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Abstract—SGX enclaves protect the code and data within from
untrusted software, but do not retain their state when destroyed.
Sealing allows preserving this data for future use by storing it
outside the enclave boundary: the data is encrypted with a fresh
secret key, and this key is bound to the processor that sealed the
data and, either to the enclave measurement, or the public key of
the enclave author. However, in a cloud environment, customers
do not choose in which processor their code executes: the enclave
that seals some data (for backup or future use) may be destroyed
and later instantiated on a different processor or migrated to
another processor. In those cases, the new processor would not
be able to unseal the data, since the secret key is bound to the
sealing processor.

This paper presents Inter-Processor Attestation and Sealing
(IPAS), a novel sealing mechanism for cloud environments and
Intel SGX. In IPAS, sealed data is no longer bound to the sealing
processor, but only to the enclave measurement or the public key
of the enclave author, thus enabling other processors to unseal
the sealed data. This is achieved without exporting the sealing
secret key outside the enclave and without trusting third parties.

Index Terms—cloud computing, Intel SGX, mutual attestation,
inter-processor sealing, TEE, enclave

I. INTRODUCTION

As the use of cloud computing increases [1], [2], so does the
need for better protection for the customer code and data that
are handled by cloud providers [3], [4], [5]. Processor man-
ufacturers have come up with hardware-based solutions such
as Intel Software Guard Extensions (SGX) [6], AMD Secure
Encrypted Virtualization (SEV) [7], and ARM TrustZone [8]
to support Trusted Execution Environments (TEEs).

SGX allows user-space processes to create protected regions
of memory called enclaves. Code and data within an enclave
are isolated from other enclaves, and their confidentiality
and integrity are protected from unprivileged and privileged
software, including the operating system and hypervisor. This
is of particular importance for cloud applications [9], [10],
[11], [12], [13], as customers do not control the hosting
infrastructure.

Enclaves use a mechanism called attestation [14] to prove
to other enclave or non-enclave applications and services that
a set of information is true. Examples of such information are
the enclave identity and whether it is running on a legitimate
TEE. Enclaves do not retain their state when destroyed, but
enclave data can be saved for future instances of the enclave
by storing it outside the boundary of the enclave, in persistent
memory, using a mechanism called sealing [14]. Sealing
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Fig. 1. Scenario that shows that in SGX sealing the unsealing processor
must be the same as the sealing processor. Ex in A21 is unable to unseal Sx

previously sealed by Ex in A11 because the sealing and unsealing processors
are different.

encrypts enclave data with a secret key, called the sealing key,
which is cryptographically bound to either the enclave identity
or the enclave author, and to the processor.

A cloud provider usually has many enclave instances run-
ning in its infrastructure. When an enclave instance is de-
stroyed, there is no guarantee that a future instance of that
same enclave will run on the same CPU. In Figure 1a, the
enclave instance Ex (where x is the enclave identity, see
§ II-A), which is a component of the application A11, seals
enclave data into a blob Sx, and stores Sx in some shared
persistent storage. In Figure 1b, which represents some point
in the future of the same system, A11 that is running on CPU
1 is destroyed and re-instantiated as A21 running on CPU 2.
The enclave instance Ex in A21 loads Sx from the shared
persistent storage and tries to unseal it, but the unsealing
operation fails because the sealing key that sealed Sx is bound
to CPU 1. The same issue could happen when, instead of being
destroyed, the enclave instance that sealed some enclave data
is migrated from the sealing processor to a different processor
(e.g., from CPU 1 to CPU 2); or when the sealing processor
is decommissioned.

Inter-Processor Attestation and Sealing (IPAS): We solve
this limitation of SGX sealing by removing the binding be-
tween the sealing key and the processor. Our solution requires
the ability to mutually attest enclave instances running on
different processors; since this is not available in the Intel
SGX SDK, we built our own mutual attestation mechanism.

The IPAS scheme is composed of three core protocols:
• the Inter-Processor Attestation (IPA) protocol that han-

dles the mutual attestation of enclave instances running



on different processors;
• the Inter-Processor Sealing (IPS) protocol that handles

sealing of enclave data in such a way that it is bound to
the enclave identity or the enclave author, but not to the
sealing processor;

• the Inter-Processor Unsealing (IPU) protocol that unseals
data sealed with IPS.

Inter-Processor Attestation uses enclave quotes as a trans-
portation mechanism to exchange the enclaves’ public keys
safely. An enclave quote is a credential that is signed by a
platform-specific private key, and that reflects the state of the
enclave and the platform where the enclave instance is running
(§ II-A). Each quote has a field to accommodate up to 64 bytes
of user data [15]. In IPA, a hash of the public keys of the
enclaves is stored in the first 32 bytes of this field, so these
keys are implicitly endorsed by the Intel Attestation Service
(IAS) [16] when it issues a (signed) attestation report based
on this enclave quote. Each enclave knows that its peer is
authentic and that the correct public keys have been exchanged
by validating the attestation reports.

Inter-Processor Sealing uses an untrusted service, running
on a platform operated by the Cloud Provider, as a support
to seal enclave data. The application sends to this service the
shared library (i.e., the enclave.signed.so) used to create its
application enclave; the service then uses the shared library to
create a new enclave instance, which we call service enclave,
with the same measurement as the application enclave. This
results in two instances of the same enclave, one located in
the application and the other located in the service. After a
successful mutual attestation between the application enclave
and corresponding service enclave, using the IPA protocol, the
application enclave sends the IPAS sealing key, with which it
encrypts its enclave data, to the service enclave. The service
enclave seals the IPAS sealing key to itself using SGX sealing
and returns the sealed version of the IPAS sealing key to the
application enclave for appending to any sealed data blobs
the application enclave creates. When the same application
enclave is created on another processor, it asks the untrusted
service to create an instance of the service enclave to SGX-
unseal the IPAS sealing key. The idea is that the service
runs exactly the same enclave as the application, that is, the
application enclave is trusting its own code, not a third party.
In addition, the service enclave can always SGX-unseal the
IPAS sealing keys because the Cloud Provider can ensure that
the untrusted service always runs on the same processor and
is not migrated.

