
The Middleware Architecture of MAFTIA:
A Blueprint

Paulo Ver´ıssimo Nuno Ferreira Neves Miguel Correia
pjv@di.fc.ul.pt nuno@di.fc.ul.pt mpc@di.fc.ul.pt

FC/UL� FC/UL FC/UL

Abstract

In this paper, we present the middleware architecture of
MAFTIA, an ESPRIT project aiming at developing an open
architecture for transactional operations on the Internet.
The former is a modular and scalable cryptographic group-
oriented middleware suite, suitable for supporting reliable
multi-party interactions under partial synchrony models,
and subject to malicious as well as accidental faults.

1 Introduction

In this paper, we present the middleware architecture of
MAFTIA, a project aiming at developing an open architec-
ture for transactional operations on the Internet. MAFTIA
exploits common approaches to fault tolerance, of both ac-
cidental and malicious faults. The middleware platform is
a distributed, modular and scalable cryptographic group-
oriented suite, suitable for supporting reliable multi-party
interactions under partial synchrony models, subject to ma-
licious as well as accidental faults. A combination of intru-
sion prevention and tolerance measures is sought, under a
hybrid failure model that identifies at least three classes of
relevant faults: vulnerabilities, attacks, and intrusions. An
extended version of this paper can be found in [9].

2 Failure Model

A crucial aspect of any architecture is the failure model
upon which the system architecture is conceived, and com-
ponent interactions are defined. The failure model condi-
tions the correctness analysis, both in the value and time
domains, and dictates crucial aspects of system configura-
tion, such as the placement and choice of components, level

�Faculdade de Ciˆencias da Universidade de Lisboa. Bloco C5,
Campo Grande, 1749-016 Lisboa - Portugal. Navigators Home Page:
http://www.navigators.di.fc.ul.pt. This work was partially supported by the
EC, through project IST-1999-11583 (MAFTIA), by the FCT, through the
Large-Scale Informatic Systems Laboratory (LASIGE) and by the project
Praxis/33996/99 (DEFEATS).

of redundancy, types of algorithms, and so forth. There are
essentially two different kinds of failure model: controlled
failure assumptions; and arbitrary failure assumptions.

Failure Assumptions

Controlled failure assumptions specify qualitative and
quantitative bounds on component failures. For example,
the failure assumptions may specify that components only
have timing failures, and that no more thanf components
fail during an interval of reference. Alternatively, they can
admit value failures, but not allow components to sponta-
neously generate or forge messages, nor impersonate, col-
lude with, or send conflicting information to other compo-
nents. This approach is extremely realistic, since it repre-
sents very well how common systems work under the pres-
ence of accidental faults, failing in a benign manner most of
the time. It can be extrapolated to malicious faults, by as-
suming that they are qualitatively and quantitatively limited.
However, it is traditionally difficult to model the behaviour
of a hacker, so we have a problem of coverage that does not
recommend this approach unless a solution can be found.

Arbitrary failure assumptions specify no qualitative or
quantitative bounds on component failures. Obviously, this
should be understood in the context of a universe of ”possi-
ble” failures of the concerned operation mode of the compo-
nent. For example, the possible failure modes of interaction,
between components of a distributed system are limited to
combinations of timeliness, form, meaning, and target of
those interactions (let us call them messages). In this con-
text, an arbitrary failure means the capability of generating
a message at any time, with whatever syntax and seman-
tics (form and meaning), and sending it to anywhere in the
system.

Hybrid assumptions combining both kinds of failure as-
sumptions would be desirable. Generally, they consist of
allocating different assumptions to different subsets or com-
ponents of the system, and have been used in a number of
systems and protocols. Hybrid models allow stronger as-
sumptions to be made about parts of the system that can



justifiably be assumed to exhibit fail-controlled behaviour,
whilst other parts of the system are still allowed an arbi-
trary behaviour. This is advantageous in modular and dis-
tributed system architectures such as MAFTIA. However,
this is only feasible when the model is well-founded, that
is, the behaviour of every single subset of the system can
be modelled and/or enforced with high coverage, and this
brings us back, at least for parts of the system, to the prob-
lem identified for controlled failure assumptions.

