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Abstract

This paper outlines a flexible suite of object replication

protocols that brings together Byzantine quorum systems

registers and state machine replication. These protocols

enable the implementation of Byzantine fault-tolerant ap-

plications that make minimal assumptions about the envi-

ronment and that run in at most two more communication

steps in almost all cases of non-favorable executions (in

comparison with favorable executions).

1 Introduction

The research presented in this paper is motivated by two

observations. First, despite the existence of much work on

Byzantine fault-tolerant (BFT) read/write protocols (see

[6] for a survey), most practical work on BFT replica-

tion (e.g., [1, 5, 7, 11]) is based on the notion of replicas

as state machines that evolve in a coordinated way [15],

which can be very restrictive for practical applications.

Second, most practical services avoid the use of strong

synchronization such as consensus protocols due to their

complexity and underlying assumptions [4].

The BFT state machine replication (SMR) model is too

restrictive for several reasons. First, although conceptu-

ally simple, this model makes it difficult to implement

common mechanisms such as housekeeping and asyn-

chronous messaging [16]. Second, most SMR protocols

inherently ensure linearizability [9], which is a very strong

consistency model that is not required by many applica-

tions. Third, replica determinism can be sometimes dif-

ficult to enforce, especially when one tries to implement

multi-threaded services to take advantage of the multiple

cores present in most modern processors. Finally, SMR

requires the resolution of the well-known consensus prob-

lem, which can only be solved in a fault-tolerant way with

some timing assumptions that can be subverted by mali-

cious attacks.

Most modern (crash fault-tolerant) distributed services

do not rely on pure SMR for their operations. In a recent

workshop [4], speakers from eBay, Microsoft and several

other companies that run large distributed systems advo-

cated that consensus and other forms of strong synchro-

nization can lead to several problems, and thus, their use

should be avoided at all costs. The result of this avoidance

is the embrace of eventual consistency models, which al-

low the implementation of robust and scalable distributed

systems. However, the fact that weak consistency was the

solution for the burden of synchronization does not con-

tradict the fact that strong consistency is not only a nice

property (it makes programming much easier), it is some-

times fundamental (some applications do require it).

These observations have lead us to the following ques-

tion: Would it be possible to build dependable and consis-

tent services in a well-disciplined way relying on consen-

sus only when it is absolutely necessary? To answer this

question positively, one needs options for developing de-

pendable distributed systems apart from SMR. As far as

we can see, there are two options: the first is to increase

the abstraction level and use BFT SMR to build coordi-

nation services that can be used judiciously to synchro-

nize processes in distributed systems (e.g., DepSpace [3]

or Zookeeper [10]). The second option is to lower the

abstraction level and use something more powerful than

basic read/write registers, but less restrictive than SMR.

In this paper we follow this second option and propose

active quorum system objects (AQS objects), an interme-

diate abstraction that can be used to implement depend-

able services in a flexible way. An AQS object imple-

ments a BFT register that provides standard read and write

operations and, additionally, has synchronization power to

implement any atomic operation (even non-deterministic

ones). This unique design, gives some nice characteristics

to AQS when compared with other replication protocols:

Minimal Assumptions. Since assumptions can be vio-

lated by a malicious adversary, the safe way to develop

a dependable system is to assume as little as possible

to make the protocols satisfy the service requirements.

AQS separates operations that change the system state in

write and read-modify-write (rmw), which allow systems

to rely on a consensus protocol only when it is absolutely

necessary (only when rmw is needed). Moreover, contrary

to BFT SMR (e.g., [5, 11]), the read protocol employed by

AQS never requires consensus to complete1.

1A common optimization on BFT SMR makes it possible to issue a

read operation to all replicas and wait for 2 f +1 matching replies, but if

not enough equal replies are obtained the read must be reissued through

the normal ordering/consensus protocol to ensure linearizability [5].



Stability. Another unique property of AQS is that its

three protocols require at most two extra communication

steps (a round-trip) when executed in non-favorable con-

ditions (concurrency or malicious servers, excluding the

case of a faulty leader replica). This unique feature makes

the protocol highly resilient to malicious activity and use-

ful for implementing intrusion-tolerant services, contrar-

ily to other optimistic BFT protocols.