Alternative designs: (1) An alternative design to IPAS
would be to exchange the sealing key directly between the
sealing and unsealing instances using a key exchange protocol.
However, this scheme would only work when instances are
online simultaneous, which is a limitation that IPAS solves. (2)
Another alternative would be to use a trusted backend service
that verifies the identities of the sealing and unsealing enclaves
and facilitates the exchange of the sealing secret key [15]. The
Service Provider could run the backend trusted service in its
premises, but this would require acquiring and maintaining

the necessary infrastructure, and ensuring its availability and
security. Alternatively, the Cloud Provider could run it, but the
Service Provider would have to trust the Cloud Provider. The
Trusted Computing Base (TCB) would increase in both cases.
IPAS does not trust third parties as the support service IPAS
uses is outside the TCB.

Applications: We believe that most cloud-based applica-
tions that use enclaves can benefit from IPAS. These ap-
plications follow a similar pattern: (i) a company processes
confidential data in a cloud service that provides SGX enclaves
(e.g., Amazon AWS, Microsoft Windows Azure); (ii) that
confidential data or cryptographic material used to protect it
is kept in enclaves to prevent disclosure; (iii) IPAS is used to
seal it in a way that allows retrieving it in another CPU, for
backup purposes or for switching off and later switching on
the data processing infrastructure; (iv) the sealed data is stored
in some data store; (v) later the data is retrieved from storage
and IPAS is used to unseal the data in some enclave, typically
in an other CPU (but it can be the same).

Examples are: (i) a bank sends customer data to the cloud to
do analytics, but that data is business critical1; (ii) a company
stores genetic data in the cloud to provide services that require
processing, but that data is protected by legislation like US
HIPAA2; (iii) a recommendation system run in a cloud needs
its data protected since personal data is protected by EU’s
GDPR3; (iv) Blockchain wallets kept in the cloud.

Experiments: We implemented and evaluated experimen-
tally the performance of IPAS. The IPA protocol takes less than
4 seconds of CPU time to complete mutual attestation between
two enclaves, a value that excludes network communication
and IAS times, which are beyond our control. The enclaves
run the protocol only once after instantiated, so we find that
this is an acceptable execution time for mutual attestation. The
IPS protocol and its counterpart, IPU, take less than 4 seconds
of CPU time to obtain the IPAS sealing key. Data sealing itself
depends on the size of the plaintext and takes roughly the same
time as the original SGX sealing implementation. The source
code of our prototype and the formal models and proofs are
available online.4

Contributions: Our main contributions are the following.
First, a new architecture and protocols enabling inter-processor
mutual attestation of enclave instances executing on different
processors and inter-processor sealing of enclave data, partic-
ularly suited for cloud environments. Second, a formal model
of our protocols. Finally, a prototype of the IPAS libraries and
their experimental evaluation.

Outline: Section II presents background on Intel SGX and
introduces the functions used in our protocols. Section III
explains the IPAS architecture and protocols. Section IV
presents our formal model and proofs. Section V discusses our
prototype and Section VI its evaluation. Section VII discusses
related work and Section VIII concludes this paper.

1https://eperi.com/success-stories/intel-sgx/
2https://genecrypt.io/
3https://github.com/Ruide/PrivateLearn
4https://github.com/andrade/ipas



II. PRELIMINARIES

A. Intel SGX

SGX provides a set of instructions that enable user-level
code to create protected regions of memory called enclaves.
Two of these instructions are EGETKEY and EREPORT. They
allow one to obtain secret keys bound to the processor and to
create a cryptographic report of the enclave [17], respectively.
Untrusted code communicates with enclave code using ecalls
and ocalls, which are, respectively, functions executed inside
the enclave and outside the enclave. These functions are
described in an Enclave Definition Language (EDL) file.

Each enclave contains a self-signed certificate from the
author of the enclave with multiple fields, including enclave
identity, enclave author, and product identity [15]. The enclave
identity is a hash of the code and initial data of the enclave
during its instantiation; it is stored in the MRENCLAVE register
by the CPU and compared to the corresponding field in the
self-signed certificate. The enclave author is a hash of the
public key of the enclave author and is stored in the MRSIGNER

register. The product identity is assigned by the enclave
author to segment enclaves with the same MRSIGNER. These
two measurements, MRENCLAVE and MRSIGNER, identify
enclaves during attestation and sealing. SGX supports two
basic forms of attestation: local and remote [14].

1) SGX Local Attestation: In local attestation, an enclave A
attests itself to another enclave B using a report authenticated
by a symmetric key, the report key, accessible only to the
enclaves involved in the process.

Enclave A obtains a report by invoking EREPORT using the
MRENCLAVE of the target enclave as input. This report
contains information about A including its MRENCLAVE and
MRSIGNER, and is authenticated by a Message Authentica-
tion Code (MAC). A sends the report to B, that extracts the
report key by invoking the instruction EGETKEY and verifies
the MAC of the report. If the MAC computed by B and the
MAC on the report match, it means that both source and
target enclaves are running on the same platform. Enclave B
then validates the report’s contents, namely MRENCLAVE and
MRSIGNER. B can also attest itself to A in a similar fashion.

2) SGX Remote Attestation: In remote attestation, an en-
clave A attests itself to a challenger C using asymmetric
cryptography. C may or may not use an enclave. Remote
attestation uses a local architectural enclave called the Quoting
Enclave [14] and a remote service, the Intel Attestation Service
(IAS) [16].

Enclave A attests itself to the Quoting Enclave using the
local attestation mechanism. Upon a successful local attes-
tation, the Quoting Enclave converts the local report into a
signed quote that can be verified by Intel. This quote is sent
to C, which forwards the quote to IAS to be validated. IAS
verifies the signature and validates the fields on the quote and
replies to C with a signed attestation report. C verifies the
IAS signature of the attestation report and checks whether
IAS considers A to be legitimate; and then decides whether

to proceed its communication with A based on the attestation
report’s information.

