
1

Highly Available Intrusion-Tolerant Services with
Proactive-Reactive Recovery

Paulo Sousa, Member, IEEE, Alysson Neves Bessani, Miguel Correia, Member, IEEE,
Nuno Ferreira Neves, Member, IEEE, Paulo Verissimo, Fellow, IEEE

Abstract—In the past, some research has been done on how
to use proactive recovery to build intrusion-tolerant replicated
systems that are resilient to any number of faults, as long as
recoveries are faster than an upper bound on fault production
assumed at system deployment time. In this paper, we propose a
complementary approach that enhances proactive recovery with
additional reactive mechanisms giving correct replicas the capa-
bility of recovering other replicas that are detected or suspected
of being compromised. One key feature of our proactive-reactive
recovery approach is that, despite recoveries, it guarantees the
availability of a minimum number of system replicas necessary
to sustain correct operation of the system. We design a proactive-
reactive recovery service based on a hybrid distributed system
model and show, as a case study, how this service can effectively
be used to increase the resilience of an intrusion-tolerant firewall
adequate for the protection of critical infrastructures.

Index Terms—Intrusion Tolerance, Proactive Recovery, Reac-
tive Recovery, Firewall.

I. INTRODUCTION

ONE of the most challenging requirements of distributed
systems being developed nowadays is to ensure that

they operate correctly despite the occurrence of accidental and
malicious faults (including security attacks and intrusions).
This problem is specially relevant for an important class of
systems that are employed in mission-critical applications such
as the SCADA systems used to manage critical infrastructures
like the Power grid. One approach that gained momentum
recently, promising to satisfy this requirement, is intrusion tol-
erance [1]. This approach recognizes the difficulty in building
a completely reliable and secure system and advocates the use
of redundancy to ensure that a system still delivers its service
correctly even if some of its components are compromised.

Classical intrusion-tolerant solutions based on Byzantine
fault-tolerant replication algorithms assume that the system
operates correctly only if at most f out of n of its replicas
are compromised. The problem here is that given a sufficient
amount of time, a malicious and intelligent adversary can find
ways to compromise more than f replicas and collapse the
whole system [2].

Recently, some research showed that this problem can be
minimized if replicas are rejuvenated periodically, using a
technique called proactive recovery. These previous works
propose intrusion-tolerant replicated systems that are resilient
to any number of faults [3], [4], [5], [6]. The idea is simple:

P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P.
Verissimo are with the Department of Computer Science, Univer-
sity of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal. E-mail:
{pjsousa,bessani,mpc,nuno,pjv}@di.fc.ul.pt.

replicas are rejuvenated from time to time to remove the
effects of malicious attacks/faults. Rejuvenation procedures
may change the cryptographic keys and/or load a clean version
of the operating system. If the rejuvenation is performed
sufficiently often, then an attacker is unable to corrupt enough
replicas to break the system. Therefore, using proactive recov-
ery, one can increase the resilience of any intrusion-tolerant
replicated system able to tolerate up to f faults/intrusions — an
unbounded number of intrusions may occur during its lifetime,
as long as no more than f occur between rejuvenations. Both
the interval between consecutive rejuvenations and f must be
specified at system deployment time according to the expected
rate of fault production.

An inherent limitation of proactive recovery is that a ma-
licious replica can execute any action to disturb the system’s
normal operation (e.g., flood the network with arbitrary pack-
ets) and there is little or nothing that a correct replica (that
detects this abnormal behavior) can do to stop/recover the
faulty replica. Our observation is that a more complete solution
should allow correct replicas to force the recovery of a replica
that is detected or suspected of being faulty. We named this
solution as proactive-reactive recovery and claim that it may
improve the overall performance of a system under attack by
reducing the amount of time a malicious replica has to disturb
the normal operation of a system, without sacrificing periodic
rejuvenation. This ensures that even dormant faults will be
removed from the system. The key property of the approach
is that, as long as the faulty behavior exhibited by a replica is
detectable, this replica will be recovered as soon as possible,
ensuring that there are always a certain number of system
replicas available to sustain system’s correct operation. To the
best of our knowledge, we are the first to combine reactive
and proactive recovery in a single approach.

We recognize that perfect Byzantine failure detection is
impossible to attain in a general way, since what character-
izes a malicious behavior is dependent on the application
semantics [7], [8], [9], [10]. However, we argue that an
important class of malicious faults can be detected, specially
the ones generated automatically by malicious programs such
as viruses, worms, and even bots. These kinds of exploit
programs have little or no intelligence to avoid being detected
by replicas carefully monitoring the environment. However,
given the imprecisions of the environment, some behaviors can
be interpreted as faults, while in fact they are only effects of
overloaded replicas. In this way, a reactive recovery strategy
must address the problem of (possible wrong) suspicions to
ensure that recoveries are scheduled according to some fair

2

policy in a way such that there is always a sufficient number
of replicas for the system to be available. In fact, dealing
with imperfect failure detection is one of the most complex
aspects of the proactive-reactive recovery service proposed in
this work.

In order to show how the proactive-reactive recovery service
can be used to enhance the dependability of a system and
to evaluate the effectiveness of this approach, we applied it
to the construction of an intrusion-tolerant protection device
(a kind of firewall) for critical infrastructures. This device,
called CIS (CRUTIAL Information Switch), is a fundamental
component of an architecture to increase the resilience of
critical infrastructures proposed in the context of the EU-
IST CRUTIAL (CRitical UTility InfrastructurAL resilience)
project [11], [12]. The CIS augmented with proactive-reactive
recovery represents a very strong and dependable solution
for protecting the infrastructures — this firewall is shown
to resist powerful Denial-of-Service (DoS) attacks from both
outside hosts (e.g., located somewhere in the Internet) and
inside compromised replicas, while maintaining availability
and an adequate throughput for most critical infrastructures’
applications.

This work presents the following contributions: (i.) it intro-
duces the concept of proactive-reactive recovery and presents
a design for a generic proactive-reactive recovery service that
can be integrated in any intrusion-tolerant system; (ii.) it
shows how imperfect failure detection (i.e., suspicions) can
be managed to recover suspected replicas without sacrificing
the availability of the overall system; and (iii.) it presents
and evaluates an intrusion-tolerant perpetually resilient firewall
for critical infrastructure protection, which uses the proactive-
reactive recovery service.

II. PROACTIVE-REACTIVE RECOVERY

In previous works, some authors have showed that proactive
recovery can only be implemented in systems with some
synchrony [13], [14]. In short, in an asynchronous system a
compromised replica can delay its recovery (e.g., by making
its local clock slower) for a sufficient amount of time to
allow more than f replicas to be attacked. To overcome this
fundamental problem, the approach proposed in this work
is based on a hybrid system model [15]. Before presenting
the proactive-reactive approach and its foundation model, we
precisely state the system model on which it is based.

A. System Model

We consider a hybrid system model [15] in which the
system is composed of two parts, with distinct properties and
assumptions. Let us call them payload and wormhole:
Payload. Any-synchrony subsystem with n≥ a f +bk+1 repli-
cas P1, ...,Pn. For the purpose of our work, this part can
range from fully asynchronous to fully synchronous. At most
f replicas can be subject to Byzantine failures in a given
recovery period and at most k replicas can be recovered at the
same time. The exact threshold depends on the application.
For example, an asynchronous Byzantine fault-tolerant state
machine replication system requires n≥ 3 f +2k+1 while the

CIS presented in Section III requires only n ≥ 2 f + k + 1.
If a replica does not fail between two recoveries it is said
to be correct, otherwise it is said to be faulty. We assume
fault-independence for payload replicas, i.e., the probability
of a replica being faulty is independent of the occurrence of
faults in other replicas. This assumption can be substantiated
in practice through the extensive use of several kinds of
diversity [16], [17].
Wormhole. Synchronous subsystem with n local synchronous
and trusted components (called local wormholes) in which
at most f of these components can fail by crash. These
components are connected through a synchronous and secure
control channel, isolated from other networks. There is one
local wormhole per payload replica and we assume that when
a local wormhole i crashes, the corresponding payload replica
i crashes together. Since the local wormholes are synchronous
and the control channel used by them is isolated and syn-
chronous too, we assume several services in this environment:

1) wormhole clocks have a known precision, obtained by
a clock synchronization protocol;

2) there is point-to-point timed reliable communication
between every pair of local wormholes;

3) there is a timed reliable broadcast primitive with
bounded maximum transmission time;

4) there is a timed atomic broadcast primitive with bounded
maximum transmission time.

One should note that all of these services can be easily
implemented in the crash-failure synchronous distributed sys-
tem model [18], [19]. In practice, local wormholes can be
small tamper-proof hardware modules (e.g., smartcards, or PC
appliance boards [20]) running a real-time operating system
(e.g., RTAI [21]) and connected by a switched Ethernet, which
has been shown to offer real-time guarantees under controlled
traffic loads [22].

