broadcast and multi-
valued consensus as underlying primitives. It ensures that
every correct process decides on a same vector V of size
n; if a process pi is correct, then V [i] is either the valued
proposed by pi or the default value ⊥, and at least f + 1
elements of V were proposed by correct processes.

The protocol starts by reliably-broadcasting a message
containing the proposed value by the process and setting
the round number ri to 0. The protocol then proceeds in
up to f rounds until a decision is reached. Each round is
carried out as follows. A process waits until n − f + ri

messages have been received and constructs a vector Wi of
size n with the received values. The indexes of the vector
for which a message has not been received have the value
⊥. The vector Wi is proposed as input for the multi-valued
consensus. If it decides on a value Vi �=⊥, then the process
decides Vi. Otherwise, the round number ri is incremented
and a new round is initiated.

2.7. Atomic Broadcast

An atomic broadcast protocol delivers messages in the
same order to all processes. One can see atomic broadcast
as a reliable broadcast plus the total order property. The
implemented protocol was adapted from [9]. The main dif-
ference is that it has been adapted to use multi-valued con-
sensus instead of vector consensus and to utilize message
identifiers for the agreement task instead of cryptographic
hashes. These changes were made for efficiency and have
been proved not to compromise the correctness of the proto-
col. The protocol uses reliable broadcast and multi-valued
consensus as primitives.

The atomic broadcast protocol is conceptually divided
in two tasks: (1) the broadcasting of messages, and (2) the
agreement over which messages should be delivered (only
this part appears in Figure 2). When a process pi wishes to
broadcast a message m, it simply uses the reliable broadcast
to send a (AB MSG, i, rbid, m) message where rbid is
a local identifier for the message. Every message in the
system can be uniquely identified by the tuple (i, rbid).

The agreement task (2) is performed in rounds. A pro-
cess pi starts by waiting for AB MSG messages to arrive.
When such a message arrives, pi constructs a vector Vi with
the identifiers of the received AB MSG messages and reli-
able broadcasts a (AB VECT, i, r, Vi) message, where r is
the round for which the message is to be processed. It then
waits for n−f AB VECT messages (and the corresponding
Vj vectors) to be delivered and constructs a new vector Wi

with the identifiers that appear in f + 1 or more Vj vectors.
The vector Wi is then proposed as input to the multi-valued
consensus protocol and if the decided value W ′ is not ⊥,
then the messages with their identifiers in the vector W ′

can be deterministically delivered by the process.

3. Implementation

This Section describes some aspects of the RITAS im-
plementation and provides insight into the design consider-
ations and practical issues that arose during development.
The protocol stack was implemented in the C language as a
shared library, which provides a simple interface to applica-
tions wishing to use the protocols. The protocol stack runs
in a single thread, independent of the application thread.

3.1. Interface

The API of RITAS revolves around a data structure
ritas t. This structure holds all the necessary con-
text – variables and data structures – for a communi-
cation session and is completely opaque to the applica-
tion programmer. The functions provided by the API can
be divided into two categories: context management and
service requests. A typical RITAS session is composed
by four basic steps executed by each process: 1) initial-
ize the RITAS context by calling ritas init(); 2)
add the participating processes to the context by calling
ritas proc add ipv4(); 3) call the service request
functions as many times as desired; 4) destroy the RITAS
context by calling ritas destroy(). There are service
request functions for the broadcast, and consensus proto-
cols. Each broadcast protocol has associated two functions:
ritas XX bcast() is utilized to transmit a message, and
ritas XX recv() blocks the program until a message
arrives (where XX can be rb, eb, or ab, for reliable broad-
cast, echo broadcast, or atomic broadcast, respectively).
Each consensus protocol has an associated ritas YY()
function that proposes a value, blocks until a decision is
made, and returns the decision value (where YY can be bc,
mvc, or vc, for binary consensus, multi-valued consensus,
or vector consensus, respectively).