Enclaves A and C can establish session keys, at the end
of remote attestation, for secure communication. A uses the
trusted key exchange functions of the Intel SGX SDK [17,
p. 144] to obtain its session keys MK and SK, but C derives
these keys manually [18] using the function in Line 5 of
Algorithm 1.

Algorithm 1 Derive session key with label s
1: function KDK(da, Qb) ▷ Key Derivation Key
2: kab ← da ·Qb ▷ ECDH
3: return AES-128-CMAC(kab, 0128)
4: end function

5: function DERIVEKEY(s, da, Qb) ▷ private key, da
6: m← 0x01∥s∥0x00∥0x80∥0x00 ▷ public key, Qb

7: k ← KDK(da, Qb)
8: return AES-128-CMAC(m, k)
9: end function

3) SGX Intra-Platform Sealing: SGX provides confiden-
tiality and integrity to data within the boundary of an enclave.
This data is lost when the enclave is destroyed. Sealing is
a mechanism where data is encrypted (using authenticated
encryption to ensure both confidentiality and integrity) and
bound to a processor and to either the enclave measurement
or the public key of the enclave author. Sealed data can then
be saved to persistent memory such as a hard disk drive.

Data sealed to the enclave identity can be unsealed only by
another enclave with the exact same MRENCLAVE, while
data sealed to the enclave author can be unsealed by any
enclave with the same MRSIGNER. The product identity
must be the same in both cases. In addition, the sealing and
unsealing processors must be the same because the sealing key
derivation depends on the processor.

Sealing data to the enclave author has the benefit that it
is easier to update an enclave (MRENCLAVE changes when
the enclave is updated) and enables enclaves with the same
enclave author to share sealed data [14]. The decision to seal
data to the current enclave measurement (MRENCLAVE) or
to the enclave author (MRSIGNER) is one of policy and is
taken by the enclave author.

We use the term SGX-seal when referring to the traditional
sealing mechanism of Intel SGX (§ II-A) and the term IPAS-
seal when referring to the novel sealing mechanism introduced
in this paper (§ III-E).

B. Functions and Assumptions

We now define several functions used by the IPAS protocols.
There is an IND-CPA symmetric encryption scheme mod-

eled with functions senc(m, k) that takes a message m and a
secret key k as inputs and outputs a ciphertext; and sdec(c, k)
that takes a ciphertext c and a secret key k as inputs and
outputs a plaintext.

There is an IND-CPA and IND-CTXT authenticated en-
cryption with associated data scheme modeled with functions
enc(m, a, n, k) and dec(c, t, a, n, k). The first function takes a



message m, associated data a, a nonce n, and a secret key k
as inputs, and outputs a ciphertext c and a tag t. The second
function takes a ciphertext c, a tag t, associated data a, a nonce
n and a secret key k as inputs and outputs a plaintext. This
scheme provides confidentiality, integrity, and authenticity for
encrypted plaintext, as well as integrity and authenticity for
some associated data that is not encrypted [19].

There is a function create(e) that creates and starts an
instance of enclave image e.

There is a function seal(m) that SGX-seals the message
m to the processor that executes the function and a function
unseal(s) that SGX-unseals the sealed data blob s using the
processor executing the function. The unseal() function returns
an error when the processor is unable to unseal the data.

There is a function load(b) that loads data b from persistent
memory into the enclave, and a function store(b) that stores
data b from the enclave to persistent memory.

III. INTER-PROCESSOR ATTESTATION AND SEALING

Intel SGX provides mechanisms for local and remote at-
testation, and intra-platform sealing. IPAS (Inter-Processor
Attestation and Sealing) provides mechanisms for the mutual
attestation of enclaves running on the same or on different
processors, and inter-platform sealing, which are not present
in SGX. This section begins with the threat model and
architecture of IPAS and then details the IPA (Inter-Processor
Attestation) protocol and the IPS (Inter-Processor Sealing) and
IPU (Inter-Processor Unsealing) protocols. As both SGX and
IPAS seal, unseal, and attest enclaves, we use terms like IPAS-
seal and SGX-seal to clarify which operation we are talking
about.

A. Threat Model

The adversary controls the network and all unprivileged and
privileged software on the platforms. Side-channel attacks and
denial-of-service attacks are beyond the scope of this work.

The TCB consists of processor package and the enclaves,
which are implemented and working correctly. The private and
secret keys of the processors are not compromised.

B. Architecture

Figure 2 shows the key components of the system. The
architecture is composed of an application 0 containing an
enclave 2,4 that wants to seal its data or mutually attest with
another enclave; and three support services, the Cloud Sealing
Service (CSS) 6 , the Remote Attestation Proxy (RAP) 7 , and
IAS 8 . IAS is a service in operation provided by Intel; CSS
and RAP are introduced by us as part of IPAS. Only one
application is considered, but in production there would be
many, each with its own enclave.

Applications (called enclave applications 0 to explicitly
denote that they contain an enclave) are owned by Service
Providers and run within data centers of Cloud Providers.
Service providers are stakeholders, for example, a bank or
a healthcare provider, who run their enclave applications in
a cloud environment. Each application is partitioned into two

logical components: the trusted component 2,4 is the enclave
(there may be more than one in the same application) and
the untrusted component 1,3 is the remaining code of the
application. Application programmers develop the untrusted 1
and trusted 2 application code, and IPAS libraries provide the
untrusted 3 and trusted 4 IPAS code to programmers.

Enclaves 2,4 are part of applications and services. They
use the IPAS libraries to have access to IPAS mutual attestation
and IPAS sealing and unsealing. There are two main use cases
for the IPAS protocols:

1) one where the goal is sealing (or unsealing) data;
2) and the other when the goal is the mutual attestation

between two enclave instances.
The first use case is when an enclave instance wants to

IPAS-seal enclave data (or IPAS-unseal previously sealed
data). The enclave instance first triggers an execution of the
IPA protocol between its hosting application and CSS, and
then runs the IPS protocol (or IPU protocol) between the
enclave instance on the application and the enclave instance
in CSS. This is useful whenever the enclave wants to seal
its data for later use, which can happen at any point during
its execution, and particularly before destroying the enclave
and terminating the application. The second use case is where
two instances of the same enclave, located on the same or
on different platforms, want to mutually attest each other to
ensure that both are legitimate and up-to-date. In this case,
the IPA protocol is run between both instances without need
to communicate with CSS.