B. The Proactive Resilience Model (PRM)

The PRM [6], [23] applies the system model described in
Section II-A to systems enhanced with proactive recovery.
Under the PRM, the proactive recovery subsystem is deployed
in the wormhole part and executes the (proactive recovery)
protocols that rejuvenate the applications/protocols running
in the payload part. The proactive recovery subsystem is
modeled as a distributed component called Proactive Recovery
Wormhole (PRW).

The distributed PRW is composed of a local module in every
host called the local PRW. Local PRWs are interconnected by
a synchronous and secure control channel. The PRW executes
periodic rejuvenations through a periodic timely execution
service with two parameters: TP and TD. Namely, each local
PRW executes a rejuvenation procedure F in rounds, each
round is initiated within TP from the last trigger, and the
execution time of F is bounded by TD. Notice that if local
recoveries are not coordinated, then the system may present
unavailability periods during which a large number (possibly
all) replicas are recovering. For instance, if the replicated
system tolerates up to f arbitrary faults, then it will typically
become unavailable if f +1 replicas recover at the same time,

3

time

{P1...Pk} {Pn-k+1...Pn}...

recover
k replicas

recover
k replicas

{P1...Pk} {Pn-k+1...Pn}...

≤TP

≤TD

recover
k replicas

recover
k replicas

recover n replicas in groups

≤TP

≤TD






k
n

recover n replicas in groups 




k
n

Figure 1. Relationship between the rejuvenation period TP, the rejuvenation
execution time TD, and k.

even if no “real” fault occurs. Therefore, if a replicated system
able to tolerate f Byzantine servers is enhanced with periodic
recoveries, then availability is guaranteed by (i.) defining the
maximum number of replicas allowed to recover in parallel
(call it k); and (ii.) deploying the system with a sufficient
number of replicas to tolerate f Byzantine servers and k
simultaneously recovering servers.

Figure 1 illustrates the rejuvenation process. Replicas are
recovered in groups of at most k elements, by some specified
order: for instance, replicas {P1, ...,Pk} are recovered first, then
replicas {Pk+1, ...,P2k} follow, and so on. Notice that k defines
the number of replicas that may recover simultaneously, and
consequently the number of distinct d n

k e rejuvenation groups
that recover in sequence. For instance, if k = 2, then at most
two replicas may recover simultaneously in order to guarantee
availability. This means also that at least d n

2e rejuvenation
groups (composed of two replicas) will need to exist, and they
can not recover at the same time. Notice that the number of
rejuvenation groups determines a lower-bound on the value of
TP and consequently defines the minimum window of time an
adversary has to compromise more than f replicas. From the
figure it is easy to see that TP ≥ d n

k eTD.

C. The Proactive-Reactive Recovery Wormhole (PRRW)

The PRRW is an extension of the PRW that combines
proactive and reactive recoveries. Therefore, the PRRW offers
a single integrated service: the proactive-reactive recovery
service. This service needs input information from the payload
replicas in order to trigger reactive recoveries. This informa-
tion is obtained through two interface functions: W suspect(j)
and W detect(j). Figure 2 presents this idea.

A payload replica i calls W suspect(j) to notify the PRRW
that the replica j is suspected of being faulty. This means that
replica i suspects replica j but it does not know for sure if it is
really faulty. Otherwise, if replica i knows without doubt that
replica j is faulty, then W detect(j) is called instead. It should
be noted that the service is generic enough to deal with any
kind of replica failures, e.g., crash and Byzantine. For instance,
replicas may: use an unreliable crash failure detector [24] (or a
muteness detector [7]) and call W suspect(j) when a replica
j is suspected of being crashed; or detect that a replica j
is sending unexpected messages or messages with incorrect
content [9], [10], calling W detect(j) in this case.

If f +1 different replicas suspect and/or detect that replica
j is faulty, then this replica is recovered. This recovery can

be done immediately, without endangering availability, in the
presence of at least f + 1 detections, given that in this case
at least one correct replica detected that replica j is really
faulty. Otherwise, if there are only f + 1 suspicions, the
replica may be correct and the recovery must be coordinated
with the periodic proactive recoveries in order to guarantee
that a minimum number of correct replicas are always alive
to ensure the system availability. The quorum of f + 1 in
terms of suspicions or detections is needed to avoid recoveries
triggered by faulty replicas: at least one correct replica must
detect/suspect a replica for some recovery action to be taken.

Replica 1

PRRW

…
W_suspect(j) W_detect(j)

Replica 2

W_suspect(j) W_detect(j)

Replica n

W_suspect(j) W_detect(j)

Figure 2. PRRW architecture.

As will be made clear in the next sections, we do not provide
any means for a replica to “unsuspect” some other replica it
previously suspected. We choose not to provide this service
to avoid difficulties with the computation of the number of
suspects (some replicas could see it while others not) and
because suspicions are cleaned when a replica is recovered.

It is worth to notice that the service provided by the
proactive-reactive recovery wormhole is completely orthogo-
nal to the failure/intrusion detection strategy used by a system.
The proposed service only exports operations to be called
when a replica is detected/suspected to be faulty. In this
sense, any approach for fault detection (including Byzantine)
[24], [7], [9], [10], system monitoring [25] and/or intrusion
detection [26], [27] can be integrated in a system that uses the
PRRW. The overall effectiveness of our approach, i.e., how
fast a compromised replica is recovered, is directly dependent
on the detection/diagnosis accuracy.

1) Scheduling Recoveries without Harming Availability:
The proactive-reactive recovery service initiates recoveries
both periodically (time-triggered) and whenever something
bad is detected or suspected (event-triggered). As explained
in Section II-B, periodic recoveries are done in groups of at
most k replicas, so no more than k replicas are recovering at
the same time. However, the interval between the recovery of
each group is not tight. Instead we allocate d f

k e time intervals
between periodic recoveries such that they can be used by
event-triggered recoveries. This amount of time is allocated to
allow at most f recoveries (in groups of k replicas) between
each periodic recovery, in this way being able to handle the
maximum number of faults assumed.

The approach is based on real-time scheduling with an
aperiodic server task to model aperiodic tasks [28]. The
idea is to consider the action of recovering as a resource
and to ensure that no more than k correct replicas will be
recovering simultaneously. As explained before, this condition
is important to ensure that the system always stays available.
Two types of real-time tasks are utilized by the proposed
mechanism:

4

Figure 3. Recovery schedule (in an Si j or Ri subslot there can be at most k parallel replica recoveries).

• task Ri: represents the periodic recovery of up to k
replicas (in parallel). All these tasks have worst case
execution time TD and period TP;

• task A: is the aperiodic server task, which can handle at
most d f

k e recoveries (of up to k replicas) every time it is
activated. This task has worst case execution time d f

k eTD

and period (d f
k e+1)TD.

Each task Ri is executed at up to k different local worm-
holes, while task A is executed in all wormholes, but only
the ones with the payload detected/suspected of being faulty
are (aperiodically) recovered. The time needed for executing
one A and one Ri is called the recovery slot i and is denoted
by Tslot. Every slot i has d f

k e recovery subslots belonging
to the A task, each one denoted by Si j, plus a Ri subslot.
Thus, every slot i has a total of d f

k e+ 1 recovery subslots.
Figure 3 illustrates how time-triggered periodic and event-
triggered aperiodic recoveries are combined.

In the figure it is easy to see that when our reactive recovery
scheduling approach is employed, the value of TP must be
increased. In fact, TP should be greater than or equal to
d n

k e(d
f
k e+1)TD, which means that reactive recoveries increase

the rejuvenation period by a factor of (d f
k e+ 1). This is not

a huge increase since f is expected to be small. In order to
simplify the presentation of the algorithms, in the remaining
of the paper it is assumed that TP = d n

k e(d
f
k e+1)TD.

Notice that a reactive recovery only needs to be scheduled
according to the described mechanism if replica i is only
suspected of being faulty (it is not assuredly faulty), i.e., if
less than f +1 replicas have called W detect() (but the total
number of suspicions and detections is greater than or equal to
f + 1). If the wormhole Wi knows with certainty that replica
i is faulty, i.e., if a minimum of f + 1 replicas have called
W detect(i), replica i can be recovered without availability
concerns, since it is accounted for as one of the f faulty
replicas.