Composite Failure Model

The problems identified in our discussion of failure as-
sumptions point to the need for the MAFTIA failure model
to have characteristics enabling the definition of interme-
diate, hybrid assumptions, with adequate coverage. A first
step in this direction is the definition of a composite fail-
ure model specifically aimed at representing the failures that
may result from several classes of malicious faults. A sec-
ond step is the definition of a set of techniques that act at dif-
ferent points within this composite failure model and which,
combined in several ways, yield dependability vis-`a-vis par-
ticular classes of faults. We are going to base our reasoning
on two guiding principles:

� the sequence: attack+ vulnerability! intrusion!
failure

� the recursive use of fault tolerance and fault prevention

Concerning the mechanisms of failure, Figure 1 rep-
resents the fundamental sequence:attack + vulnerability
! intrusion ! failure. It distinguishes between several
kinds of faults capable of contributing to a security failure.
Vulnerabilities are the primordial faults existing inside the
components, essentially design or configuration faults (e.g.,
coding faults allowing program stack overflow, files with
root setuid in UNIX, na¨ıve passwords, unprotected TCP/IP
ports). Attacks are malicious interaction faults that attempt
to activate one or more of those vulnerabilities (e.g., port
scans, email viruses, malicious Java applets or ActiveX con-
trols). An attack that successfully activates a vulnerability
causes an intrusion. This further step towards failure is nor-
mally characterised by an erroneous state in the system that
may take several forms (e.g., an unauthorised privileged ac-
count with telnet access, a system file with undue access
permissions to the hacker). Such erroneous states can be
unveiled by intrusion detection, as we will see ahead, but
if nothing is done to process the errors resulting from the
intrusion, failure of one or more security properties will oc-
cur.

The composite model embraced in MAFTIA allows the
combined introduction of several techniques. Note that two

����������
	
����

������ 
������

���������
	
�����

��������	�	
�
������
	�


������� 	�
���	��

�������

��������	�	
�������	
�	������������

������

	�
���	��
������
	�

������
������
	
����

�

���
������
	�

�������������
	
����

Figure 1. The Composite Failure Model of MAFTIA

causes concur to create an intrusion, as shown in Figure 1:
vulnerabilities and attacks.

To begin with, we can prevent some attacks from occur-
ring, thereby reducing the level of threat imposed on the
system. Attack prevention can be performed, for example,
by selectively filtering access to parts of the system (e.g.,
if a component is behind a firewall and cannot be accessed
from the Internet, it cannot be attacked from there). How-
ever, it is impossible to prevent all attacks (e.g., some com-
ponents have to be placed outside the firewall in a Demili-
tarised Zone), and in consequence, other measures must be
taken.

On the vulnerability side, vulnerability prevention helps
to reduce the degree of vulnerability by construction. How-
ever, many systems are assembled from COTS components
that contain known vulnerabilities. When it is not possible
to prevent the attack(s) that would activate these vulnerabil-
ities, a first step would be to attempt vulnerability removal.
Sometimes this is done at the cost of eliminating the system
functions that contain the vulnerabilities.

The various combinations of techniques discussed above
provide a range of alternatives for achieving intrusion pre-
vention (see Figure 1), i.e. attempting to avoid the occur-
rence of intrusions. Whilst this is a valid and widely used
approach, its absolute success cannot be guaranteed in all
situations, and for all systems. The reason is obvious: it
may not be possible to handle all attacks, either because
not all attacks are known or new ones may appear, or be-
cause not all attacks can be guaranteed to be detected or
masked. Similar reasoning applies to vulnerabilities. In
consequence, some attacks will succeed in producing in-
trusions, requiring forms of intrusion tolerance, as shown in
the right part of Figure 1, in order to prevent system failure.
Again, these can assume several forms: detection (e.g., of
intruded account activity, of Trojan horse activity); recovery
(e.g., interception and neutralisation of intruder activity); or
masking (e.g., voting between several components, includ-
ing a minority of intruded ones) [4].

The above discussion has laid the foundations for achiev-
ing our objective: a well-founded hybrid failure model, that
is, one where different components have different faulty be-



haviours. Consider a component for which a given con-
trolled failure assumption was made. How can we achieve
coverage of such an assumption, given the unpredictability
of attacks and the elusiveness of vulnerabilities? The key
is in a recursive use of fault tolerance and fault prevention.
Think of the component as a system: it can be constructed
through the combined use of removal of internal vulnera-
bilities, prevention of some attacks, and implementation of
intrusion tolerance mechanisms internal to the component,
in order to prevent the component from exhibiting failures.