1) Cloud Sealing Service (CSS): CSS 6 is a key compo-
nent of our solution. It is a service to be deployed by the Cloud
Provider to help application enclaves in the processes of IPAS
sealing and IPAS unsealing. CSS can always unseal data it
previously sealed because the Cloud Provider can ensure that
it always runs on the same processor and is not migrated. The
virtual machines of client applications differ from CSS since,
in a cloud environment, these are subject to migration from
one (physical) server to another and are usually reinstantiated
in different (physical) servers when restarted after a period of
inactivity.

CSS is not trusted. CSS SGX-seals and SGX-unseals its
clients’ keying material inside enclaves. CSS supports ap-
plication enclaves during IPAS sealing/unsealing by creating
enclave instances, that we call service enclaves, with the
exact enclave measurements as its clients, and then sealing
the clients’ IPAS sealing keys on their behalf. First, the
application enclaves send their IPAS sealing key to service
enclaves in CSS. Then, these service enclaves SGX-seal the
IPAS sealing key and return the result to the client to be stored
in persistent memory. These actions are done after mutual
attestation between the application and service enclaves. In
a future instantiation, the application enclave can request CSS
to create a service enclave to SGX-unseal the application
enclave’s IPAS sealing key. Since each IPAS sealing key
is handled by CSS inside a service enclave with the same
MRENCLAVE and MRSIGNER as the client’s application
enclave, vulnerabilities in one service enclave, that could



App 
Untrusted 

Code

App 
Trusted 
Code

IPAS
Trusted 
Code

IPAS 
Untrusted 

Code

IPAS 
Untrusted 

Code

IPAS 
Trusted 
Code

App
Trusted 
Code

Service 
Untrusted 

Code

A
pp

lic
at

io
n

E
nc

la
ve

IASRAP
TCB

Enclave Application ⓪

Se
rv

ic
e

E
nc

la
ve

CSS ⑥
Cloud Provider’s Data Center

①

②

③ ③

④ ④

⑤

⑦ ⑧

②

External Service

Fig. 2. The IPAS system architecture. The application enclave and the service enclave instances are
created from the same trusted code, that is, the application trusted code and the IPAS trusted code.
The application untrusted code first creates its own enclave instance (called application enclave)
and then sends the necessary modules to the CSS untrusted code which also creates its own enclave
instance (called service enclave).

App11

E

CSSe

App11

E

CSS

EIPA RAP

App11

E

CSS

EIPS

App11

E
sealed blob

(1)

(2)

(3)

(4)

S2←seal(K)

{K}SK

{S2}MK

{·}K + {S2}MK

Cloud Provider’s Data Center

IAS

time

e←enclave.signed.so
create(e)

create(e)

Fig. 3. High-level overview of the IPA and IPS proto-
cols.

potentially expose the IPAS sealing key, do not affect other
service enclaves.

CSS does not run enclaves when it starts or when it is
idle, only untrusted code ( 5 ). At runtime, clients connect to
CSS and send their shared libraries with enclave code ( 2,4 ),
and related untrusted code ( 3 ), over the network; then the
untrusted code of CSS ( 5 ) uses the API of IPAS to create
service enclaves, from these shared libraries, to execute the
IPA, IPS, and IPU protocols. CSS communicates with RAP
during IPA to obtain attestation reports signed by IAS.

Each library received by CSS is composed of both applica-
tion ( 2 ) and IPAS ( 4 ) trusted code. This trusted code may
invoke untrusted functions, defined in an EDL file, from within
the enclave, which therefore must also be available in CSS.
For this reason, applications send to CSS not only the signed
shared library representing the enclave but also a shared library
containing the untrusted functions ( 3 ) defined in the EDL files
of the application and IPAS.

In this paper, we use the term application enclave when
referring to an enclave that is part of a Service Provider’s
application, and service enclave when referring to an enclave
that is part of CSS.

2) Remote Attestation Proxy (RAP): RAP 7 is deployed by
the Cloud Provider to support enclaves during the execution
of the IPA protocol by forwarding requests to and from IAS.
Clients do not communicate directly with IAS because that
would requires clients to authenticate using a subscription
key obtained from Intel. Handling this subscription key in
each client would complicate deployment, first because the
subscription key must be kept secret, and second because of
subscription key rotation. Having only one entity handling the
subscription key simplifies both tasks. The confidentiality of
the subscription key must also be protected in RAP. We do
not provide one solution, as there are a few options: using
an enclave and sealing the key before storing it outside the
enclave boundary; or using a hardware security module.

RAP allows the attestation of enclaves, including those

created by the CSS service. These enclaves use the functions
GetSigRL and GetReport to retrieve the signature revocation
list for a specific Intel EPID Group ID [20] (see next para-
graph) and obtain an attestation report for a specific quote,
respectively. In both cases, the arguments sent by clients to
RAP are forwarded to IAS, with which RAP can communicate
using its subscription key, registered with Intel. The results
returned by IAS are forwarded by RAP to the clients.

3) Intel Attestation Service (IAS): IAS 8 is provided and
controlled by Intel [16]. Enclaves communicate with IAS,
through RAP, during the IPA protocol. For using IAS in
production, an organization has to subscribe the Intel SGX
attestation service. IPAS is based on Intel’s Enhanced Privacy
ID (EPID) attestation scheme, which allows signing data
without allowing linking two signatures for privacy reasons.
Each EPID signer belongs to a group (or EPID group) and
signature verifiers use the group public key to verify the
signature, independently of the entity that signed the data.