2) The PRRW Algorithm: The proactive-reactive recovery
service is now explained in detail. The main procedures
are presented in Algorithm 1, while Algorithm 2 deals with
recovery slot allocation. Algorithms executed inside the PRRW
are implemented as threads in a real-time environment with a
preemptive scheduler where static priorities are defined from
1 to 3 (priority 1 being the highest). In these algorithms we
do not consider explicitly the clock skew and drift, since we
assume that these deviations are small due to the periodic clock
synchronization (see Section II-A), and thus are compensated

in the protocol parameters (i.e., in the time bounds for the
execution of certain operations).
Parameters and variables. Algorithm 1 uses six parameters:
i, n, f , k, TP, and TD. The identifier (id) of the local wormhole
is represented by i ∈ {1, ...,n}; n specifies the total number of
replicas and consequently the total number of local worm-
holes; f defines the maximum number of faulty replicas; k
specifies the maximum number of replicas that recover at the
same time; TP defines the maximum time interval between
consecutive triggers of the recovery procedure (depicted in
Figure 3); and TD defines the worst case execution time of the
recovery of a replica. Additionally, four variables are defined:
tnext stores the instant when the next periodic recovery should
be triggered by local wormhole i; the Detect set contains the
processes that detected the failure of replica i; the Suspect set
contains the processes that suspect replica i of being faulty;
and scheduled indicates if a reactive recovery is scheduled for
replica i.
Reactive recovery service interface. As mentioned be-
fore, input information from payload replicas is needed
in order to trigger reactive recoveries. This information is
provided through two interface functions: W suspect() and
W detect(). W suspect(j) and W detect(j) send, respectively,
a SUSPECT or DETECT message to wormhole j, which is
the wormhole in the suspected/detected node (lines 1-2). When
a local wormhole i receives such a message from wormhole
j, j is inserted in the Suspect or Detect set according to the
type of the message (lines 3-4). The content of these sets may
trigger a recovery procedure as it will be explained later in
this section.
Proactive recovery. The proactive recovery() procedure is
triggered by each local wormhole i at boot time (lines 5-11).
It starts by calling a routine that synchronizes the clocks of
the local wormholes with the goal of creating a virtual global
clock, and blocks until all local wormholes call it and can start
at the same time. When all local wormholes are ready to start,
the virtual global clock is initialized at (global) time instant 0
(line 5). The primitive global clock() returns the current value
of the (virtual) global clock. After the initial synchronization,
the variable tnext is initialized (line 6) in a way that local
wormholes trigger periodic recoveries in groups of up to k
replicas according to their id order, and the first periodic
recovery triggered by every local wormhole is finished within
TP from the initial synchronization. After this initialization, the
procedure enters an infinite loop where a periodic recovery

5

Algorithm 1 PRRW proactive-reactive recovery service.

{Parameters}
integer i {Id of the local wormhole}
integer n {Total number of replicas}
integer f {Maximum number of faulty replicas}
integer k {Max. replicas that recover at the same time}
integer TP {Periodic recovery period}
integer TD {Recovery duration time}

{Constants}
integer Tslot , (d f

k e+1)TD {Slot duration time}

{Variables}
integer tnext = 0 {Instant of the next periodic recovery start}
set Detect = ∅ {Processes that detected me as faulty}
set Suspect = ∅ {Processes suspecting me of being faulty}
bool scheduled = false {Indicates if a reactive recovery is
scheduled for me}

{Reactive recovery interface — threads with priority 3}
service W suspect(j)

1: send(j,〈SUSPECT〉)
service W detect(j)

2: send(j,〈DETECT〉)
upon receive(j,〈SUSPECT〉)

3: Suspect← Suspect∪{ j}
upon receive(j,〈DETECT〉)

4: Detect← Detect∪{ j}

{Periodic recovery — thread with priority 1}
procedure proactive recovery()

5: synchronize global clock()
6: tnext← global clock()+(d i−1

k eTslot + d f
k eTD)

7: loop
8: wait until global clock() = tnext
9: recovery()

10: tnext = tnext +TP
11: end loop
procedure recovery()
12: recovery actions()
13: Detect←∅
14: Suspect←∅
15: scheduled← false

{Reactive recovery execution — threads with priority 2}
upon |Detect| ≥ f +1
16: recovery()
upon (|Detect|< f +1)∧ (|Suspect∪Detect| ≥ f +1)
17: if ¬scheduled then
18: scheduled← true
19: 〈s,ss〉 ← allocate subslot()
20: if sooner(s,d i

k e) then
21: wait until global clock() mod TP = (s−1)Tslot +(ss−1)TD
22: recovery()
23: end if
24: scheduled← false
25: end if

is triggered within TP from the last triggering (lines 7-11).
The recovery() procedure (lines 12-15) starts by calling the
abstract function recovery actions() (line 12) that should be
implemented according to the logic of the system using the
PRRW. Typically, a recovery starts by saving the state of the
local replica if it exists, then the payload operating system
(OS) is shutdown and its code is restored from some read-only
medium, and finally the OS is booted, bringing the replica to a
supposedly correct state. The last three lines of the recovery()
procedure set the scheduled flag to false and re-initialize the
Detect and Suspect sets because the replica should now be
correct (lines 13-15).

Reactive recovery. Reactive recoveries can be triggered in
two ways: (1) if the local wormhole i receives at least f + 1
DETECT messages, then recovery is initiated immediately
because replica i is accounted as one of the f faulty replicas
(line 16); (2) otherwise, if f + 1 DETECT or SUSPECT
messages arrive, then replica i is at best suspected of being
faulty by one correct replica. In both cases, the f + 1 bound
ensures that at least one correct replica detected a problem
with replica i. In the suspect scenario, recovery does not have
to be started immediately because the replica might not be
faulty. Instead, if no reactive recovery is already scheduled
(line 17), the aperiodic task finds the closest slot where the
replica can be recovered without endangering the availability
of the replicated system. The idea is to allocate one of the
(reactive) recovery subslots Si j depicted in Figure 3. This is
done through function allocate subslot() (line 19 – explained
later). Notice that if the calculated slot is going to occur later
than the slot where the replica will be proactively recovered,

then the replica does not need to be reactively recovered (line
20). If this is not the case, then local wormhole i waits for
the allocated subslot and recovers the corresponding replica
(lines 21-22). Notice that the expression global clock() mod
TP returns the time elapsed since the beginning of the current
period, i.e., the position of the current global time instant in
terms of the time diagram presented in Figure 3.

Recovery subslot allocation. Subslot management is based
on accessing a data structure replicated in all wormholes
through a timed total order broadcast protocol, as described in
Algorithm 2. This algorithm uses one more parameter and one
more variable besides the ones defined in Algorithm 1. The
parameter T∆ specifies the upper-bound on the delivery time
of a message sent through the synchronous control network
connecting all the local wormholes. Variable Subslot is a table
that stores the number of replicas (up to k) scheduled to
recover at each subslot of a recovery slot, i.e., Subslot[〈s,ss〉]
gives the number of processes using subslot ss of slot s (for
a maximum of k). This variable is used to keep the subslot
occupation, allowing local wormholes to find the next available
slot when it is necessary to recover a suspected replica.

A subslot is allocated by local wormhole i through the
invocation of the function allocate subslot() (called in Al-
gorithm 1, line 19). This function timestamps and sends an
ALLOC message using total order multicast (line 1) to all
local wormholes and waits until this message is received
(line 2). Note that the total order multicast protocol delivers
all messages to all wormholes in the same order. At this
point the (deterministic) function local allocate subslot() is
called and the next available subslot is allocated to the replica

6

Algorithm 2 PRRW recovery slot allocation.
{Parameters (besides the ones defined in Algorithm 1)}
integer T∆ {Bound on message delivery time}

{Variables (besides the ones defined in Algorithm 1)}
table Subslot[〈1,1〉...〈d n

k e,d
f
k e〉] = 0 {Number of processes scheduled to recover at each subslot of a recovery slot}

procedure allocate subslot()
1: TO-multicast(〈ALLOC, i,global clock()〉)
2: wait until TO-receive(〈ALLOC, i, tsend〉)
3: return local allocate subslot(tsend)

upon TO-receive(〈ALLOC, j, tsend〉)∧ j 6= i
4: local allocate subslot(tsend)

procedure local allocate subslot(tsend)
5: tround ← (tsend +T∆) mod TP
6: curr subslot← 〈b tround

Tslot
c+1,b tround mod Tslot

TD
c+1〉

7: f irst← true
8: loop
9: curr subslot← next subslot(curr subslot)

10: if f irst then
11: f irst← f alse
12: f irst subslot← curr subslot
13: else if curr subslot = f irst subslot then
14: return 〈d n

k e+1,d f
k e+1〉

15: end if
16: if Subslot[curr subslot] < k then
17: Subslot[curr subslot]← Subslot[curr subslot]+1
18: return curr subslot
19: end if
20: end loop

procedure next subslot(〈s,ss〉)
21: if ss < d f

k e then
22: ss← ss+1
23: else if s < d n

k e then
24: ss← 1
25: s← s+1
26: else
27: ss← 1
28: s← 1
29: end if
30: return 〈s,ss〉

upon (tround ← (global clock() mod TP)) mod Tslot = 0
31: if tround

Tslot
= 0 then

32: prev slot← d n
k e

33: else
34: prev slot← tround

Tslot
35: end if
36: ∀p,Subslot[〈prev slot,p〉]← 0

(line 3). The combination of total order multicast with the
sending timestamp Tsend ensures that all local wormholes
allocate the same subslots in the same order. The local
allocation algorithm is implemented by the already mentioned
local allocate subslot() function (lines 5-20). This function
manages the various recovery subslots and assigns them to the
replicas that request to be recovered. It starts by calculating
the first subslot that may be used for a recovery according
to the latest global time instant (tsend +T∆) when the ALLOC
message may be received by any local wormhole (lines 5-6),
then it searches and allocates the next available subslot, i.e.,
a slot in the future that has less than k recoveries already
scheduled (lines 7-30).