3.2. Internal Data Structures

Internally, three major data structures form the core of
the RITAS operation. The aforementioned RITAS context,

Figure 3. Communication flow among the
protocol layers during an atomic broadcast.

the message buffers, and the protocol handlers. Addition-
ally, several data structures and functions provide ancillary
common operations for general use.

Information is passed along the protocol stack using
message buffers (mbuf for short). This data structure was
inspired by the TCP/IP implementation in the Net/3 Oper-
ating System kernel [26]. mbuf is used to store messages
and several metadata related to their management and one
instance of mbuf can only hold a single message. All com-
munication between the different layers is done by passing
pointers to mbufs.

There is one data structure, the control block, which
holds all the necessary information for an instance of a pro-
tocol. All protocols share a common internal interface. Pro-
tocols provide initialization and destruction functions which
serve, respectively, to allocate a new control block and ini-
tialize all its variables and data structures, and to destroy
the internal data structures and the control block itself. For
inter-protocol communication two functions are provided:
an input function that receives as parameters the respective
control block and the mbuf to be processed, and an output
function which uses similar parameters as the input func-
tion. The communication between the protocols is depicted
in Figure 3.

There is a special protocol handler called RITAS Chan-
nel that sits between the broadcast layers and the Reli-
able Channel layer (the Reliable Channel layer corresponds
to the implementation of TCP and IPSec that is accessed
through the socket interface). Its purpose is to build a header
containing an unique identifier for each message. Messages
are always addressed to a given RITAS Channel. The mes-
sage is then passed along the appropriate protocol instances
by a mechanism called control block chaining, described in
the next section.

3.3. Control Block Chaining

One important mechanism used in RITAS to manage the
linking of different protocol instances is the control block
chaining. This mechanism solves several problems – it
gives a means to unambiguously identifying all messages,
provides for seamless protocol demultiplexing, and facili-

tates control block management.
Control block chaining works as follows. Suppose an

application creates an atomic broadcast protocol instance.
This task is done by calling the corresponding initialization
function that returns a pointer to a control block responsible
for that instance. Since atomic broadcast uses multi-valued
consensus and reliable broadcast as primitives, the atomic
broadcast initialization function also calls the initialization
functions of such protocols in order to create as many in-
stances of these protocols as needed. The returned control
blocks are kept and managed in the atomic broadcast con-
trol block. This mechanism is recursive since second-order
protocol instances may need to use other protocols as prim-
itives and so on. This creates a tree of control blocks that
has its root in the protocol called by the application and goes
down all the way, having control blocks for RITAS Chan-
nels as the leaf nodes.

A unique identifier is given to each outbound message
when the associated mbuf reaches the RITAS Channel layer.
The tree is traversed bottom-up starting at the RITAS Chan-
nel control block and ending at the root control block. The
message identifier is generated by appending the protocol
instance ID of each traversed node to a local message iden-
tifier that was set by the node that created the mbuf.

Protocol demultiplexing is done seamlessly. When a
message arrives, its identification defines an association
with a particular RITAS Channel control block. The RI-
TAS Channel passes the mbuf to the upper layer by calling
the appropriate ritas * input() function of its parent
control block. The message is processed by that layer and
the mbuf keeps being passed in the same fashion.

When a protocol instance is destroyed, all of its child
protocol instances become obsolete. All protocol instances
are responsible for destroying its child instances by calling
the appropriate destruction functions. This way, a tree (or
subtree) of control blocks is automatically destroyed when
its root node is eliminated.

3.4. Out-of-Context Messages

The asynchronous nature of the protocol stack leads to
situations in which a process is receiving correct messages
but they are destined to a protocol instance for which a con-
trol block has not yet been created. These messages – called
out-of-context (OOC) messages – have no context to handle
them, though they will, eventually.

Since OOC messages cannot be discarded, they are
stored in a hash table. When a RITAS Channel is created,
it checks the hash table for messages. If any relevant mes-
sages exist, they are promptly delivered to the upper proto-
col instance.