Looked upon from the outside now, at the next higher
level of abstraction, the level of the outer system, the would-
be component failures we prevented restrict the system
faults the component can produce. In fact we have per-
formed fault prevention, that is, we have a component with
a controlled behaviour vis-`a-vis malicious faults. This prin-
ciple:

� establishes a divide-and-conquer strategy for building
modular fault-tolerant systems;

� can be applied in different ways to any component;

� can be applied recursively at as many levels of abstrac-
tion as are found to be useful.

Components exhibit a coverage that is justifiably given
by the techniques used in their implementation, and can
subsequently be used in the construction of fault-tolerant
protocols under the hybrid failure model.

3 Synchrony Model

Research in distributed systems algorithms has tradition-
ally been based on one of two canonical models: fully asyn-
chronous and fully synchronous models [8]. Asynchronous
models do not allow timeliness specifications. They are
time-free, that is, they are characterised by an absolute in-
dependence of time.

Asynchronous models obviously resist timing attacks,
i.e. attacks on the timing assumptions of the model, which
are non-existent in this case. However, because of their
time-free nature, asynchronous models cannot solve timed
problems. However, timeliness is part of the required func-
tionality of interactive applications, such as on-line opera-
tions on the stock market, multimedia, air traffic control.

Synchronous models allow timeliness specifications. In
this type of model, it is possible to solve all hard prob-
lems (e.g., consensus, atomic broadcast, clock synchronisa-
tion) [3]. Synchronous models are characterised by having
known bounds for processing and message delivery delays,
and for the rate of drift and difference among local clocks.

However, synchronous models are fragile in terms of the
coverage of timeliness assumptions such as: positioning of

events in the timeline and determining execution durations.
It is easy to see that synchronous models are susceptible to
timing attacks, since they make strong assumptions about
things happening on time.

Partial Synchrony

The introductory words above explain why synchronism
is more than a mere circumstantial attribute in distributed
systems subjected to malicious faults:absence of time is
detrimental to quality of service; presence of time increases
vulnerability. Intermediate timed partially synchronous
models have deservedly received great attention recently.
They provide better results, essentially for three reasons:
(i) they allow timeliness specifications; (ii) they admit fail-
ure of those specifications; (iii) they provide timing failure
detection. We are particularly interested in a model based
on the existence of a timely computing base, which is both
a timely execution assistant and a timing failure detection
oracle that ensures time-domain correctness of applications
in environments of uncertain synchronism [7].

This research has focused on benign (non-arbitrary, non-
malicious) failure models. However, the architectural char-
acteristics of the timely computing base enable its extension
in order to be resilient to value- as well as time-domain fail-
ures. We call such an extended model, whose development
we pursue in the MAFTIA project, a Trusted Timely Com-
puting Base, or TTCB. In one sense, a TTCB has similar
design principles to the very well known paradigm in se-
curity of a Trusted Computing Base (TCB) [1]. However,
the objectives are drastically different. A TCB aims at fault
prevention and ensures that the whole application state and
resources are tamper-proof. It is based on logical correct-
ness and makes no attempt to reason in terms of time. In
contrast, a TTCB aims at fault tolerance: application com-
ponents can be tampered with, but the whole application
should not fail. In other words, a TTCB is an architectural
artefact supporting the construction and trusted execution
of fault-tolerant protocols and applications running under a
partially synchronous model.

The architecture of a system with a TTCB is suggested
by Figure 2. The first relevant aspect is that the hetero-
geneity of system properties is incorporated into the system
architecture. There is a generic or payload system, over a
global network or payload channel. This prefigures what is
normally ”the system” in homogeneous architectures, that
is, the place where the protocols and applications run. The
latter can have any degree of synchronism, and be subjected
to arbitrary attacks. Additionally, there is a control part,
made of local TTCB modules, interconnected by some form
of medium, the control channel. We will refer to this set up
as the distributed TTCB, or simply TTCB when there is no
ambiguity. The second relevant aspect of the TTCB is that



its well-defined properties are preserved by construction, re-
gardless of the properties of applications running with its
assistance: it is synchronous, and it is trusted to execute as
specified, being resilient to intrusions.