To illustrate how the recovery subslot allocation works, let
us analyze a simple example scenario. Assume that n = 4,
f = 1, k = 1, TD = 150 seconds, and T∆ = 1 second. From these
values, we derive Tslot = 300 seconds, and TP = 1200 seconds.
Consider now that replica i receives f + 1 SUSPECT mes-
sages and in consequence calls allocate subslot() because no
reactive recovery is scheduled. Consider also that the ALLOC
message is multicasted by replica i when global clock() =
1999 seconds (line 1). This means that all replicas receive
this message (by the same order) within 1 second and they
all call local allocate subslot(1999) (line 3 for replica i, line
4 for the other replicas). The following actions are executed
deterministically by every replica. tround is set to 800 (2000
mod 1200 = 800 in line 5) and curr subslot is set to 〈3,2〉 (line
6). Then, the next subslot calculated in line 9 returns 〈4,1〉 and
curr subslot is updated to this value. Line 16 checks if the

calculated subslot has less than k = 1 scheduled recoveries,
and if this is true, the number of scheduled recoveries is
increased and this subslot is returned (lines 17-18). Otherwise,
the next subslot is calculated (line 9) and the same verification
is done until an available subslot being found. In our scenario,
the next subslot would be 〈1,1〉, then 〈2,1〉, and so on.
The code between lines 10 and 15 takes care of the case
when there is no available subslot, by checking if the loop
returns to the subslot from where it started. If this happens, an
invalid subslot is returned (line 14) and the function sooner
of Algorithm 1 (line 20) returns false, aborting the reactive
recovery. The replica is only recovered later in its periodic
recovery slot. Notice that this exhaustion of recovery subslots
is impossible to occur in our example scenario, given that
there is a total of d n

k ed
f
k e = 4 subslots, one per replica. In

general, recovery subslots exhaustion can only occur when
the condition d n

k ed
f
k e< n is true, i.e., when k > 1.

Reactive recovery subslots are reused during system oper-
ation, so they need to be periodically freed. The deallocation
of reactive recovery subslots is triggered at the beginning of
each recovery slot (lines 31-36). In the example scenario, it
would be triggered each Tslot = 300 seconds. The deallocation
procedure starts by calculating the previous slot (tround

Tslot
). If the

previous slot is zero (line 31), it means that the actual previous
slot was the last of the previous period (line 32), because slots
are numbered between 1 and n. Otherwise, the previous slot
corresponds to the one calculated (line 34). The deallocation
ends by setting to zero the number of scheduled recoveries of
each subslot of the previous slot.

7

III. CASE STUDY: THE CIS PROTECTION SERVICE

In this section we explain how the PRRW component can
be extended and integrated to make a perpetually-resilient
system. The described system is a protection device for critical
information infrastructures called CIS. In generic terms, the
CIS can be seen as an improved distributed application layer
firewall. Here we only present a high-level view of the system
focusing in the PRRW integration. For a complete description
of the CIS, see [12], [29].

A. Context and Motivation

Today’s critical infrastructures like the Power Grid are
essentially physical processes controlled by computers con-
nected by networks. Once these systems were highly isolated
and secure against most security threats. However, in recent
years they evolved in several aspects that greatly increased
their exposure to cyber-attacks coming from the Internet.
Firstly, the computers, networks and protocols used in these
systems are no longer proprietary and specific, but standard
PCs and networks. Second, most of them are connected to
the Internet and corporate networks. Therefore, these infras-
tructures have a level of vulnerability similar to other systems
connected to the Internet, but the socio-economic impact of
their failure can be huge. This scenario, reinforced by several
recent incidents [30], is generating a great concern about
the security of these infrastructures, especially at government
level.

There was a proposal for a reference architecture to protect
critical infrastructures in the context of the CRUTIAL EU-IST
project [11]. The idea is to model the whole infrastructure as
a set of protected LANs, representing the typical facilities that
compose it (e.g., power transformation substations or corporate
offices), which are interconnected by a wider-area network
(WAN). Using this architecture, we reduce the problem of
critical infrastructures protection to the problem of protecting
LANs from the WAN or other LANs. In consequence, the
model and architecture allow us to deal both with outsider
threats (protecting a facility from the Internet) and insider
threats (protecting a critical host from other hosts in the
same physical facility, by locating them in different LANs). A
fundamental component of this architecture is the CIS, which
is deployed at the borders of a LAN. The CIS ensures that the
incoming and outgoing traffic in/out of the LAN satisfies the
security policy of the infrastructure.

A CIS can not be a simple firewall since that would put the
critical infrastructure at most at the level of security of current
(corporate) Internet systems, which is not acceptable because
intrusions occur with some frequency in these systems. In-
stead, the CIS has several different characteristics, being the
most important its intrusion tolerance, i.e., it operates correctly
even if there are intrusions in some of its components, to make
it withstand a high degree of hostility from the environment,
seeking unattended perpetual operation. In the next sections
we show how the basic intrusion-tolerant design of the CIS
can be integrated with the PRRW.

Traffic Replicator Traffic Replicator

local
PRRW

local
PRRW

local
PRRW

local
PRRW

Figure 4. Intrusion-tolerant CIS protection service enhanced with the PRRW.

B. How the CIS Works

The intrusion-tolerant CIS is replicated in a set of n≥ 2 f +1
machines1 connected both to the protected LAN and the
insecure WAN through traffic replication devices (e.g., a hub
or a switch). Figure 4 depicts the CIS architecture. Note that
the basic CIS requires only three replicas to tolerate one
intrusion, but extra replicas are needed when the PRRW is
used. Section III-C explains this in more detail.

The CIS design presents two challenges that make it es-
sentially different from other Byzantine fault-tolerant services.
The first is that a firewall-like component has to be transparent
to protocols that pass through it, so it can not modify the
protocol itself to obtain intrusion tolerance. This also means
that recipient nodes (inside the protected network) will ignore
any internal CIS intrusion-tolerance mechanisms, and as such
they can not protect themselves from messages (forwarded
by faulty replicas) that do not satisfy the security policy. To
address these two challenges, we resort to wormholes [15]:
we assume that each replica of the CIS has a trusted com-
ponent that cannot be corrupted (the local PRRWs), and that
these components are connected through an isolated network.
Moreover, each CIS replica employs diversity to avoid com-
mon mode failures, such as different operating systems (e.g.,
Linux, FreeBSD, Windows XP), and the operating systems are
configured to use different passwords.

In a nutshell, the message processing is done in the follow-
ing way: each CIS replica receives all packets to the LAN and
verifies if these packets satisfy some pre-defined application-
level security policy. If a message is in accordance with the
policy, it is accepted by the CIS, and must be forwarded
to its destination in the LAN. Every message approved by
a replica is issued to its local wormhole to be signed. The
local wormholes vote approved messages between themselves
and, if a message receives at least f +1 votes, i.e., if at least
f + 1 replicas approved the message and issued it to their
local wormholes, then the message is signed using a secret key
installed in the wormhole component. This secret key is known

1The CIS design presented here assumes that policies are stateless. In [29]
we explain how stateful policies could be supported.

8

only by the local wormholes and by the LAN computers, i.e.,
it is not known by replicas2. To guarantee that LAN computers
are able to understand which messages are signed and which
are not, these signatures are in fact Message Authentication
Codes (MACs) generated using the secret key and by making
use of IPSEC [31], a set of standard protocols that are expected
to be generalized in critical infrastructures information sys-
tems, according to best practice recommendations from expert
organizations and governments [32]. Therefore, we assume
that the IPSEC Authentication Header (AH) protocol [33]
runs both in the LAN computers and in the local wormholes.
Once the message is signed, one of the replicas (the leader)
is responsible for forwarding the approved message to its
destination. Besides message signing, the local wormholes
are responsible also for leader election when the current
leader becomes unavailable. The traffic replication devices in
Figure 4 are responsible for broadcasting the WAN and LAN
traffic to all replicas. The LAN replication device is specially
useful to detect if malicious replicas send non-approved (i.e.,
non-signed or signed with an incorrect key) messages to the
LAN.

C. Integrating the CIS and the PRRW

There are three main issues that must be addressed when
integrating the PRRW into an intrusion-tolerant application:
the addition of extra replicas to allow availability even during
recoveries, the implementation of the recovery actions() pro-
cedure (i.e., what actions are done when it is time to recover
a replica) and defining in which situations the W suspect and
W detect PRRW interface functions are called by a replica.

1) Extra replicas: As explained in Section II-C, at most k
correct replicas are recovered at the same time. This means that
the intrusion-tolerant CIS enhanced with the PRRW needs a set
of n≥ 2 f +k+1 replicas to make use of the PRRW proactive-
reactive recovery service without endangering availability. In
the simplest scenario where one fault is tolerated between
recoveries (f = 1) and a single replica is recovered at the
same time (k = 1), the CIS combined with the PRRW needs
a total of four replicas. Figure 4 illustrates this scenario.