It is also possible for a protocol instance to be destroyed
before consuming all of its OOC messages. To avoid a situ-
ation where OOC messages are kept indefinitely in the hash

table, upon the destruction of a protocol, the hash table is
checked and all the relevant messages are deleted.

4. Performance Evaluation

This section describes the performance experiments with
RITAS in a local-area network (LAN) setting with four pro-
cesses, each one running on a distinct host. Two different
performance analyses are made. First, we present a compar-
ative evaluation in order to understand how protocols relate
and build on one another performance-wise. Second, we
conduct an in-depth analysis of how atomic broadcast per-
forms under various conditions. This protocol is the most
interesting candidate for a detailed study because it uses all
other protocols as primitives, either directly or indirectly,
and it can be used for many practical applications.

The experiments were carried out on a testbed consisting
of four Dell Pentium III PCs, each with 500 Mhz of clock
speed and 128 MB of RAM, running Linux Kernel 2.6.5.
The PCs were connected by an 100 Mbps HP ProCurve
2424M network switch. Bandwidth tests taken at differ-
ent occasions with the network performance tool lperf have
shown a consistent throughput of 9.1 MB/s. The used IPSec
implementation was the one available in the Linux kernel
and the security associations that were established between
every pair of processes employed the AH protocol (with
SHA-1) in transport mode [13].

4.1. Stack Analysis

In order to get a better understanding of the relative over-
heads of each layer of the stack, we have run a set of exper-
iments to determine the latencies of the protocols. These
measurements were carried out in the following manner: a
signaling machine, that does not participate in the protocols,
is selected to control the benchmark execution. It starts by
sending a 1-byte UDP message to the n processes to in-
dicate which specific protocol instance they should create.
Then, it transmits N messages, each one separated by a two
second interval (in our case N was set to 100). Whenever
one of these messages arrives, a process runs the protocol,
either a broadcast or a consensus. In case of a broadcast,
the process with the lowest identifier acts as the sender,
while the others act as receivers. In case of a consensus, all
processes propose identical initial values. The broadcasted
messages and the consensus proposals all carry a 10-byte
payload (except for binary consensus, where the payload
is 1 byte). The latency of each instance was obtained at
a specific process. This process records the instant when
the signal message arrives and the time when it either de-
livers a message (for broadcast protocols) or a decision (for
consensus protocols). The measured latency is the interval
between these two instants. The average latency is obtained
by taking the mean value of the sample of measured values.

w/ IPSec w/o IPSec IPSec
(µs) (µs) overhead

Echo Broadcast 1724 1497 15%
Reliable Broadcast 2134 1641 30%
Binary Consensus 8922 6816 30%
Multi-valued Consensus 16359 11186 46%
Vector Consensus 20673 15382 34%
Atomic Broadcast 23744 18604 27%

Table 1. Average latency for isolated execu-
tions of each protocol (with IPSec and IP).

The results, shown in Table 1, demonstrate the interde-
pendencies among protocols and how much time is spent on
each protocol. For example, in a single atomic broadcast in-
stance roughly 2

3 of the time is taken running a multi-valued
consensus (see also Figure 2). For a multi-valued consensus
about 1

2 of the time is used by the binary consensus. And
for vector consensus about 3

4 of the time is utilized by the
multi-valued consensus. The experiments also show that
consensus protocols were always able to reach a decision in
one round because the initial proposals were identical.

The cost of using IPSec is also represented in Table
1. The overhead could in part be attributed to the crypto-
graphic calculations, but most of it is due to the increase
on the size of the messages. For example, the total size
of any Reliable Broadcast message – including the Ether-
net, IP, and TCP headers – carrying a 10-byte payload is 80
bytes. The IPSec AH header adds another 24 bytes, which
accounts for an extra 30%.

4.2. Atomic Broadcast Analysis

This Section evaluates the atomic broadcast protocol in
more detail. The experiments were carried out by having the
n processes send a burst of k messages and measuring the
interval between the beginning of the burst and the delivery
of the last message. The benchmark was performed in the
following way: processes wait for a 1-byte UDP message
from the signaling machine, and then each one atomically
broadcasts a burst of k

n messages. Messages have a fixed
size of m bytes. For every tested workload, the obtained
measurement reflects the average value of 10 executions.