C. Overview of the IPAS Protocols

IPAS is composed of three protocols: IPA, IPS, and IPU.
Together, they enable mutual attestation of enclaves executing
on different processors, as well as sealing and unsealing of data
bound to an enclave or signer but not bound to the processor,
unlike what happens with the equivalent operations offered
by the Intel SGX SDK. This is achieved without exposing
the sealing key outside the enclaves and without trusting third
parties.

Mutual attestation is achieved by running the IPA protocol
(§ III-D) between any two enclave instances with the same
MRSIGNER and, optionally, the same MRENCLAVE, de-
pending on how the enclaves were configured. Sealing and
unsealing are used by an application enclave that needs to
seal or unseal its data, and are carried out by running the
IPS protocol (§ III-E) or the IPU protocol (§ III-F) between
that application enclave on the client and a service enclave in
CSS, after a successful execution of the IPA protocol. IPAS



unsealing works even when the original sealing enclave and
sealing processor are unavailable.

The intuition behind IPAS sealing and unsealing is creating
an enclave in CSS with the same MRENCLAVE and MR-
SIGNER as the enclave running on the client, that is, the
application enclave and the service enclave are two instances
of the same enclave running on different processors; then, this
service enclave is used to SGX-seal the secret key with which
the application enclave IPAS-seals its data. CSS is an always-
on service similar to IAS but, unlike IAS, this service does
not need to be trusted because the enclaves created (service
enclaves) are attested by, and have the same measurements as,
the application enclaves.

Figure 3 presents a high-level overview of the system. The
figure also presents the process of mutual attestation between
two enclave instances, followed by IPAS sealing. There are
four steps:

1) The application creates its enclave instance, which we call
application enclave, from an enclave.signed.so shared
object, then sends this shared object to CSS. At this point,
CSS still does not have a running enclave instance;

2) CSS creates the corresponding enclave instance, which we
call service enclave, from the shared object it received from
the client. Then, the application enclave and the service
enclave mutually attest using the IPA protocol, which results
in both parties sharing session keys (MK and SK);

3) The application enclave randomly generates a secret key, K,
to use as the IPAS sealing key and sends it to the service
enclave. K is encrypted with the session key SK in such a
way as to protect the confidentiality and integrity of K while
in transit. The service enclave decrypts K using SK and
SGX-seals K using the traditional SGX sealing mechanism.
Then, the service enclave sends SGX-sealed K, integrity-
protected with MK, to the application enclave;

4) The application enclave seals its data using the IPAS
sealing key it previously generated (i.e., K), appends the
service-enclave-SGX-sealed data blob (which contains K)
to its encrypted data, and saves both application-enclave-
encrypted data and service-enclave-SGX-sealed data to per-
sistent memory.

D. IPA Protocol

The IPA protocol allows mutual attestation between two
enclaves, an initiator A and a responder B, running on the
same or on different platforms. These two enclaves use Intel
EPID attestation [16] during the protocol, with B being
responsible for sending all requests, from both A and B, to
RAP, which in turn forwards these requests to IAS.

Successful execution of the IPA protocol is a precondition
for the IPS protocol (§ III-E) and the IPU protocol (§ III-F).
In these two cases, the IPA protocol mutually attests A and
B which would be the application enclave and the service
enclave, respectively. However, IPA can be used standalone,
i.e., the use of IPA does not imply the subsequent use of the
IPS or IPU protocols. The IPA protocol is generic enough that
it can be used, without CSS, for any two enclaves that have the

A B

(APrivate,APublic)← generate

AExGroup, AGroup, APublic

ASigRL← GetSigRL(AGroup)

BSigRL← GetSigRL(BGroup)

(BPrivate,BPublic)← generate

ASigRL, BExGroup, BPublic

AQuote(h = APublic∥BPublic∥VK)

AReport← GetReport(AQuote(h))

BReport← GetReport(BQuote(h))

Validate(AReport)

Validate(BReport)

MK,SK← derive

AReport, BReport

Validate(AReport)

Validate(BReport)

MK,SK← derive

Fig. 4. Inter-Processor Attestation (IPA) protocol.

same enclave identity or the same enclave author to mutually
attest. For example, a healthcare provider could use the IPA
protocol to mutually attest two instances of its application, to
ensure that both instances are legitimate and up-to-date, before
transferring data between them using a secure communication
channel.

Figure 4 shows an execution of the IPA protocol between
the enclaves A and B. Details of the communication with IAS,
through RAP, are not shown since it follows the protocol and
uses the Intel API [16]. This interaction with IAS is repre-
sented in Figure 4 by the functions GetSigRL and GetReport.
The protocol works as follows:

1) Enclave A generates a fresh key pair and sends the cor-
responding public key (APublic), as well as its Extended
Group ID (AExGroup) and Group ID (AGroup) to B. The
Extended Group ID and the Group ID are obtained using
the SGX SDK and identify the EPID group [20] to which
the attesting platform belongs.

2) Enclave B requests the signature revocation lists of both A
and B (ASigRL and BSigRL) from IAS, through RAP, us-
ing the enclaves’ Group IDs (AGroup and BGroup) as input.
Then, B generates a key pair and sends the corresponding
public key (BPublic), its Extended Group ID (BExGroup),
and the signature revocation list of A (ASigRL), to A. Each
EPID SigRL contains a list of revoked platforms [20]. Each
quote produced in the next steps contain a proof that the
corresponding platform is not on the list.

3) Enclave A obtains a quote (AQuote), containing h as user
data, and sends it to B.

4) Enclave B obtains a quote (BQuote), containing h as user
data, and requests attestation reports for both A and B



App CSS

ex ← enclave.signed.so

A
application enclavecreate(ex)

B
service enclavecreate(ex)

MK,SK← IPA

K ← generate
N ← generate

senc(K∥N, SK)

S2 ← seal(K)

S2, N,mac(S2∥N,MK)

Ne ← generate
a = Ne∥S2

c, t← enc(data, a,Ne,K)
store(c, t, a)

Fig. 5. Inter-Processor Sealing (IPS) protocol.