2) Recovery actions: In the case of the CIS, the imple-
mentation of the recovery actions() procedure comprises the
execution of the following sequence of steps:

(i.) if the replica to be recovered is the current CIS leader,
then a new leader must be elected: a message is sent
by the local wormhole of the current leader to all local
wormholes informing that the new leader is the last
replica that finished its periodic recovery;

(ii.) the replica is deactivated, i.e., its operating system is
shutdown;

(iii.) the replica operating system is restored using some clean
image (that can be different from the previous one);

(iv.) the replica is activated with its new operating system
image.

2Note that it is assumed that LAN computers are part of the same trust
domain, so any corrupted LAN computer (that for instance sends the secret
key to the replicas) is tantamount to the whole LAN being corrupted.

Step (i.) is needed only because our replication algorithm
requires a leader and the wormhole is responsible for main-
taining it. In step (iii.) the wormhole can select one from
several pre-generated operating system images to be installed
on the replica. These images can be substantially different
(different operating systems, kernel versions, configurations,
access passwords, etc.) to enforce fault independence between
recoveries. In step (iv.) we assume that when the system is
rebooted the CIS software is started automatically.

3) Calling PRRW interface functions: The PRRW interface
functions for informing suspicions and detections of faults are
called by the CIS replicas when they observe something that
was not supposed to happen and/or when something that was
supposed to happen does not occur. In the case of the CIS,
the constant monitoring of the protected network allows a
replica to detect some malicious behaviors from other replicas.
Notice that this can only be done because our architecture
(Figure 4) has a traffic replication device inside the LAN
(ensuring that all replicas see every message) and it is assumed
that all messages sent by the CIS replicas to the LAN are
authenticated3.

Currently, there are two situations in which the PRRW
interface functions are called:
(i.) Some replica sends an invalid message to the protected
network: if a correct replica detects that some other replica
transmitted an illegal message (one that was not signed by
the wormhole) to the LAN, it calls W detect informing that
the replica behaved in a faulty way. From Algorithm 1 it can
be seen that when f + 1 replicas detect a faulty replica, it is
recovered;
(ii.) The leader fails to forward a certain number of approved
messages: if a correct replica knows that some message was
approved by the wormhole and it does not see this message
being forwarded to the LAN, it can conclude that something
is wrong with the current leader (which was supposed to send
the message). Due to the many imprecisions that may happen
in the system (asynchrony, message losses due to high traffic),
it is perfectly possible that a correct leader did not receive the
message to be approved or this message was forwarded but
some replica did not receive it from the LAN. To cope with
this, we define an omission threshold for the leader which
defines the maximum number of omissions that a replica can
perceive from some leader replica before suspecting it to be
faulty. Notice that it is impossible to know with certainty if the
leader is faulty in this case, therefore replicas call W suspect
and not W detect. From Algorithms 1 and 2 it can be seen that
when f +1 replicas suspect the leader, a recovery is scheduled
for it.

D. Prototype

Our implementation uses the XEN virtual machine monitor
[34] with the Linux operating system to isolate the PRRW
from the CIS replicas. The architecture is presented in Fig-
ure 5. A XEN system has multiple layers, the lowest and most
privileged of which is XEN itself. XEN may host multiple

3The substantiation of this assumption in practice will be described in
Section III-D.

9

X
E
N

X
E
N

X
E
N

WAN Switch

CIS1

C
O
N
T
R
O
L

N
E
T
W
O
R
K

LAN Switch

dom0

dom1
PRRW1

CIS2

dom0

dom1

CISn

dom0

dom1

PRRW2

PRRWn

Figure 5. CIS Prototype architecture.

guest operating systems, every one executed within an isolated
virtual machine (VM) or, in XEN terminology, a domain.
Domains are scheduled by XEN to make effective use of
the available physical resources (e.g., CPUs). Each guest OS
manages its own applications. The first domain, dom0, is
created automatically when the system boots and has special
management privileges. Domain dom0 builds other domains
(dom1, dom2, dom3, ...) and manages their virtual devices.
It also performs administrative tasks such as suspending and
resuming other VMs, and it can be configured to execute with
higher priority than the remaining VMs.

As depicted in Figure 5, every replica uses XEN to isolate
the payload from the PRRW part. Local PRRWs run in repli-
cas’ domain dom0, and the CIS protection service executes in
replicas’ domain dom1. Domain dom0 is configured to execute
with higher priority than domain dom1 in every replica, in
order to emulate the real-time behavior required by the PRRW
service. The local PRRWs are connected through an isolated
control network.

The recovery actions executed by the PRRW make use of
XEN (command line) system calls xm destroy and xm create
to, respectively, shutdown and boot a CIS replica. Note that
xm destroy corresponds to a virtual power off and it is almost
instantaneous, whereas a normal shutdown could take several
seconds. We avoid the delay of a normal shutdown because
we assume that the running OS may have been compromised
and thus it cannot be reutilized.

In order to provide a virtual global clock to each local
PRRW, we implemented a clock synchronization protocol.
There are many clock synchronization algorithms available
in the literature suitable to synchronous environments with
crash faults [19]. The protocol we implemented combines
techniques proposed on some of these works and it is now
briefly explained. Local PRRWs are initially launched in any
order as long as local PRRW 1 is the last one to begin
execution. When local PRRW 1 starts executing, it broadcasts
a small synchronization message to all PRRWs (including
itself) and this message is used by every local PRRW to
define the global time instant 0. Then, in order to maintain
the virtual global clocks with a bounded precision, each local

PRRW broadcasts a synchronization message exactly when a
proactive recovery is triggered. Given that all local PRRWs
know when proactive recoveries should be triggered, they
can adjust their clocks accordingly. Both mechanisms assume
that the broadcast reception instant is practically the same
everywhere in the control network, which is substantiated by
the fact that the control network is provided by a switch used
only by the local PRRWs.

To simplify the design and to avoid changes in the kernel,
the CIS prototype operates at the UDP level, instead of IP
level as most firewalls do. Therefore, there was no need
to implement packet interception because packets are sent
directly to the CIS. Moreover, authentication is not done at
the IP level (as when using IPSEC/AH), but instead the
PRRW calculates the HMAC4 of the payload UDP packet,
and then the two are concatenated. Notice that this type
of authentication implies the same type of overhead of IP
authentication. Given that the CIS prototype operates at the
UDP level, we employ IP multicast to enforce broadcast
in WAN and LAN communication. Therefore, we do not
need physical traffic replication devices in our prototype5.
Moreover, the LAN switch uses access control lists to prevent
replicas from spoofing their MAC addresses, and each replica
stores a table with the MAC address of each other replica.

Periodic and reactive recoveries reset the state and restore
the code of a replica. While this is useful to restore the
correctness of the replica, it would be interesting if we
were able to introduce diversity in the recovery process. For
instance, each recovery could randomize the address space of
the replica (e.g., using PAX [36]) in order to minimize the
usefulness of the knowledge obtained in the past to increase
the chances of future attacks. Although it was not possible
to integrate XEN with an address space layout randomization
mechanism such as PAX, the prototype incorporates some
diversity mechanisms: we maintain a pool of OS images
with different configurations (e.g., different root passwords,
different kernel versions) and each recovery (proactive or
reactive) randomly chooses and boots one of these images.

Domain dom0 executes with higher priority than domain
dom1, but since it is based on a normal Linux OS, it provides
no strict real-time guarantees. Currently, only modified ver-
sions of Linux, NetBSD, OpenBSD and Solaris can be run on
dom0.

IV. EXPERIMENTAL EVALUATION

The experimental setup was composed by a set of four
machines representing the CIS replicas (n = 4, f = 1, k = 1)
connected to the three networks defined in our prototype archi-
tecture: LAN, WAN, and the control network (see Figure 5).
These networks were defined as separated VLANs configured
on two Dell Gigabit switches. The LAN and control networks
shared the same switch (using different VLANs), whereas the
WAN network was deployed in a different switch. The LAN

4HMAC is a standard for calculating MACs, and in the prototype we used
the SHA-1 hash function [35].

5Nevertheless, if the CIS would operate at the IP level, we could configure
the WAN and LAN switches to use the failopen mode in order to force
broadcast.

10

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(m
s)

Illegal Traffic Generated (Mbps)

(a) Average latency.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
se

c)

Illegal Traffic Generated (Mbps)

(b) Maximum throughput.

Figure 6. Latency and throughput of the CIS in forwarding legal messages sent by a good sender in the WAN to the station computer in the LAN while a
malicious host in the WAN is sending illegal traffic (not approved by the CIS).

and WAN were configured as 100 Mbps networks while the
control network operated at 1 Gbps. We used three additional
PCs in the experiments. One PC was connected to the LAN
emulating the station computer and, in the WAN side, two
PCs were deployed: a good sender trying to transmit legal
traffic to the station computer, and a malicious sender sending
illegal messages to the LAN (equivalent to a DoS attack).
Every machine of our setup was a 2.8 GHz Pentium 4 PC
with 2 GB RAM running Fedora Core 6 with Linux 2.6.18,
and XEN 3.0.3 to manage the virtual machines. As explained
in Section III-D, each CIS physical host uses the XEN virtual
machine monitor to manage two virtual machines: a non-
privileged one with 1536 MB of RAM (dom1 – CIS protection
service) and a trusted one with 512 MB of RAM (dom0 – local
PRRW).