������

� ������

����

�����	

� �

�

�

�
�

�
��
�
������

����

����

������������

�
��
��������

Figure 2. Trusted Timely Computing Base Model

Unlike the classic TCB, the TTCB can be a fairly mod-
est and simple component of the system, used as an assistant
for parts of the execution of the payload protocols and ap-
plications. Moreover, depending on the type of application,
it is not necessary that all sites have a local TTCB. Con-
sider the development of a fault-tolerant TTP (Trusted Third
Party) based on a group of replicas that collectively ensure
the correct behaviour of the TTP service vis-`a-vis malicious
faults. One possibility is for the replica group activity to
be based on algorithms that support an arbitrary failure as-
sumptions model (e.g., asynchronous randomised Byzan-
tine Agreement), with the corresponding penalty in perfor-
mance and lack of timeliness. Alternatively, the replica
group management may rely on simpler algorithms that are
at least partially executed in a synchronous subsystem with
a benign (intrusion-free) failure model. Running these parts
of the algorithm on a distributed TTCB substantiates the
coverage of these assumptions.

4 Topological Model

Previous work on large-scale open distributed systems
has shown the value of topology awareness in the construc-
tion of efficient protocols, from both functionality and per-
formance viewpoints [6]. The principle is explained very
simply: (i) the topology of the system is set up in ways that
may enhance its properties; (ii) protocols and mechanisms
in general are designed in order to recognise system topol-
ogy and take advantage from it.

We intend to extrapolate the virtues of topology aware-
ness to security in the MAFTIA architecture, through a few
principles for introducing topological constructs that facili-
tate the combined implementation of malicious fault toler-

ance and fault prevention. The first principle is to use topol-
ogy to facilitate separation of concerns: the site-participant
separation in the internal structure of system hosts separates
communication from processing; and the WAN-of-LANs
duality at network level separates communication amongst
local aggregates of sites, which we callfacilities, from long-
haul communication amongst facilities. The second princi-
ple is to use topology to construct clustering in a natural
way. Two points of clustering seem natural in the MAFTIA
large-scale architecture: sites and facilities. These princi-
ples are illustrated in Figure 3.

���	�	
�
���
����

���	�	
�
���
���������

��
���

��

�	
�

�

�

�

�	
�

�	
�

�	
� �	
�
������
��
���

������
��
���

�����	�	
� �����	�	
�

���	�	
�
���
����

���	�	
�
���
���� ���

Figure 3. Two-tier WAN-of-LANs

Sites are hidden behind a single entry-point, a Facility
Gateway, a logical gateway that represents the local network
members, for the global network.

From a security viewpoint, participant-site clustering al-
lows investing in the implementation of fault-tolerant and
fault-preventive mechanisms at node level to collectively
serve the applications residing in the node. On the other
hand, the opportunities offered by site-facility clustering
with regard to security are manifold: firewalling at the
Facility Gateway; establishing inter-facility secure tunnels
ending in the facility agents; inspecting incoming and out-
going traffic for attack and intrusion detection; ingress and
egress traffic filtering; internal topology hiding through net-
work address translation, etc.

System Components

The architecture of a MAFTIA node is represented in
Figure 4, in which the local topology and the dependence
relations between modules are depicted by the orientation
of the (”depends-on”) arrows. In Figure 4 the set of lay-
ers is divided into site and participant parts. The site part
has access to and depends on a physical networking infras-
tructure, not represented for simplicity. The participant part
offers support to local participants engaging in distributed
computations. The lowest layer is the Multipoint Network
module, MN, created over the physical infrastructure. Its



main properties are the provision of multipoint addressing
and a moderate best-effort error recovery ability, both de-
pending on topology and site liveness information.