(AReport and BReport) from IAS, through RAP, using the
enclaves’ quotes (AQuote and BQuote) as input. Enclave
B then validates both attestation reports (AReport and
BReport), derives session keys (MK and SK), and sends
the attestation reports to A.

5) Similarly, A validates both attestation reports and derives
session keys.
Enclaves A and B validate the attestation reports, ARe-

port and BReport, produced and signed by IAS, by
verifying the fields of each report. In particular, the
fields isvEnclaveQuoteStatus and isvEnclaveQuoteBody.

ReportData contain, respectively, the state of the enclave, as
judged by IAS, and the user data created by the enclaves at the
beginning of the attestation process. In the first field, we expect
to find OK which indicates that the enclave and the processor
are legitimate and up-to-date. In the second field, we expect
to find the same h that was sent as part of the quotes of A
and B. Each attestation report is signed by a report signing
key, owned by IAS, which is verified using the corresponding
public key hard-coded in the enclaves. The MRENCLAVE
field is compared in both attestation reports and should be the
same; otherwise, mutual attestation fails even when all else is
in an acceptable state. This can be relaxed by comparing the
MRSIGNER field instead of MRENCLAVE, and depends on
how the mutual attestation of enclaves is configured.

The user data h is obtained by computing the SHA-256
hash of the concatenation of the public keys of A and B with
the verification key VK. The derivation of VK, and the session
keys MK and SK, follows the function in Algorithm 1, Line 5.
The input s is “VK”, “MK” or “SK” according to the desired
key, and the inputs da and Qb are the private key of the entity
that derives the key and the public key of its peer, respectively.

E. IPS Protocol

The IPS protocol allows an application enclave to seal data
in such a way that another instance of the same enclave,
running on the same or a different processor, is able to unseal
the sealed data. The unsealing instance can unseal the sealed

App CSS

ex ← enclave.signed.so

A
application enclavecreate(ex)

B
service enclavecreate(ex)

MK,SK← IPA

load(c, t, a) where a = Ne∥S2

N ← generate
m = S2∥N

S2, N,mac(S2∥N,MK)

K ← unseal(S2)

senc(K∥N, SK)

data← dec(c, t, a,Ne,K)

Fig. 6. Inter-Processor Unsealing (IPU) protocol.

data even when the sealing instance is no longer available, for
example, because the enclave has been destroyed.

Figure 5 shows the application enclave A sealing application
data. For this purpose, A takes advantage of the service enclave
B created by CSS. The protocol assumes as a precondition that
the IPA protocol was previously successfully executed between
A and B, resulting in session keys MK and SK.

Enclave A generates a secret key, K, to use as IPAS sealing
key, and a nonce, N , and sends both (K, N ) encrypted with
session key SK to B. Enclave B SGX-seals K, binding it to
its own processor, and returns the sealed secret key S2 and the
nonce N to A. A verifies if N is correct, generates a second
nonce, Ne, encrypts its data using K and Ne, and saves the
ciphertext and additional data outside the enclave. The sealed
secret key, S2, and the data encryption nonce, Ke, are part of
the encryption algorithm as additional data.

The IPS protocol has to run only once per enclave instan-
tiation since K can be reused by generating a different data
encryption nonce, Ke, for each sealed data blob.

F. IPU Protocol

The IPU protocol unseals data previously sealed using the
IPS protocol, by another enclave instance, with either the
same MRENCLAVE or the same MRSIGNER, running on
the same or on a different processor. The original sealing
enclave and sealing processor are not required by the protocol,
which means that unsealing works even when the sealer is
unavailable, for example, due to the sealing enclave having
been destroyed or the sealing processor having been decom-
missioned.

Figure 6 shows the unsealing of data by the application
enclave A with the support of the service enclave B created
by CSS. The protocol assumes, as a precondition, that the IPA
protocol was previously successfully executed between A and
B, returning the session keys MK and SK.

Enclave A loads the IPAS sealed data bundle into the
enclave, extracts S2 from AD, generates a nonce, N , and sends
both S2 and N , authenticated with MK, to B. Enclave B SGX
unseals S2, which it has previously sealed, and returns the
resulting secret key, K, encrypted with the SK session key, to



A. Enclave A decrypts K∥N using SK, verifies that the nonce
N is correct, and decrypts its client data using K and Ne.

IV. SECURITY ANALYSIS

We analyze IPAS security using Tamarin, a recent security
protocol verification tool that is being much used to prove
security protocols [21]. In Tamarin a Dolev-Yao adversary con-
trols the communication network. We modeled the protocols
following the three sequence diagrams in Section III.

1) Analysis of the IPA Protocol: The formal model of the
IPA protocol follows the sequence diagram in Figure 4 but
with modifications to help with the proof. The AExGroup,
AGroup, ASigRL and BExGroup are not exchanged in the
model, since these are unnecessary. The Extended Group ID
is always zero [22]. The Group ID is used to obtain the
Signature Revocation List, which in turn is used to obtain
the IAS attestation report. However, since we do not model
the revocation of SGX processors, we can obtain the attesta-
tion report in our model without needing the corresponding
Signature Revocation List.

We use the following lemma to prove the secrecy of the
session keys MK and SK:
All k #i. Secret(k) @i ==>
(not (Ex #j. K(k) @j)) | (Ex X #j. Leak_private_DH(X) @j)

The lemma states that whenever the action Secret(k) occurs
at timepoint i, either k was leaked or the adversary does not
know k. The action is applied to MK and SK (Secret(MK)
and Secret(SK)) at the end of the IPA protocol, both in the
initiator and responder, which implies that these two secret
keys were not compromised at such a time when the protocol
ends. The proof takes 434 steps in Tamarin.

2) Analysis of the IPS and IPU Protocols: The formal
models of the IPS and the IPU protocols follow the sequence
diagrams in Figure 5 and Figure 6, respectively. These two
protocols are executed after a successful execution of the IPA
protocol, so in their models we simply assume that the result
of running IPA is available, i.e., keys MK and SK.