Flexibility. AQS objects can be used to implement ser-

vices ranging from single-writer/multi-reader regular stor-

age to (deterministic) state machine replication. One of

the key design principles is to use the specification of the

service being developed to guide the selection of the set of

protocols to be used. The object operations can be imple-

mented using a combination of read, write and rmw proto-

cols considering access control restrictions (single-writer

vs. multi-writer objects), consistency guarantees (atomic

or regular register) and types of Byzantine faults being

tolerated (malicious or not). If one takes into account the

specific application requirements, it is possible to imple-

ment AQS objects that make use of the minimal protocols

required to fit the application needs. Moreover, our de-

sign philosophy advocates the division of the service in as

many AQS objects as possible, each one using the proto-

cols that suit the needs of its part of the application state.

This feature allows the implementation of wait-free ser-

vices without using consensus in most of the supported

operations.

In summary, we advocate the implementation of de-

pendable services using multiple objects, possibly de-

ployed in different machines, supporting operations with

different semantics and requirements. The paper makes it

possible by introducing the notion of AQS objects.

2 System Model

We assume a fully connected networked system with 3 f +
1 servers in which at most f can fail in a Byzantine way.

An arbitrary number of Byzantine-prone clients interact

with these servers.

Since we rely on a modified version of PBFT [5] to exe-

cute some operations, we require partial synchrony to en-

sure liveness: there is an unknown instant after which all

communications and computations are synchronous (with

unknown time bounds).

To make our algorithms simpler, we assume that all

communications are made through authenticated reliable

FIFO channels. This type of channel can be implemented

over unreliable fair links. Finally, we assume that all

clients and servers are able to generate and verify digital

signatures.

3 Active Quorum Systems

AQS is an hybrid replication model in which some oper-

ations are executed using quorum-based protocols while

other use agreement-based protocols. A key feature of

AQS is that object operations are divided in three classes

that are implemented through different protocols:

• write: the state of the object is (over)written by the

argument of the operation;

• read: the state of the object is read;

• read-modify-write (rmw): the state of the object is

modified according to both the operation arguments

and its current state.

Write and rmw operations are collectively called up-

date operations. The main difference between these two

types of operations is that in the first, the state of the object

is updated to the value being written (independently of the

previous value) while in the second the resulting state de-

pends on the arguments of the operation and its previous

state. For example, the operation “x← 2” is a write while

the operation “x ← x + 2” is a rmw (read x, update its

value by adding 2 and store this new value in x). Notice

that the modification done on the state is completely arbi-

trary and dependent of the semantics of the object being

implemented.

Given these three classes of operations, AQS uses

quorum-based protocols to implement read and write op-

erations efficiently. Operations of the class rmw, on the

other hand, require more expensive consensus-based pro-

tocols that are less efficient in at least two aspects: (i.)

they require synchrony assumptions to terminate (read

and write quorum protocols can be implemented in com-

pletely asynchronous systems), and (ii.) they usually have

O(n2) message complexity instead of the usual O(n) ex-

hibited by read and write quorum protocols. This means

that if the replicated object supports only operations with

read and write semantics, AQS behaves like an atomic

register protocol for f -dissemination Byzantine quorum

systems [14], while if the object supports only general

rmw semantics, the system operates like PBFT state ma-

chine replication algorithm.

Read and write quorum protocols do not fit directly

with a SMR algorithm, so, we had to develop techniques

to combine these two approaches in a single replication

algorithm. There are two challenges that must be ad-

dressed when these two techniques are integrated to be

used together. First, there has to be some mechanism

that allows quorum-based read protocols to obtain a re-

sponse when SMR update protocols are being executed.

The main problem is that read protocols are developed

to work concurrently with write protocols since both are



basic quorum-based abstractions [14], so we have to aug-

ment these protocols to be able to operate concurrently

with agreement-based update algorithms. Second, we

have to extend the SMR protocol used in the rmw opera-

tions to be able to execute operations even in replicas with

different states, e.g., due to a write being executed con-

currently with a rmw. To cope with the first challenge, we

use timestamps and some properties of quorum systems

to be sure that reads concurrent with rmw operations do

not impair the replicated object linearizability. The sec-

ond challenge is addressed through modifications on the

PBFT protocol to make the primary indicate both in which

state the proposed rmw operation and its proposed result

together with the operation sequence number.

