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Abstract—TrustZone is an extension of the ARM architecture
that allows software executed in ARM processors to be split
in two environments: the normal world that runs a common
operating system (e.g., Android or Linux) and its applications,
and the secure world that runs security services or others that
need to be isolated from the normal world. This work aims to
provide support for analyzing the security status of the normal
world from the secure world. For this purpose, we present a
Virtual Machine Introspection (VMI) library that leverages the
TrustZone architecture. VMI tools and the library run in the
secure world and inspect the normal world. We present an
experimental evaluation of the library in an i.MX53 development
board.

Index Terms—Virtualization, introspection, TrustZone,
Trusted Execution Environments

I. INTRODUCTION

A Trusted Execution Environment (TEE) is a secure,
integrity-protected, runtime environment, consisting of pro-
cessing, memory and storage capabilities [1]. A TEE provides
isolation from the normal processing environment, where the
operating system and its applications run.

ARM TrustZone is a secure extension of the Advanced
RISC Machine (ARM) architecture, that allows software ex-
ecuted in ARM processors to be split in two environments:
normal world and secure world [2]. The normal world or rich
environment runs a common operating system (e.g., Android
or Linux) and its applications. The secure world runs security
services or, more generically, services that need to be isolated
from the normal world.

These environments have independent memory address
spaces and different privileges. While code running in the
normal world cannot access the secure world address space
or resources, code running in the secure world can access the
normal world address space and resources [2], [3]. The isola-
tion of the secure world from the normal world is important for
example due to the fact that nowadays many of the commonly

used protection mechanisms, such as anti-virus and intrusion
detectors, are targeted by malware that is often able to disable
them [4], [5].

This paper explores the ARM architecture to design a
system that allows software in the secure world to detect
malicious behavior in the normal world of a mobile device,
e.g., a smartphone or a tablet. This system should run in
the secure world – a TEE –, but the question is how can
code running in the secure world analyze the state of the
normal world. One way of doing it is by using Virtual Machine
Introspection (VMI), which is the approach of analyzing the
state of a system from the outside, for instance from a secure
environment, such as the secure world [6].

To achieve this, a few key components are needed. First,
we need a VMI library that is compatible with the TrustZone,
which is something that did not exist before this work. Our
library – called ITZ (Introspection for TrustZone) – contains
several functions for reading, translating and writing memory
from the secure world, alongside with the means to communi-
cate with the normal world and vice-versa.1 Second, we need
a way to verify the system state with the contents of main
memory, which can be done by introspection tools that use
the library. These tools may serve to assure that the normal
world of the current system has not been compromised, by
verifying from time to time code and data stored in memory.

The goal of this paper is to show how ARM TrustZone can
be used as a secure environment, in order to inspect the mem-
ory of a running system. The idea is to explore this technology
and combine it with the concept of VMI. Overall the outcome
is a library capable of performing secure introspection, similar
to the introspection provided by libraries that currently exist
for hypervisor-based virtualization solutions, such as LibVMI
[7], but with stronger isolation. This library should provide

1Available at https://github.com/BahamutMW/ITZ-ARM-TrustZone



us the means to run several existing introspection tools, as
well as to create new ones. The same way ARM TrustZone
has been used to protect stored data [8], backup data [9] or
provide trusted sensors [10], this paper studies how to use it
to support memory inspection.

Besides the ITZ library design and implementation, the
paper presents a set of simple introspection tools based on
ITZ and evaluation results.

II. ITZ LIBRARY DESIGN

This section describes the design of the ITZ library.

A. Use Cases

This section presents briefly three use cases for ITZ for the
reader to better grasp what it is useful for.

In the first use case, a company adopted BYOD (Bring Your
Own Device) and lets its employees use their own smartphones
to access an internal database (running in some private cloud)
using an app provided by the company. The app runs in the
normal world, as any other app. The database is critical so
it is not reasonable to allow access from arbitrary devices.
Therefore, when the app is executed it starts by calling a
service that runs in the secure world, installed by the company,
which was implemented using ITZ. That service uses VMI to
check the security status of the normal world. If it considers
there are no security issues, it returns to the app a certificate
that the app sends to the company’s cloud. The database only
returns internal data if the certificate is valid.

In the second scenario, an organization that runs a critical
business (a bank, the military, a 3-letter agency) has its
own tablets for employees to do their job in the field. The
tablets need to have Internet connection so the organization is
concerned about their security status. Therefore, periodically
(e.g., every hour) a service implemented using ITZ is triggered
to access the status of the normal world. This triggering can
be done using a hardware clock that generates an interruption
[9]. Then, the service checks the status and if the level of risk
is high it puts the device in a locked status, that can only be
unlocked by taking it to the organization’s facilities.