Two metrics are used to assess the performance of the
atomic broadcast: burst latency (Lburst) and maximum
throughput (Tmax). The burst latency is always measured
at a specific process and is the interval between the instant
when it receives the signal message and the moment when
it delivers the kth message. The throughput for a specific
burst is the burst size k divided by the burst latency Lburst

(in seconds). The maximum throughput Tmax can be in-
ferred as the value at which the throughput stabilizes (i.e.,
does not change with increasing burst sizes).

The measurements were taken under three different
faultloads. In the failure-free faultload all processes behave
correctly. In the fail-stop faultload one process crashes be-
fore the measurements are taken (1 is the maximum num-
ber of processes that can fail because n ≥ 3f + 1). Fi-
nally, in the Byzantine faultload one process permanently
tries to disrupt the protocols. At the binary consensus layer,
it always proposes zero trying to impose a zero decision.
At the multi-valued consensus layer, it always proposes the
default value in both INIT and VECT messages, trying to
force correct processes to decide on the default value. The
impact of such attack, if successful, would be that correct
processes do not reach an agreement over which messages
should be delivered by the atomic broadcast protocol and,
consequentely, would have to start a new agreement round.

Failure-free faultload. Figure 4 shows the performance
of the atomic broadcast when no faults occur in the system.
Each curve shows the latency or throughput for a different
message size m. From the graph it is possible to observe
that the burst latency Lburst is linear with the burst size.
The stabilization point in the throughput curves indicates
the maximum throughput Tmax.

For a burst of 1000 messages, Lburst has a value of 1386
ms for a message size of 10 bytes, 1539 ms for 100 bytes,
2150 ms for 1K bytes and 12340 ms for 10K bytes. The sta-
bilization point in the throughput curves indicates the max-
imum throughput Tmax. The throughput stabilizes around
721 messages per second for a message size of 10 bytes,
650 msgs/s for 100 bytes, 465 msgs/s for 1K bytes, and 81
msgs/s for 10K bytes. These results were expected because
larger messages impose a higher load on the network, which
decreases the maximum throughput.

Fail-stop faultload. The performance of the atomic
broadcast protocol with one crashed process is presented
in Figure 5. In this faultload, each correct process sends a
burst of k

n−1 messages. Each curve shows the latency or
throughput for a different message size m.

Looking at the curves, it is possible to conclude that per-
formance is noticeably better with one fail-stop process than
in the failure-free scenario. This is because with one less
process there is less contention in the network allowing op-
erations to be executed faster. In more detail, the numbers
show for a burst of 1000 messages, Lburst has a value of
988 ms for 10-byte messages, 1164 ms for 100 bytes, 1607
ms for 1K bytes, and 8655 ms 10K bytes. The maximum
throughput Tmax is around 858 messages per second for a
message size of 10 bytes, 621 msgs/s for 100 bytes, 834
msgs/s for 1K bytes, and 115 msgs/s for 10K bytes.

Byzantine faultload. Figure 6 shows the performance of
atomic broadcast for different message sizes, with one pro-
cess trying to disrupt the protocol. In more detail, the num-
bers for a burst of 1000 messages are: Lburst has a value

Figure 4. Latency and throughput for atomic broadcast with failure-free faultload.

Figure 5. Latency and throughput for atomic broadcast with fail-stop faultload.

of 1404 ms for 10-byte messages, 1576 ms for 100-byte
messages, 2175 ms for 1K-byte messages, and 12347 ms
for 10K-byte messages. The maximum throughput Tmax

is around 711 messages per second for 10-byte messages,
634 msgs/s for 100 bytes, 460 msgs/s for 1K bytes, and 81
msgs/s for 10K bytes. From the numbers it is possible to ob-
serve that performance is basically immune from the attacks
of the Byzantine process, when compared with the failure-
free scenario. The Byzantine process never managed to foil
any of the consensus protocols due to the robustness of the
atomic broadcast protocol.