A. Performance of recoveries

In the first experiment we tried to find appropriate values
for parameters TD (recover time) and TP (recover period). We
measured the time needed for each recovery task in a total
of 300 recovery procedures executed during CIS operation.
Table I shows the average, standard deviation, and maximum
time for each recovery task: CIS shutdown, CIS rejuvenation
by restoring its disk with a clean image randomly selected
from a set of predefined images with different configurations,
and the reboot of this new image. All disk images used in this
experiment had sizes of approximately 1.7 GB.

Shutdown Rejuvenation Reboot Total
Average 0.6 72.2 70.1 144.6
Std. Deviation 0.5 1.2 0.3 0.9
Maximum 1.0 74.0 71.0 146.0

Table I
TIME NEEDED (IN SECONDS) FOR THE SEVERAL STEPS OF A REPLICA

RECOVERY (1.7 GB OS IMAGES).

From Table I one can see that a maximum of 146 seconds
(∼ 2.5 minutes) are needed in order to completely recover a
virtual machine in our environment, most of this time being

spent on two tasks: (1.) copying a clean pre-configured disk
image from a local repository; and (2.) starting this new
image (including starting the CIS protection service). These
tasks could have their time lowered if we were able to build
smaller images, which was not possible with the current Linux
distribution we are using (Fedora Core 6).

The results from the first experiment allowed to define
TD = 150 seconds for the remaining experiments described
below. Considering that we had n = 4 replicas to tolerate
f = 1 faults and k = 1 simultaneous recoveries, we used
the expressions defined in Section II-C1 to calculate the
maximum time between two recoveries of an individual replica
as TP = 1200 seconds (20 minutes). By applying these values
to the Proactive Resilience model [6], [23], we conclude that
a malicious adversary has at most TP +TD = 22.5 minutes to
compromise more than f replicas and to harm the safety of the
proposed system (i.e., make the CIS sign an illegal message)
in our experimental setup.

B. Latency and throughput under a DoS attack from the WAN

In the second set of experiments, we tried to evaluate how
much legal traffic our intrusion-tolerant firewall can deliver
while it is being attacked by an outsider. In these experiments
there is a good sender (in the WAN) constantly transmitting
1470 byte’s packets of legal traffic at a rate of 500 packets per
second to the station computer inside the LAN and there is a
malicious sender (in the WAN) launching a DoS attack against
the CIS, i.e., sending between 0 and the maximum possible
rate (∼ 100 Mbps) of illegal traffic to it. Note that these
experiments make a pessimistic assumption about the rate of
legal traffic, given that 500 packets/second is a very high traffic
for a critical infrastructure information system6. We measured
the received message rate at the station computer to obtain
the throughput of the CIS (the rate at which it can approve
messages) when it has to reject large amounts of illegal traffic.
In a different experiment we measured the latency imposed by
CIS message approval also in the presence of DoS attacks of

6It may represent, for instance, 500 MMS (Manufacturing Message Speci-
fication) commands being sent to a device per second.

11

 4.5

 4.6

 4.7

 4.8

 4.9

 5

 5.1

 5.2

 5.3

 5.4

 5.5

 0 150 300 450 600 750 900 1050 1200

T
hr

ou
gh

pu
t (

M
bi

ts
 p

er
 s

ec
on

d)

Time (seconds)

Replica 3

recovering

Replica 1

recovering

Replica 4

recovering

Replica 2

recovering

(a) No faults.

 4.5

 4.6

 4.7

 4.8

 4.9

 5

 5.1

 5.2

 5.3

 5.4

 5.5

 0 150 300 450 600 750 900 1050 1200

T
hr

ou
gh

pu
t (

M
bi

ts
 p

er
 s

ec
on

d)

Time (seconds)

Replica 1

recovering

Replica 3

recovering

Replica 4

recovering

(b) One faulty replica (replica 2).

Figure 7. Throughput of the CIS during a complete recovery period (20 minutes) with n = 4 (f = 1 and k = 1), with and without crash faults.

different rates. In this latency experiment, the good sender
sends a packet with 1470 bytes to the station computer that
acknowledges it. This acknowledgment is not processed by the
CIS and we measured the round-trip time in the good sender.
All experiments (bandwidth and latency) were executed 1000
times and Figure 6 shows the average latency and maximum
throughput measured in these experiments.

The graphs show that the system is almost unaffected by
DoS attacks up to 50 Mbps, and then its behavior degrades
gracefully until 70 Mbps. After this value, the latency presents
a huge increase (Figure 6(a)) and the throughput drops to about
250 messages/sec (Figure 6(b)). For 90-100 Mbps of invalid
traffic we observed that sometimes (in 1% of the experiments)
the CIS loses some messages (from 15% to 21%), however,
it occurs rarely. These results suggest that our design adds
modest latency (less than 2 ms) and no throughput loss even
with a reasonably loaded network. The results show also that
to cope with significant DoS attacks (> 70 Mbps) coming
from the unprotected network, complimentary mechanisms
must be employed, given that CIS processing latency has a
huge increase.

In the third and fourth set of experiments described next, the
goal was to evaluate the impact of proactive/reactive recoveries
and replicas’ crash/Byzantine faults in the overall system
throughput. In these experiments there is not a malicious
sender in the WAN, just a good sender constantly transmitting
legal traffic at a rate of 5 Mbps to the station computer.

C. Throughput during recoveries and in the presence of crash
faults

The third set of experiments evaluated the impact of proac-
tive recovery and crash faults in the overall system throughput.
Figure 7 presents two time diagrams that show the throughput
of the CIS during a complete recovery period (20 minutes)
without faults and with one crashed (silent) replica. In the
latter experiment, replica 2 is the one crashed, and it stays
crashed until the end of the recovery period.

The time diagrams of Figure 7 lead to the following
conclusions. First, it can be seen that, without faults, recoveries

do not have a substantial impact on the perceived throughput of
the system (Figure 7(a)). The minimum observed throughput
during recoveries was 4.6 Mbps, which represents a 8% drop in
comparison with the expected throughput of 5 Mbps. This can
be explained by the fact that proactive recoveries are executed
with higher priority than voting procedures and thus may delay
their execution during the recovering periods. Note also that
the few cases where the throughput increases are a side-effect
of the decrease of throughput. When the throughout decreases,
replicas’ buffers accumulate more messages, which results in a
higher processing rate (than the 5 Mbps send rate) during some
instants. Second, the occurrence of crash faults also does not
affect substantially the throughput of the system, even during
periodic recoveries (Figure 7(b)). This happens because we
use k = 1 extra replicas to ensure that the system is always
available: even with one fault and one recovery, there are still
two correct replicas (f + 1) to vote and approve messages.
Note that without these k extra replicas, the system would
become completely unavailable in the recovering periods of
Figure 7(b). Third, by comparing the observed throughput with
and without crash faults, one can conclude that the impact of
proactive recoveries is smaller when there is a crashed replica
during the entire execution. This happens because 3 replicas
generate less vote messages in the wormhole control channel
than 4 replicas. This reduction is sufficient to minimize the
impact of the higher priority proactive recoveries on the vote
processing time.

D. Throughput under a DoS attack from a compromised
replica

Finally, the fourth set of experiments measured the re-
silience of the CIS against Byzantine faults, i.e., in the
presence of up to f compromised replicas. Given that the CIS
algorithms already tolerate up to f Byzantine faults, we choose
a malicious behavior orthogonal to the algorithm’s logic that
could nevertheless endanger the quality of the service provided
by the CIS. In this way, we configured one of the CIS
replicas (replica 2) to deploy a DoS attack 50 seconds after
the beginning of CIS execution. This DoS attack floods the

12

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 25 50 75 100 125 150 175 200 225 250 275 300 325

T
hr

ou
gh

pu
t (

M
bi

ts
 p

er
 s

ec
on

d)

Time (seconds)

Replica 2 starts a

DoS attack

Replica 2 is

proactively recovered

(a) With proactive recovery only.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 25 50 75 100 125 150 175 200 225 250 275 300 325

T
hr

ou
gh

pu
t (

M
bi

ts
 p

er
 s

ec
on

d)

Time (seconds)

Replica 2 starts a

DoS attack

Replica 2 is

reactively recovered

(b) With proactive and reactive recovery.

Figure 8. Throughput of the CIS during 325 seconds with n = 4 (f = 1 and k = 1). Replica 2 is malicious and launches a DoS attack to the LAN after 50
seconds. We present graphs without (a) and with (b) reactive recovery.

LAN with packets of 1470 bytes sent at a rate of 90 Mbps.
We observed how the throughput is affected during this attack
and until the recovery of the replica. In order to show the
effectiveness of our proactive-reactive recovery approach, we
compared what happens when only proactive recoveries are
used, and when they are combined with reactive recoveries.
The results are presented in Figure 8.