In IPS the sealed data is stored outside the enclave boundary,
and in IPU the sealed data is loaded from outside the enclave
boundary. We model this by sending the data to what Tamarin
designates as untrusted network, a component where the
adversary can eavesdrop and modify the data, at the end of
the formal sealing model, and by receiving the data from the
untrusted network at the beginning of the formal unsealing
model. Since the adversary controls the communication net-
work, we are in essence giving the adversary the data stored
outside the enclave boundary.

For these two models, we use the following lemma to prove
the secrecy of the IPAS sealing key, i.e., the secret key, K,
which encrypts and decrypts application enclave data:

All k #i #j. Secret(k) @i & K(k) @j ==> F

The lemma states that the adversary does not know k whenever
the action Secret(k) occurs at timepoint i. The action Secret

(k) is placed at the end of the IPS and IPU protocols, both
in the initiator and responder, implying that the IPAS sealing

key has not been compromised during the execution of the
protocols. The secrecy proof for sealing takes 9 steps in
Tamarin and for unsealing 17 steps.

V. IMPLEMENTATION

The implementation is composed of IPAS libraries, CSS and
RAP. IPAS libraries and CSS are implemented in C and RAP
is implemented in Rust. Recall from Section III-A that RAP
and CSS are not trusted.

1) IPAS Libraries: IPAS is composed of an attestation
library for the IPA protocol and a sealing library for the
IPS and IPU protocols. These libraries are linked into the
application enclave along with the other Intel SGX SDK
libraries.

2) CSS: In client applications, the enclave code is usually
available from the start, so the trusted code is dynamically
linked using a signed shared library and the untrusted code is
statically linked. In CSS, however, enclave code is unavailable
when CSS is started because there are many different purposes
for client enclaves, each with its own specific enclave code,
and CSS needs to support them all. In this case, regular
compilation of CSS results in errors where the CSS code
invokes ecalls of the IPAS API. These ecalls are implemented
by enclaves whose code is not yet available, because it has yet
to be received from clients. To solve this, we use dlopen [23]
to dynamically load the shared libraries received from clients
and invoke ecalls using a dlsym [24] wrapper, which is hidden
behind IPAS functions, around the ecall instead of invoking
the ecall directly.

3) RAP: RAP is a proxy that forwards requests from
clients to IAS and replies from IAS to clients. One such
client is CSS, which uses RAP during IPA. However, the IPA
protocol can be used by any two enclave instances wanting
to mutually attest, it does not have to include CSS, and
therefore other applications and services may also make use
of RAP. In our implementation, the Service Provider ID and
the Subscription Key are stored in a configuration file, but
in a production environment the Subscription Key could be
stored, for example, in a hardware security module. According
to Intel, the Service Provider is responsible for protecting the
confidentiality of the Subscription Key [16].

4) Scalability of CSS: In our prototype, CSS is a single-
processor service, but this would be unviable in a production
environment because it would be a single point of failure. The
CSS seals clients’ encryption keys to itself, and if the processor
is lost, all enclaves lose access to their sealed encryption keys.
The solution is to implement CSS as a multiprocessor service.

The sequence diagrams in Figures 5 and 6 show CSS
as a single entity. This entity can be made up of multiple
processors, in which case the encrypted key of the sealed
client represented by S2 would contain one sealed version of
K for each CSS processor. This approach does not require any
modifications in the client since from the caller’s perspective
S2 is an opaque blob and the protocol remains the same.

Sealing in a multiprocessor architecture is more complex
for CSS. During the IPA protocol, CSS would start multiple
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Fig. 7. IPA protocol processor execution time broken down per entity, and
total wall-clock time. The processor execution time attributed to the IPA
library is under 4 seconds. The remainder of the wall clock time is due to
network overhead and IAS execution time which are both beyond our control.

instances of the enclave spread across N processors, with one
processor working as a bridge. The caller’s application enclave
mutually attests with the service enclave running in the bridge
and then proceeds with the IPS protocol following Figure 5 in
Section III-E. Internally, the bridge enclave instance mutually
attests itself with the other N − 1 enclave instances of the
service and sends them K to be sealed. Then, the bridge
enclave instance itself seals K and collects the other N − 1
versions of sealed K in a bundle S2 and returns this bundle
to the caller. The size of S2 grows linearly with the number
of processors used by CSS during the IPS protocol.

Unsealing is simple and requires only one of the N pro-
cessors that make up CSS. The caller’s application enclave
mutually attests with the enclave instance of one of the
processors of CSS and then proceeds with the IPU protocol
following Figure 6 in Section III-F. Any of the N CSS
processors that participated in the IPS protocol can unseal K.

VI. EVALUATION

Performance was evaluated with a test application, CSS and
RAP running on the same computer; and IAS running remotely
on Intel-controlled servers. The test computer has an i5-7600
Intel processor (which has SGX) and 32 GB of RAM, with
Ubuntu 18.04 on a solid-state drive.

Each experiment is repeated in a 1000-iteration loop, except
when noted otherwise. The execution time is for the entire loop
and then divided by the number of iterations when plotting the
figures. Measurements are collected using clock_gettime [25]
with CLOCK_PROCESS_CPUTIME_ID for measuring processor ex-
ecution time and CLOCK_MONOTONIC_RAW for wall-clock time.

A. Mutual Attestation Protocol

Figure 7 shows the execution time of the mutual attestation
protocol (§ III-D). We measured the processor execution time
in the test application, CSS, and RAP; but not in IAS which
is under the control of Intel. Additionally, we measured the
wall-clock time of the full execution of the IPA protocol
from beginning to end, which includes the processor execution
time of the test application, CSS, and RAP as well as the
networking overhead and IAS execution time. The protocol
was run in a loop of 30 iterations.

The CSS processor execution time is two orders of mag-
nitude larger than for the application and RAP. This makes
sense since not only does CSS perform operations similar to
the application, as seen in Figure 4, but it also handles all

communication with RAP, including preparing the data in a
format acceptable to IAS, serialization, and encryption. RAP
mostly forwards requests and replies between CSS and IAS.