3.1 Protocols

In this section we outline the AQS protocols for a single

object. To support multiple objects it is necessary to asso-

ciate object identifiers to each variable and message han-

dled in the protocols. The specification and correctness

proof of the protocols can be found in [2].

Figure 1 illustrates the protocols execution. It is worth

to mention that AQS read and write protocols are basically

the BFT-BC quorum protocols [13] with minor modifica-

tions. Moreover, the rmw protocol is built over PBFT [5].

Our main algorithmic contribution is to make these proto-

cols work together.

Write. The protocol runs in three phases, as illustrated

in Figure 1(a). The first phase comprises the client read-

ing the current timestamp from the servers and choosing

the one with greatest value. In the second phase the client

tries to commit a timestamp one unit greater that the great-

est timestamp read on the first phase with the digest of the

value to be written. This is done by sending this pair to

the servers and waiting for 2 f + 1 signed replies. These

replies form an update certificate, showing that 2 f + 1

servers accepted the value-timestamp pair. This certifi-

cate makes the state of the object self-verifying, allow-

ing the use of only 3 f + 1 servers even with faulty clients

[14]. The third phase is the write itself: the client sends

the value, timestamp and update certificate to the servers,

which update the state of the object if the timestamp is

greater than the one already stored and the certificate is

valid for the value-timestamp pair.

An optimization of this protocol is to execute the sec-

ond phase only if different servers reply different times-

tamps in the protocol’s first phase. This can only happen

if there are concurrent writes being executed or if some

server is faulty and replies an old timestamp. In this case

the update certificate will be built based on 2 f + 1 replies

containing the same timestamp and a digest of the value to

be written (sent by the client) received on the first phase.

This certificate vouches for the writing of the value with a

timestamp one unit greater than the one read.

Read. The read protocol works as follows. First the

client sends a message to the servers asking for the value,

timestamp and update certificate of the object. It waits

for 2 f + 1 replies with valid certificates and chooses the

value associated with the greatest timestamp. To satisfy

linearizability, the client must ensure that all subsequent

reads that happen before some update is executed will

read the same value observed by it. This is done by writ-

ing back the read value in the servers that are storing val-

ues with lower timestamps.

Figure 1(b) presents the message pattern of AQS’ read

protocol. Notice that no writebacks are needed in fault-

and concurrency-free executions.

Read-Modify-Write. The rmw protocol extends PBFT

[5] taking advantage of two of its features: (i.) the exis-

tence of a primary and the capability to elect a new one

in case it is faulty and (ii.) the ordering of operations,

required for correct execution of rmw operations.

In order to execute a rmw operation op on the system,

a client sends a signed request containing op to all servers

and waits for 2 f +1 reply messages from different servers

with the same result r for op.

Upon receiving the rmw request from the client, and

before ordering and executing it, the primary should read

the state of the object: each server sends the object state

(value, timestamp and last update certificate) to the PBFT

primary. The primary waits for 2 f + 1 of these messages

and chooses the value associated with the greatest times-

tamp received as the operation base state. The 2 f + 1 re-

ceived messages are used to build a base state certificate

that justifies the choice of the state in which op will be

done. After that, the primary starts the execution of PBFT

with the following modifications:

1. Before ordering the rmw request, the primary exe-

cutes op on its base state and generates the update

state and the result of the operation. The “rmw re-

quest” to be ordered by the primary (using PBFT)

is composed by the base state, the base state certifi-

cate, the requested operation, the update state (or the

difference between this state and the base state) and

the operation result. A sequence number should be

assigned by the primary to this message and dissemi-

nated to the other servers on a PBFT PRE-PREPARE

message.

2. Each server only accepts a PRE-PREPARE message

for an rmw if, besides the usual conditions defined in

PBFT [5], the base state is justified by the base state

certificate, and the update state and operation reply
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Figure 1: AQS protocols. Grey phases are only executed in cases of update contention or in the presence of malicious servers.

are a possible resulting state and operation result of

the execution of op on the base state. If the PRE-

PREPARE message is not accepted, the primary is

then suspected by the server.

3. The PBFT COMMIT messages must contain a digest

of the update state and must be signed to be used to

build update certificates.