Figure 8(a) shows that the CIS throughput is affected during
the DoS attack from replica 2 when only proactive recovery
is used. The throughput decreases during the attack and
reaches a minimum value of 2.45 Mbps (half of the expected
throughput). The attack is stopped when the local wormhole
of replica 2 triggers a proactive recovery after 300 seconds
of the initial time instant. Notice that this recovery should be
triggered 150 seconds later but given that we assume here that
there are no reactive recoveries, we do not need the reactive
recovery subslots depicted in Figure 3 and proactive recoveries
may be triggered one after the other.

The utility and effectiveness of combining proactive and
reactive recoveries is illustrated by Figure 8(b), which shows
that the CIS throughput is minimally affected by the DoS
attack from replica 2. This attack is detected by the remain-
ing replicas given that invalid traffic is being sent to the
LAN. In consequence, they call the PRRW interface function
W detect() passing as argument the id of replica 2 and local
PRRW 2 receives enough DETECT messages to immediately
trigger a reactive recovery (see Algorithm 1). The reaction is
so fast that the throughput drops to 3.67 Mbps just during one
second and then it gets back to the normal values.

V. RELATED WORK

Rejuvenation [37], [38] has been proposed in the 90s as
a proactive technique to deal with transient failures due to
software aging. The idea is to periodically rejuvenate some
software components to eliminate and prevent failures. Some
research on this field, beginning with [38], developed tech-
niques to choose the optimal rejuvenation period in order to
minimize the downtime of the system. None of the works

on software rejuvenation assume faults caused by malicious
adversaries, so the problem that we deal in this work is
probably harder than software aging.

Several works advocate the use of proactive recovery to
make the system tolerate an unbounded number of malicious
faults during its lifetime as long as no more than f faults occur
during a bounded time period [3], [4], [5]. In previous works,
some authors showed that all these works have some hidden
problems that could be exploited by an adversary [14]. The
main problem is that these works assume the asynchronous
distributed system model and, under this model it is not
possible to guarantee that recoveries are triggered and executed
within known time bounds: an adversary can delay the execu-
tion of the recoveries and be able to corrupt more than f nodes
of a system [13]. The work presented in this paper is based on
a hybrid distributed system model and thus uses some trusted
and timely components to ensure that replicas are always
rejuvenated in accordance to predefined time bounds [6], [23].

There is a large body of research that aims to reactively
recover systems as fast and efficiently as possible (e.g., [39],
[40], [41]). Early work on this field (e.g., [39]) advocates
the execution of some kind of recovery action (in general,
restart the monitored process) after a fault is detected. More
recently, the recovery oriented computing project proposed a
set of methods to make recovery actions more efficient and
less costly in terms of time [40]. Several techniques were
developed in this project, either to detect failures, restart the
minimum set of system components to put the system back
to correct operation and to undo some operator configuration
errors. Other works like [41] try to diagnose system faults
through several monitors and evaluate which is the best set
of recovery actions that must be taken in order to recover
the system as fast as possible. These works do not consider
Byzantine faults or security-compromised components and
also do not rely on redundancy to ensure that the system stays
available during recoveries, the main problems addressed in
the present work.

The second half of the paper presents a case study for

13

the PRRW service: an intrusion-tolerant firewall designed to
protect critical infrastructures. As far as we know, there is
only one other work about intrusion-tolerant firewalls: the
privacy firewall [42]. This work presents an architecture for
maintaining the privacy of a specific replicated state machine
system [43], [3]: each message from the replicas is forwarded
to the clients if and only if more than f replicas issue this
message. In this way, a faulty replica cannot disclose private
information to external processes. The aim of the CIS is
completely different to that of the privacy firewall since it
is a general intrusion-tolerant firewall that implements a pro-
tection system transparent and independent of the application
messages that pass through it.

VI. CONCLUSIONS

This paper proposed the combination of proactive and
reactive recovery in order to increase the overall resilience
of intrusion-tolerant systems that seek perpetual unattended
correct operation. In addition to the guarantees of the periodic
rejuvenations triggered by proactive recovery, our proactive-
reactive recovery service ensures that, as long as the faulty
behavior exhibited by a replica is detectable, this replica will
be recovered as soon as possible, ensuring that there is always
an amount of system replicas available to sustain system’s
correct operation. To the best of our knowledge, this is the
first time that reactive and proactive recovery are combined in
a single approach.

We showed how the proactive-reactive recovery service can
be used in a concrete scenario, by applying it to the con-
struction of the CIS, an intrusion-tolerant firewall for critical
infrastructures. The experimental results allow to conclude that
the proactive-reactive recovery service is indeed effective in
increasing the resilience of the CIS, namely in the presence
of powerful DoS attacks launched either by outside hosts or
inside compromised replicas.

ACKNOWLEDGEMENTS

We thank the anonymous referees for their helpful com-
ments. This work was partially supported by the EC through
project IST-2004-27513 (CRUTIAL), and by the FCT, through
the Multiannual Funding and the CMU-Portugal Programs.

REFERENCES

[1] P. Verissimo, N. F. Neves, and M. P. Correia, “Intrusion-tolerant archi-
tectures: Concepts and design,” in Architecting Dependable Systems, ser.
LNCS, 2003, vol. 2677.

[2] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks
(extended abstract),” in Proc. of the 10th ACM Symp. on Principles of
Distributed Computing, 1991, pp. 51–59.

[3] M. Castro and B. Liskov, “Practical Byzantine fault-tolerance and
proactive recovery,” ACM Tras. on Computer Systems, vol. 20, no. 4,
pp. 398–461, 2002.

[4] L. Zhou, F. Schneider, and R. Van Rennesse, “COCA: A secure
distributed online certification authority,” ACM Trans. on Computer
Systems, vol. 20, no. 4, pp. 329–368, Nov. 2002.

[5] M. A. Marsh and F. B. Schneider, “CODEX: A robust and secure
secret distribution system,” IEEE Trans. on Dependable and Secure
Computing, vol. 1, no. 1, pp. 34–47, Jan. 2004.

[6] P. Sousa, N. F. Neves, and P. Verissimo, “Proactive resilience through
architectural hybridization,” in Proc. of the 2006 ACM Symp. on Applied
Computing (SAC’06), Apr. 2006, pp. 686–690.

[7] A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper, “Muteness
failure detectors: Specification and implementation,” in Proc. of the 3rd
European Dependable Computing Conference, Sep. 1999, pp. 71–87.

[8] A. Doudou, B. Garbinato, and R. Guerraoui, “Encapsulating failure
detection: From crash to byzantine failures,” in da-Europe ’02: Proc. of
the 7th Ada-Europe Int. Conference on Reliable Software Technologies.
London, UK: Springer-Verlag, 2002, pp. 24–50.

[9] R. Baldoni, J.-M. Hélary, M. Raynal, and L. Tangui, “Consensus in
Byzantine asynchronous systems,” J. Discrete Algorithms, vol. 1, no. 2,
pp. 185–210, Apr. 2003.

[10] A. Haeberlen, P. Kouznetsov, and P. Druschel, “The case for Byzantine
fault detection,” in Proc. of the 2nd Workshop on Hot Topics in System
Dependability, 2006.

[11] P. Verissimo, N. F. Neves, and M. Correia, “CRUTIAL: The blueprint of
a reference critical information infrastructure architecture,” Int. Journal
of System of Systems Engineering, vol. 1, no. 1/2, pp. 78–95, 2008.

[12] A. Bessani, P. Sousa, M. Correia, N. F. Neves, and P. Verissimo, “The
CRUTIAL way of critical infrastructure protection,” IEEE Security &
Privacy, vol. 6, no. 6, pp. 44–51, Nov-Dec 2008.

[13] P. Sousa, N. F. Neves, and P. Verissimo, “How resilient are distributed f
fault/intrusion-tolerant systems?” in Proc. of Int. Conf. on Dependable
Systems and Networks (DSN’05), Jun. 2005, pp. 98–107.

[14] ——, “Hidden problems of asynchronous proactive recovery,” in Proc.
of the Workshop on Hot Topics in System Dependability, June 2007.

[15] P. Verissimo, “Travelling through wormholes: a new look at distributed
systems models,” SIGACT News, vol. 37, no. 1, 2006. [Online]. Avail-
able: http://www.navigators.di.fc.ul.pt/docs/abstracts/ver06travel.html

[16] R. R. Obelheiro, A. N. Bessani, L. C. Lung, and M. Correia, “How
practical are intrusion-tolerant distributed systems?” Dep. of Informatics,
Univ. of Lisbon, DI-FCUL TR 06–15, 2006.

[17] A. N. Bessani, R. R. Obelheiro, P. Sousa, and I. Gashi, “On the effects of
diversity on intrusion tolerance,” Department of Informatics, University
of Lisbon, DI/FCUL TR 08–30, December 2008.

[18] V. Hadzilacos and S. Toueg, “A modular approach to the specification
and implementation of fault-tolerant broadcasts,” Dep. of Computer
Science, Cornell Univ., New York, USA, Tech. Rep. 94-1425, May 1994.

[19] P. Verissimo and L. Rodrigues, Distributed Systems for System Archi-
tects. Kluwer Academic Publishers, 2001.