An important result is that all the consensus protocols
reached agreement within one round, even under Byzantine
faults. This can be explained in a intuitive way as follows.
The experimental setting was a LAN, which not only pro-
vides a low-latency, high-throughput environment, it also
keeps the nodes within simmetrical distance of each other.
Due to this simmetry, in the atomic broadcast protocol, cor-
rect processes maintained a fairly consistent view of the re-
ceived AB MSG messages because they all received these
messages at relatively the same time. Any slight inconsis-
tencies that ocasionally existed over this view were squan-
dered when processes broadcasted the vector V (which was
built with the identifiers of the received AB MSG mes-
sages) and then constructed a new vector W (which serves
as the proposal for the multi-valued consensus) with the
identifiers that appeared in, at least, f + 1 of those V vec-
tors. This mechanism caused all correct processes to pro-
pose identical values in every instance of the multi-value
consensus, which allowed one-round decisions. In a more
asymmetrical environment, like a WAN, it is not guaranteed

that this result can be reproduced.

Relative Cost of Agreement. On all experiments only
two agreements were necessary to deliver an entire burst.
The observed pattern was that a consensus was initiated
immediately after the arrival of the first message. While
the first agreement task was being run, the remaining burst
would be received. Therefore, this remaining set of mes-
sages could be delivered with a second agreement. This
behavior has the interesting effect of diluting the cost of the
agreements as the load increases.

�

� �

� �

� �

� �

� �

� �

� �

	 �

 �

� � �

� � � � � � � � � � 	 � � � � � � � � � �

� � � � � � � � � 	 �
 � 	 � � � 	 � �

�
��

�	
	
�
	
�
��
�
��
�
�
�
�
�
��

Figure 7. Percentage of broadcasts that are
due to the agreements.

Figure 7 shows the relative cost of the agreements with
respect to the total number of (reliable and echo) broadcasts
that was observed in the experiments. Basically, two quan-
tities were obtained for the transmission of every burst: the
total number of (reliable and echo) broadcasts, and the to-
tal number of broadcasts that were necessary to execute the
agreement operations. The values depicted in the figure are
the second quantity divided by the first. It is possible to
observe that for small burst sizes, the cost of agreement is
high – in a burst of 4 messages, it represents about 92% of

Figure 6. Latency and throughput for atomic broadcast with Byzantine faultload.

all broadcasts. This number, however, drops exponentially,
reaching as low as 2.4% for a burst size of 1000 messages.

4.3. Summary of Main Results

The protocols are robust. Performance (and correctness)
is not affected by the tested fault patterns, even when a ma-
licious process tries to delay the execution of the protocols.

The protocols are efficient with respect to the number of
rounds to reach agreement. In the experiments, the multi-
valued consensus always reached an agreement with a value
distinct from the default ⊥, and the binary consensus always
terminated within one round.

Since protocols do not carry out any special actions when
a failure occurs, crashes have the effect of making execu-
tions faster. Less processes means less contention on the
network.

On the atomic broadcast protocol, the cost of the agree-
ments is diluted when the load is high. For a burst of 1000
messages, it represents only 2.4% of all (reliable or echo)
broadcasts that were made.

5. Related Work

Randomized intrusion-tolerant protocols have been
around since Ben-Or’s and Rabin’s seminal consensus pro-
tocols [2, 20]. These two papers defined the two approaches
that each of the subsequent works followed. Essentially all
randomized protocols rely on a coin-tossing scheme that
generates random bits. Ben-Or’s approach relies on a lo-
cal coin-toss, while in Rabin’s shares of the coins are dis-
tributed by a trusted dealer before the execution of the pro-
tocol so all processes see the same coins.