4. After committing the rmw request, each server will

define the update timestamp as one unit greater than

the timestamp associated with the base state (it can

be obtained from the base state certificate). After

that, it will verify if this timestamp is greater than

the current stored timestamp and, if indeed the times-

tamp is greater, it updates the object with the up-

date state, timestamp and the certificate (composed

of 2 f + 1 COMMIT messages). In any case, the

server sends a reply to the client with the result of

the operation op.

5. When a new primary is elected (to substitute some

previous primary that was unable to order some op-

eration op), each server sends its object state together

with its PBFT VIEW-CHANGE message. The new

primary then can process the operation op to update

its current state choosing the valid state with greater

timestamp ts among the received states.

One possible optimization for this protocol is to exploit

the case in which there is no write concurrent with the

rmw operation, if expected to be common. In this case,

the first phase of the protocol, in which the primary col-

lects object states from other servers does not need to hap-

pen. Instead, when the primary receives the rmw opera-

tion from the client, it can use its object state as the op-

eration base state and the base state certificate as the up-

date certificate for this state. Other servers will accept

this base state if the base state certificate is valid and the

timestamp is greater or equal to their current timestamp.

If the message is not accepted, the system will revert to

the common execution. Figure 1(c) illustrates a fault-free

execution of the rmw protocol with this optimization (see

details in [2]).

3.2 Extensions

The basic protocols can be extended to avoid the cost of

public key signatures and to support multi-object opera-

tions, as discussed bellow.

Avoiding Signatures. To avoid the costs of public-key

signatures, the AQS protocols can also be changed to use

only MAC vectors (a.k.a., authenticators), in a very sim-

ilar way to what is done in HQ [7]. However, the con-

sequence is that the protocol will need to address several

corner cases, which will make it more complicated. In

order to maintain the stability of having only two more

communication steps in non-favorable conditions, all pro-

tocols’ signatures can be changed to MAC vectors, with

the exception of the first phase of the write and the read

phase of the rmw. This will impose the costs of signa-

tures for all update operations, but there are indeed some

advantages in doing that: (1.) the protocol is exactly the

same and no corner cases to address invalid authentica-

tors have to be implemented; (2.) modern machines have

many cores that can be used to both verify and generate

signatures in parallel; (3.) if the objective of the system

is to tolerate non-malicious Byzantine faults (e.g., heisen-

bugs, memory, network and disk corruption), the signa-

ture can be implemented with a simple digest of the mes-

sage plus the same unique id associated with the signer,

which imposes no performance drop on the protocol.

Multi-object operations. Since AQS strongly advo-

cates the partition of the service state in as many objects as

possible, it is natural to have some multi-object operations

on the system. AQS deals with them using two simple

rules: (1.) if some single-object operation is a rmw, then

the whole multi-object operation is executed as a rmw;

(2.) if some of the single-object operations are reads on

objects that will be used to write on (possibly different)

objects, the multi-object operation must be executed as a

rmw. These rules solve the problem if all involved AQS

objects are deployed on the same set of servers and use the

same primary for processing their rmws. The processing

of multi-object operations when some of these constraints

are not satisfied is left as future work.



4 Weakening the Protocols

The kind of reasoning used to develop AQS can be ex-

ploited to make BFT protocols that are simpler (when

compared with other protocols, e.g., [1, 7, 11]) and more

robust (in the sense that the protocols requires less as-

sumptions to terminate). Many recent BFT protocols are

highly optimized for the expected common-case in which

there is synchrony, no faults, and no contention on ob-

ject access. All of these optimistic conditions are part of

the environment and can be influenced by an adversary

that wants to attack the system. So, the question that one

can raise is: Is it possible to build “optimized” protocols

that do not assume conditions on the environment? The

answer is positive, so instead of expecting that assump-

tions about the environment hold, the protocol can explore

knowledge about the applications that will use it.

The environment comprises the network, the machines

and processes that interact with the replicated system.

Some common assumptions that are made about the envi-

ronment in order to optimize BFT protocols are: no con-

tention [1, 7], synchrony [11], no faults [1, 7, 11], etc. As

already discussed, there is a danger with these assump-

tions because they can be attacked to degrade performance

significantly.