[20] S. Kent, “Protecting externally supplied software in small computers,”
Ph.D. dissertation, Laboratory of Computer Science, Massachusetts
Institute of Technology, 1980.

[21] P. Cloutier, P. Mantegazza, S. Papacharalambous, I. Soanes, S. Hughes,
and K. Yaghmour, “DIAPM-RTAI position paper,” in Real-Time Linux
Workshop, Nov. 2000.

[22] A. Casimiro, P. Martins, and P. Verissimo, “How to build a timely
computing base using real-time linux,” in Proc. of the 2000 IEEE Int.
Workshop on Factory Communication Systems. Porto, Portugal: IEEE
Industrial Electronics Society, Sep. 2000, pp. 127–134.

[23] P. Sousa, N. F. Neves, P. Verissimo, and W. H. Sanders, “Proactive
resilience revisited: The delicate balance between resisting intrusions
and remaining available,” in Proc. of the 25th IEEE Symp. on Reliable
Distributed Systems (SRDS’06), Oct. 2006, pp. 71–80.

[24] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” J. ACM, vol. 43, no. 2, Mar. 1996.

[25] A. Daidone, F. Di Giandomenico, A. Bondavalli, and S. Chiaradonna,
“Hidden Markov models as a support for diagnosis: Formalization of
the problem and synthesis of the solution,” in Proc. of the 25th IEEE
Symp. on Reliable Distributed Systems (SRDS’06), Leeds, UK, October
2006, pp. 245–256.

[26] D. E. Denning, “An intrusion-detection model,” IEEE TSE, vol. 13, no. 2,
pp. 222–232, 1987.

[27] B. Mukherjee, L. Heberlein, and K. Levitt, “Network intrusion detec-
tion,” IEEE Network, vol. 8, no. 3, pp. 26–41, 1994.

[28] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for hard-
real-time systems,” Real-Time Systems, vol. 1, no. 1, 1989.

[29] A. N. Bessani, P. Sousa, M. Correia, N. F. Neves, and P. Verissimo,
“Intrusion-tolerant protection for critical infrastructures,” Dep. of Infor-
matics, Univ. of Lisbon, DI/FCUL TR 07–8, April 2007.

[30] C. Wilson, “Terrorist capabilities for cyber-attack,” in Int. CIIP Hand-
book 2006, M. Dunn and V. Mauer, Eds. CSS, ETH Zurich, 2006,
vol. II, pp. 69–88.

[31] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,”
RFC 4301 (Proposed Standard), Dec. 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4301.txt

[32] K. Stouffer, J. Falco, and K. Kent, “Guide to Supervisory Control
And Data Aquisition (SCADA) and industrial control systems security,”

14

Recommendations of the National Institute of Standards and Technology
(NIST). Special Publication 800-82 (Initial Public Draft), Sep. 2006.

[33] S. Kent, “IP Authentication Header,” RFC 4302 (Proposed Standard),
Dec. 2005. [Online]. Available: http://www.ietf.org/rfc/rfc4302.txt

[34] P. Barham, B. Dragovic, K. Fraiser, S. Hand, T. Harris, A. Ho, R. Neuge-
baurer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
in Proc. of the 19th ACM Symp. on Operating Systems Principles -
SOSP’03, Oct. 2003.

[35] National Institute of Standards and Technology, “Secure Hash Standard,”
Federal Information Processing Standards Publication 180-2, Aug. 2002.

[36] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proc. of the
11th ACM Conference on Computer and Communications Security,
2004, pp. 298–307.

[37] Y. Huang, C. M. R. Kintala, N. Kolettis, and N. D. Fulton, “Software
rejuvenation: Analysis, module and applications,” in Proc. of 25th Int.
Symp. on Fault Tolerant Computing (FTCS-25), Jun. 1995, pp. 381–390.

[38] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi, “Analysis of software
rejuvenation using markov regenerative stochastic petri nets,” in Proc. of
Int. Symp. on Software Reliability Engineering (ISSRE’95), Oct. 1995.

[39] Y. Huang and C. M. R. Kintala, “Software implemented fault tolerance:
Technologies and experience,” in Proc. of 23rd Int. Symp. on Fault
Tolerant Computing (FTCS-23), Jun. 1993, pp. 2–9.

[40] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler,
P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer,
N. Sastry, W. Tetzlaff, J. Traupman, and N. Treuhaft, “Recovery oriented
computing (ROC): Motivation, definition, techniques and case studies,”
Computer Science Dep., Univ. of California at Berkeley, UCB/CSD TR
02–1175, Mar. 2002.

[41] K. R. Joshi, M. Hiltunen, W. H. Sanders, and R. Schlichting, “Automatic
model-driven recovery in distributed systems,” in Proc. of the 24th IEEE
Symp. on Reliable Distributed Systems (SRDS’05), Oct. 2005, pp. 26–38.

[42] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, “Sep-
arating agreement form execution for Byzantine fault tolerant services,”
in Proc. of the 19th ACM Symp. on Operating Systems Principles
(SOSP’03), 2003, pp. 253–267.

[43] F. B. Schneider, “Implementing fault-tolerant services using the state
machine aproach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299–319, Dec. 1990.

Paulo Sousa is Invited Assistant Professor of the
Department of Informatics, University of Lisboa
Faculty of Sciences. He received a PhD in Computer
Science from the University of Lisboa in 2007 and
a Licenciatura in Computer Science from the same
university in 2001. He was ranked best Computer
Science student in 2000 and 2001 and his PhD
work was awarded with the IBM Scientific Prize
in 2007. Paulo Sousa is a member of the LaSIGE
laboratory and the Navigators research group. He has
been involved in several international and national

research projects related to real-time, intrusion tolerance and security. He was
the coordinator of the FOREVER research project funded by the EU through
the ReSIST NoE. His main research interests include: intrusion tolerance,
resilience, software security, distributed systems. More information about him
is available at http://www.di.fc.ul.pt/∼pjsousa.

Alysson Neves Bessani is a visiting assistant profes-
sor of the Department of Informatics of the Univer-
sity of Lisboa Faculty of Sciences, Portugal, and a
member of LASIGE research unit and the Navigators
research team. He received his B.S. degree in Com-
puter Science from Maringá State University, Brazil
in 2001, the MSE in Electrical Engineering from
Santa Catarina Federal University (UFSC), Brazil in
2002 and the PhD in Electrical Engineering from
the same university in 2006. His main interests
are distributed algorithms, Byzantine fault tolerance,

coordination, middleware and systems architecture. More information about
him is available at http://www.di.fc.ul.pt/∼bessani.

Miguel Correia is Assistant Professor of the Depart-
ment of Informatics, University of Lisboa Faculty
of Sciences, and Adjunct Faculty of the Carnegie
Mellon Information Networking Institute. He is a
member of the LASIGE research unit and the Nav-
igators research team. He has been involved in
several international and national research projects
related to intrusion tolerance and security, including
the MAFTIA and CRUTIAL EC-IST projects, and
the ReSIST NoE. He is currently the coordinator
of University of Lisboa’s degree on Informatics

Engineering and an instructor at the joint Carnegie Mellon University and
University of Lisboa MSc in Information Security. His main research interests
are: intrusion tolerance, security, distributed systems, distributed algorithms.
More information about him is available at http://www.di.fc.ul.pt/∼mpc

Nuno Ferreira Neves is Associate Professor of
Computer Science at the University of Lisbon since
1998. He received a Ph.D in Computer Science
from the University of Illinois at Urbana-Champaign
(1998), and Licenciatura and Masters from the Tech-
nical University of Lisbon (1992 and 1995). His
research interests are in parallel and distributed sys-
tems, in particular in the areas of dependability and
security. His work has been recognized with the IBM
Scientific Prize in 2004 and the William C. Carter
award at IEEE International Fault-Tolerant Comput-

ing Symposium in 1998. In the recent years, he has served in program commit-
tees of conferences in the area of dependable computing, and participated in
several European and National research projects which had a focus on security.
More information about him is available at http://www.di.fc.ul.pt/∼nuno.

Paulo Verissimo is currently a professor of the
Department of Informatics (DI) of the University
of Lisbon Faculty of Sciences, and Director of
LASIGE, a research laboratory of the DI. He be-
longs to the European Security & Dependability
Advisory Board, and is associate editor of the IEEE
Transactions on Dependable and Secure Computing.
He is past Chair of the IEEE Technical Committee
on Fault Tolerant Computing and of the Steering
Committee of the DSN conference, and belonged
to the Executive Board of the CaberNet European

Network of Excellence. He was coordinator of the CORTEX IST/FET project.
He is senior member of the IEEE. Paulo Verissimo leads the Navigators
research group of LASIGE, and is currently interested in: architecture,
middleware and protocols for distributed, pervasive and embedded systems,
in the facets of real-time adaptability and fault/intrusion tolerance. He is
author of more than 130 refereed publications in international scientific
conferences and journals in the area, and co-author of five books (ex.
Distributed Systems For System Architects). More information about him is
available at http://www.di.fc.ul.pt/∼pjv.