Although many randomized asynchronous protocols
have been designed throughout the years [2, 20, 3, 24, 6,
18], only recently one implementation of a stack of ran-
domized multicast and agreement protocols has been re-
ported, SINTRA [5]. These protocols are built on top of
a binary consensus protocol that in practice terminates in
one or two communication steps [4]. The implementation
of the stack is in Java and uses several threads. The pro-
tocols depend heavily on public-key cryptography primi-
tives like digital and threshold signatures. The performance

values are presented in time between successive deliveries
(TBSD). In a LAN, the average TBSD for atomic and reli-
able broadcast was, respectively, 690 ms and 130 ms. The
inverses give throughput values of 1.45 and 7.69 msgs/s,
respectively. There is no information about latencies. RI-
TAS uses a Ben-Or-style protocol that uses no public-key
cryptography and theoretically runs in expected 2n−f com-
munication steps [3] but, in practice, in a LAN with realistic
faultloads, we observed that it runs in only three communi-
cation steps.

Randomization is only one of the techniques that can
be used to circumvent the FLP impossibility result. Other
techniques include failure detectors [15, 1, 16], partial-
synchrony [11] and distributed wormholes [8, 19]. It has
been proven that deterministic asynchronous consensus re-
quires a minimum of two communication steps in fault-free
executions [16]. The same number of steps has been shown
to be attainable extending the “normal” asynchronous sys-
tem with a synchronous and secure distributed component
called a wormhole, even when faults occur [8]. Partially
synchronous protocols have been presented that run in a
minimum of four steps in fault-free executions [11].

The first evaluation of a set of asynchronous Byzantine
protocols (reliable and atomic broadcast) was made for the
Rampart toolkit [22]. The reliable broadcast is implemented
by Reiter’s echo broadcast (see Section 2) and the order is
defined by a leader that also echo-broadcasts the order infor-
mation. Even with such a simple protocol, and using small
RSA keys (300 bits), Reiter acknowledges that “public-key
operations still dominate the latency of reliable multicast,
at least for small messages”. Moreover, if a process does
not echo-broadcast a message to all or if a malicious leader
performs some attack against the ordering of the messages,
these events have to be detected and the corrupt process re-
moved from the group. This detection is very costly in terms
of time [21] and requires synchrony assumptions about the
network delay, allowing attacks where malicious processes
delay others to force their removal. Our protocols do not
suffer from any of these problems since decisions (e.g., the
message order) are made in a distributed way. Our exper-
iments have shown that some attacks do not impact on the
performance of our protocols.

Like Rampart, SecureRing is an intrusion-tolerant group
communication system [14]. It relies on a token that rotates
among the processes. This signed token takes message di-
gests, a solution that allows a lower number of signatures
and an improvement of the performance when compared to
Rampart. In SecureRing malicious behavior has also to be
detected, which means that it suffers from the same prob-
lems as Rampart.

6. Conclusion

The paper presents an implementation and evaluation of
a stack of randomized protocols. These protocols have a
set of important structural properties, such as not requir-
ing the use of public-key cryptography (relevant for good
performance) and optimal resilience (significant in terms of
system cost).

The experiments led to several conclusions: First, ran-
domized binary consensus protocols that in theory run in
high numbers of steps, in practice may execute in only a
few rounds under realistic conditions. Second, although
atomic broadcast is equivalent to consensus, with the right
implementation, a high number of atomic broadcasts can
be done with a small number of consensus. Consequently,
an atomic broadcast can cost almost as much as a reliable
broadcast. Third, taking decisions in a distributed way is
important to avoid performance penalties due to the exis-
tence of faults (the performance of our protocols is approx-
imately the same, or even improved, with realistic fault-
loads). This property is also important to avoid attacks
against time assumptions.

References

[1] R. Baldoni, J. Helary, M. Raynal, and L. Tanguy. Consen-
sus in Byzantine asynchronous systems. In Proc. of the Int.
Colloquium on Structural Information and Communication
Complexity, pages 1–16, June 2000.

[2] M. Ben-Or. Another advantage of free choice: Completely
asynchronous agreement protocols. In Proc. of the 2nd ACM
Symp. on Principles of Distributed Computing, 1983.