���
	�	��
������

���
	�	�

��
���������	
����	����

 �
��
������

���
	�	���
���	����
 �
��
�������

���
	�	��
������

���
	�	��
�������

��
	�	
�������
�
����	�����������
	�	���


�������!	������

"����	��
	�
�����


����	�����"��
�	
�

�������!	������

���
	�	���
������

�	
�������

Figure 4. Architecture of a MAFTIA Node

In the site part, the Site Failure Detector module, SF, is
in charge of assessing the connectivity and correctness of
sites, and the MN module depends on this information. The
SF module depends on the network to perform its job, and
thus is not completely reliable, due to the uncertain syn-
chrony and susceptibility to attacks of at least parts of the
network. The universe of sites being monitored can be pa-
rameterised, for example: all sites inside a facility, all sites
having to do with ongoing computations at this site, all fa-
cility agents, etc. The Site Membership module, SM, de-
pends on information given by the SF module. It creates
and modifies the membership (registered members) and the
view (currently active, or non-failed, or trusted members) of
sets of sites, which we call site-groups. The Communica-
tion Support Services module, CS, implements basic cryp-
tographic primitives (e.g., secure channels and envelopes),
Byzantine agreement, group communication with several
reliability and ordering guarantees, clock synchronisation,
and other core services. The CS module depends on infor-
mation given by the SM module about the composition of
the groups, and on the MN module to access the network.

In the participant part, the Participant Failure Detector
module, PF, assesses the liveness and correctness of all local
participants, based on local information provided by sensors
in the operating system support. The Participant Member-
ship module, PM, performs similar operations as the SM,
on the membership and view of participant groups. The PM
module monitors all groups with local members, depend-
ing on information propagated by the SM and by the PF
modules, and operating cooperatively with the correspond-
ing modules in the concerned remote sites. The Activity
Support Services module, AS, implements building blocks

that assist participant activity, such as replication manage-
ment (e.g., state machine, voting), leader election, transac-
tional management, key management, and so forth.

Implementation

A prototype of the MAFTIA architecture is currently
being developed with the collaboration of several part-
ners. The middleware, in particular, has as major contrib-
utors IBM Zurich with the definition of some CS proto-
cols [2], University of Newcastle upon Tyne who are ex-
tending their work on long running transactions [10], and
University of Lisboa with the development of a secure
group-communication suite on the partially-synchronous
model [7]. Partners from DERA and University of Saarlan-
des are formally verifying and assessing some of the proto-
cols that are being produced [5].

References

[1] M. Abrams, S. Jajodia, and H. Podell, editors.Information
Security. IEEE CS Press, 1995.

[2] C. Cachin, K. Kursawe, and V. Shoup. Random oracles
in Constantinople: practical asynchronous Byzantine agree-
ment using cryptography. InProc. of the 19th Symposium
on Principles of Distributed Computing, July 2000.

[3] T. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems.Journal of the ACM, 43(2):225–
267, Mar. 1996.

[4] Y. Deswarte, L. Blain, and J.-C. Fabre. Intrusion tolerance in
distributed systems. InProc. of the IEEE Symp. on Security
and Privacy, pages 110–121, May 1991.

[5] B. Pfitzmann, and M. Waidner. Composition and integrity
preservation of secure reactive systems. InProc. of the Conf.
on Computer and Communications Security, Nov. 2000.

[6] L. Rodrigues and P. Ver´ıssimo. Topology-aware algorithms
for large-scale communication. In S. Krakowiak and S. Shri-
vastava, editors,Advances in Distributed Systems, LNCS
1752, chapter 6, pages 127–156. Springer Verlag, 2000.

[7] P. Verı́ssimo, A. Casimiro, and C. Fetzer. The timely com-
puting base: Timely actions in the presence of uncertain
timeliness. InProc. of the Int’l Conf. on Dependable Sys-
tems and Networks, June 2000.

[8] P. Verı́ssimo, and M. Raynal. Time, clocks and temporal or-
der. In S. Krakowiak and S. Shrivastava, editors,Recent Ad-
vances in Distributed Systems, volume 1752 ofLNCS, chap-
ter 1. Springer-Verlag, 2000.

[9] P. Verı́ssimo, N. F. Neves, and M. Correia. The Middleware
architecture of MAFTIA: A blueprint. DI/FCUL TR 99-
6, Department of Computer Science, University of Lisboa,
Sept. 2000.

[10] J. Xu, B. Randell, A. Romanovsky, A. Stroud, R. Zorzo,
E. Canver, and F. von Henke. Rigorous development of a
safety-critical system based on coordinated atomic actions.
In Proc. of the 29th Symposium on Fault-Tolerant Comput-
ing Systems, pages 68–75, June 1999.