The wall-clock time of the IPA protocol is one order of
magnitude larger than processor execution times of applica-
tion, CSS and RAP combined. The complete execution of
the protocol takes just over 22 seconds to finish, mostly due
to communication with, and processing on, IAS which is
beyond our control. This overhead is a reasonable trade-off
for security, since the IPA protocol needs to execute only once
when the two enclaves attesting themselves are started. The
session keys resulting from mutual attestation can be cached
until the enclaves are destroyed.

B. Sealing Protocol

We measured the processor execution time for the sealing
protocol setup separately from the actual data encryption. The
sealing protocol setup runs once to obtain an IPAS sealing key.
This sealing key can be reused when encrypting data since
IPAS generates a new nonce for each encrypted bundle. This
experiment was carried out for five plaintext sizes, from 10
KiB to 100 MiB.

Figure 8 shows the processor execution time of the sealing
protocol setup in the application and CSS, and their combined
processor execution time. The results are similar for all plain-
texts since the setup does not depend on the plaintext size.

Figure 9 compares the execution time of the enclave
data sealing processor using IPAS (excluding setup) and
the original SGX sealing functions. Data is encrypted with
sgx_rijndael128GCM_encrypt and the nonce is generated
with sgx_read_rand in both cases. However, IPAS sealing
obtains the IPAS sealing key from the IPS setup protocol run
with CSS and caches this sealing key, whereas SGX sealing
derives the SGX sealing key with sgx_get_key on every run.

C. Unsealing Protocol

We measured the processor execution time for the unsealing
protocol setup separately from the actual data decryption. This
experiment was carried out for five different plaintext sizes
from 10 KiB to 100 MiB.

Figure 10 shows the execution time of the unsealing pro-
tocol setup in the application and CSS, and their combined
execution time. The results are similar for all plaintexts since
the setup does not depend on the sealed data bundle size.

Figure 11 compares the processor execution time of unseal-
ing data using IPAS (excluding setup) and the original SGX
unsealing functions.

VII. RELATED WORK

A. Enclave Attestation

IPAS uses EPID-based attestation, which requires commu-
nicating with IAS when attesting enclaves, as we describe in
the background section. Intel provides an alternative to EPID
called Data Center Attestation Primitives (DCAP) [26]. DCAP
enables a third party, for example, a Cloud Provider, to build
its own attestation infrastructure.
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Chen et al. [27] proposed an attestation service that im-
proves enclave privacy during attestation, compared to EPID-
based attestation, but that still uses EPID-based attestation for
its backend services. Chen and Zhang [28] proposed a mutual
attestation mechanism that works without trusted third parties,
but does not support updates to the enclave. However, both
systems still have IAS as part of their TCB. IPAS supports
enclave updates because during mutual attestation the enclaves
can choose between enclave-identity- or enclave-author-based
mutual attestation as explained in Section III-D. Teaclave [29]
solves mutual attestation by using third-party auditors that sign
and publish the identities of audited enclaves. IPAS provides
mutual attestation without trusting third parties.

B. Enclave Migration and Data Sealing

This work does not have the goal of presenting an enclave
migration scheme, but sealing is an important component
of such migration, so we analyze some related work here.
eMotion extends SGX with new instructions that support the
migration of running enclaves [30]. This solution requires
changes in hardware and is tested using the OpenSGX open-
source SGX emulator [31]. Gu et al. [32] propose a software-
only solution in which each enclave runs a control thread
capable of dumping the state of the enclave in the source
container and restoring that state to a target container. In
addition, these authors propose new instructions to support
the transparent migration of enclaves. Liang et al. [33] pro-
pose a migration solution based on a trusted service that
provisions migration keys to source and target client enclaves.
The authors encrypt persistent state with this migration key.
Nakashima and Kourai [34] propose a migration solution based
on a trusted service that provisions CPU-independent keys to
support data migration. Guerreiro et al. [35] propose a solution
for migrating virtual machines that uses a Hardware Security
Module (HSM) as a trusted entity to encrypt and decrypt
enclave data on source and target machines.

Alder et al. [36] propose a software-only solution to migrate
the persistent state of enclaves, including sealed data, which
relies on two key features: a custom library on each enclave
to be migrated; and migration enclaves, set up by the Cloud
Provider, on the source and target machines.

The authors handle the sealing by generating a custom
migration sealing key which is transferred, along with the
client enclave’s data, via the custom library and migration
enclave, from source to target machine. Then the migration
sealing key is stored locally, with the help of the custom
library, by sealing it to the migration enclave. This solution
only works for migrating sealed data when both source and
target machines are live, unlike IPAS which works even when
all enclave instances go offline. Furthermore, the migration
sealing key becomes implicitly bound to the migration enclave,
on the target machine, when it is sealed for persistent storage,
which means that if this machine becomes unavailable (e.g.,
down for maintenance, damaged or decommissioned) then all
client data, sealed by these migration sealing keys, becomes
permanently inaccessible.

In comparison to IPAS, the first four migration solu-
tions [30], [32], [33], [34] do not address inter-processor data
sealing, which is the objective of IPAS. The next two [35], [36]
do sealing but require trusting third-party services: an HSM set
up by an administrator in one case; and a migration enclave
set up by the Cloud Provider in the other. In the first case,
the HSM has access to the secret keys that encrypt the clients
data. In the second case, the migration enclave has access not
only to the secret keys, but also to all of its clients’ data. In
addition, both solutions suffer from requiring an initial setup
phase, where it is assumed that the system is in an adversary-
free clean state. Again, IPAS does not require trusting any
third party, including third-party enclaves, and does not need
an initial adversary-free setup step.

VIII. CONCLUSION

We proposed an architecture and protocols to (i) mutually
attest enclave instances executing on different processors and
(ii) unseal data originally sealed in a different processor.
This is achieved without requiring an initial setup step on an
adversary-free clean system, without having to extend SGX
with additional instructions, and without enlarging the original
threat model of SGX. Our sealing mechanism works without
exposing the client’s sealing keys outside their own enclave,
without trusting third parties, including third-party enclaves,
and works even when the sealing enclave is offline.
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