[3] G. Bracha. An asynchronous �(n − 1)/3�-resilient consen-
sus protocol. In Proc. of the 3rd ACM Symp. on Principles
of Distributed Computing, pages 154–162, Aug. 1984.

[4] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in
constantipole: practical asynchronous byzantine agreement
using cryptography. In Proc. of the 19th annual ACM symp.
on Principles of distributed computing, pages 123–132, New
York, NY, USA, 2000. ACM Press.

[5] C. Cachin and J. A. Poritz. Secure intrusion-tolerant repli-
cation on the Internet. In Proceedings of the International
Conference on Dependable Systems and Networks, pages
167–176, June 2002.

[6] R. Canetti and T. Rabin. Fast asynchronous Byzantine agree-
ment with optimal resilience. In Proc. of the 25th Annual
ACM Symp. on Theory of Computing, pages 42–51, 1993.

[7] T. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43, 1996.

[8] M. Correia, N. F. Neves, L. C. Lung, and P. Verı́ssimo.
Low complexity Byzantine-resilient consensus. Distributed
Computing, 17(3):237–249, 2005.

[9] M. Correia, N. F. Neves, and P. Verı́ssimo. From consensus
to atomic broadcast: Time-free Byzantine-resistant proto-
cols without signatures. The Computer Journal, 41(1):82–
96, Jan. 2006.

[10] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal
synchronism needed for distributed consensus. Journal of
the ACM, 34(1):77–97, Jan. 1987.

[11] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM,
35(2):288–323, Apr. 1988.

[12] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
the ACM, 32(2):374–382, Apr. 1985.

[13] S. Kent and R. Atkinson. Security architecture for the inter-
net protocol. IETF RFC 2093, Nov. 1998.

[14] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The
SecureRing group communication system. ACM Transac-
tions on Information and System Security, 4, 2001.

[15] D. Malkhi and M. Reiter. Unreliable intrusion detection in
distributed computations. In Proc.of the 10th Computer Se-
curity Foundations Workshop, pages 116–124, June 1997.

[16] J. P. Martin and L. Alvisi. Fast Byzantine consensus. In
Proceedings of the IEEE International Conference on De-
pendable Systems and Networks, June 2005.

[17] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 1997.

[18] L. E. Moser and P. M. Melliar-Smith. Byzantine-resistant
total ordering algorithms. Information and Computation,
150:75–111, 1999.

[19] N. F. Neves, M. Correia, and P. Verı́ssimo. Solving vector
consensus with a wormhole. IEEE Transactions on Parallel
and Distributed Systems, 16(12), Dec. 2005.

[20] M. O. Rabin. Randomized Byzantine generals. In Proceed-
ings of the 24th Annual IEEE Symposium on Foundations of
Computer Science, pages 403–409, Nov. 1983.

[21] H. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W. H.
Sanders. Quantifying the cost of providing intrusion toler-
ance in group communication systems. In Proceedings of
the International Conference on Dependable Systems and
Networks, pages 229–238, June 2002.

[22] M. Reiter. Secure agreement protocols: Reliable and atomic
group multicast in Rampart. In Proceedings of the 2nd
ACM Conference on Computer and Communications Secu-
rity, pages 68–80, Nov. 1994.

[23] F. B. Schneider. Implementing faul-tolerant services using
the state machine approach: A tutorial. ACM Computing
Surveys, 22(4):299–319, Dec. 1990.

[24] S. Toueg. Randomized Byzantine agreements. In Proceed-
ings of the 3rd ACM Symposium on Principles of Distributed
Computing, pages 163–178, Aug. 1984.

[25] P. Verı́ssimo, N. F. Neves, and M. Correia. Intrusion-tolerant
architectures: Concepts and design. In Architecting Depend-
able Systems. Springer-Verlag, 2003.

[26] G. R. Wright and W. R. Stevens. TCP/IP Illustrated, Volume
2: The Implementation. Addison Wesley, 1995.