On the other hand, the applications that run above the

protocol provide great opportunities for optimizations that

are yet to be explored. The fact that we have AQS instead

of SMR allows exploring the optimization space consider-

ing several dimensions of the application semantics. First,

the service operation semantics can be divided in three

classes (read, write and read-modify-write) and minimal

protocols can be found for any one of these classes. Sec-

ond, the application data consistency requirements can be

exploited to avoid complex protocols that ensure lineariz-

ability [9]. For example, in many applications regular se-

mantics2 are sufficient for read operations. Finally, the

replication middleware can take advantage of the access

control information to determine that some objects can

only have their states modified by a single writer. Notice

that this is very different from expecting no-contention:

what we do is to use the knowledge that some objects will

never experience update contention.

The protocols presented in the previous section only ad-

dress the first dimension. However, these protocols can be

modified and optimized to ensure less strict requirements:

• Single-Writer Write: if there is a single writer for a

given object, there are no concurrent writes or rmw

operations with this client’s writes. Consequently,

the two first phases of the write protocol are not nec-

essary and the reply of the third phase of a previous

2In a regular register [12] the result of a read that is concurrent with

one or more writes can be the value of the register before the writes or

one of the values being written.

write can be used as the update certificate. Therefore,

the client does not need to query the system and can

use the ACKs of the previous write as an update cer-

tificate for the next write.

• Regular Read: if in case of write-read contention

the value being read can be one of the values being

written or the previous value of the object, we can

simplify the read protocol simply cutting the write-

back phase.

• Single-Writer RMW: if there is a single writer,

there can not be contention between update opera-

tions. It means that the single-writer rmw can be

done as a simple single-writer write.

Table 1 presents the number of communication steps re-

quired for each variant of the AQS protocols. Since server

faults do not affect both quorum systems (besides making

the contention-free case not hold) and PBFT (if the faulty

server is not the primary3) we did not consider these fail-

ures when we computed the communication steps.

SR SA MR MA

read 2 2(4) 2 2(4)

write 2 2 4(6) 4(6)

rmw 2 2 5(7)* 5(7)*

Table 1: Number of communication steps of the AQS pro-

tocols in cases with and without contention (when some opti-

mization is available, the worst case value is put inside brack-

ets). SR (Single-Regular), SA (Single-Atomic [12]), MR (Multi-

Regular), MA (Multi-Atomic) are the variants of the protocol.

Protocols marked with ’*’ require partial synchrony for liveness.

5 AQS Applications

This section provides a few examples of classes of appli-

cations with different requirements that can benefit from

AQS’ flexibility.

Storage. A storage service can be implemented using

rmw operations on a block manager object to create

blocks (assigning unique block ids) and reads and writes

on the block object to access and modify its data. Further,

the access permissions and the weak semantics of storage

systems can be exploited to use the single-writer and reg-

ular versions of the protocols when possible.

3In case of faulty primary, PBFT performance suffers strong degra-

dation until a correct server is elected as a leader [8].



LDAP. The Lightweight Directory Access Protocol

specifies means to access an hierarchical name space in

which every node is an entry associated with zero or more

attributes. In our AQS implementation of LDAP every

entry, attribute and user is an AQS object. The main op-

erations supported by LDAP affect one or more of these

objects using different protocols: bind and unbind re-

quires single-writer write on the user object; search re-

quires reads on many attribute abjects; modify requires

write on one or more attribute objects; add, remove and

modifyDN require rmw operations on entries. It is worth

to notice that search and modify, by far the most used

LDAP operations, do not require rmw (and thus, do not

require consensus execution).

Deterministic state machine replication. The rmw

protocol can be used directly to implement deterministic

services that require SMR. Moreover, since we are con-

sidering deterministic services and that no writes happen,

the primary does not need to execute the operation and

send the update state to other replicas. In consequence,

the rmw protocol will work almost exactly as the PBFT

protocol. The read protocol can be used as it is to get

the system state (or parts of it), without ever running an

agreement protocol.

6 Conclusion

This paper outlined the basic ideas of the AQS protocol

suite. The protocols here presented integrate in a natural

way Byzantine quorum systems read/write protocols with

BFT SMR and enable a set of unique properties such as

the use of minimal assumptions (still satisfying the service

specification) and at most two extra communication steps

in almost all cases of non-favorable executions.
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