In the third use case, a company is concerned about the
security of the apps from online markets that it recommends
employees to use in their devices (e.g., the email client), with
good reasons for that [11], [12]. Therefore, it implements a
service based on ITZ to do introspection and analyze these
apps. For that purpose, its engineers use a set of test devices
that run the service in the secure world. These engineers
install these apps and use the service to understand if there
are security issues.

The benefit of ITZ in the three use cases is to simplify the
implementation of the service that, with ITZ, do not have to
implement introspection from scratch.

B. Assumptions and Threat Model

We assume that the hardware is correct, i.e., that all Trust-
Zone security features supported by the processor are correctly
implemented and cannot be compromised or circumvented

Fig. 1. System architecture.

by an attacker (e.g., Meltdown and Spectre attacks are not
possible [13], [14]). We assume that the normal world runs
an untrusted kernel and is used by untrusted users, which
however do not have access to the secure world resources and
configuration. We also assume to have the source code of the
Linux kernel.

We accept that an attacker may trigger a SMC call (a call
to the secure world), and attempt to pass fake data onto the
secure world. The attacker may do this call repeatedly to cause
a local denial-of-service.

We are primarily concerned with potential memory mod-
ifications resulting from software exploits to normal world
applications. In order to prevent attacks caused by external
exploits on the system, the introspection of the memory is
done from the secure world. The introspection does not rely
on any information passed explicitly by the normal world,
accessing the memory directly.

The Trusted Computing Base (TCB) [15] of our system
comprises the hardware platform (ARM processor with Trust-
Zone extension and other chips), the secure world microkernel,
the ITZ library, and the introspection tool(s) (as they run in
the secure world).

C. Architecture

The proposed architecture has its components divided
among the two worlds as shown in Figure 1. The ITZ library
is placed in the secure world. The figure shows also an
introspection tool (there could be more), that uses the library
functions to do some job based on VMI.

In the normal world there is a Linux kernel (or another OS)
that is extended with a module to support the shared memory
buffer necessary for the two worlds to exchange data. This
is done using direct memory access (DMA), and passing the
address and size through certain registers. This memory buffer
is only used by the secure world to send data to the normal
world; whenever the secure world needs information from the
normal world, it accesses the memory directly, since otherwise
the memory could be compromised.

In the secure world there is a microkernel that provides basic
resource management functions (memory, CPU, I/O). On top
of that microkernel, there is a virtual-machine monitor (VMM)
that runs in user mode. This VMM mainly manages the shared
memory buffer and communication with the normal world.



Fig. 2. Introspecting the normal world memory.

D. ITZ Library API

The goal is to design a library called ITZ capable of
performing introspection on the normal worl, in order to obtain
the content stored in memory (non-persistent or persistent).
Our library is inspired on LibVMI [7], a VMI library for VMs
working on QEMU, Xen or KVM. LibVMI is a C library
with Python bindings. We first tried to port LibVMI to run in
the secure world, but this was unfeasible without running the
Linux kernel and several libraries in that environment. This
would lead to a huge TCB and make the TEE more prone to
vulnerabilities.

As we can see in Figure 2, the way we do the introspection
is by using our library running in the secure world. As we can
have the normal world compromised, the memory access is
always done directly from the secure world. This is possible
due to the properties of the TrustZone, which prevent code
running in the normal world from accessing the secure world
address space, but allow code running in the secure world to
access the normal world address space.

ITZ provides an API divided in several classes of functions.
It provides functions to read and write from both virtual
addresses and physical addresses, as well as from the symbol
table used by the kernel. These functions access directly the
memory of the normal world from the safety of the secure
environment.

When using memory addresses in a normal application or in
the kernel we are dealing with virtual memory addresses that
are translated in hardware by the Memory Management Unit
(MMU) to physical memory addresses. Therefore, the library
provides also translation functions to perform the translation
from virtual addresses to physical addresses and vice-versa.

Additionally we also support print functions responsible for
printing out the hexadecimal and ASCII of a chunk of bytes
located in a given address. We can describe these functions
as memory dumpers that dump the content of a given address
to the terminal or a file. Their output is similar to the output
obtained with Unix’s od command line tool. The od command
dumps a file in octal, decimal, and other formats.

Figure 3 shows a sample of the API of the ITZ library, with
examples for read, write, print and other functions.

We now compare the functions of our library with those
of LibVMI. Our library has an interface similar to LibVMI’s

//Destroy instance (free memory and close handles)
status_t vmi_destroy(Vm * _vm);

//Read 8 bits from a given physical address
status_t vmi_read_8_pa(Vm *_vm, uint64_t paddr,

uint8_t * value);

//Write 8 bits to memory, given a virtual address
status_t vmi_write_8_va(Vm *_vm, uint64_t vaddr,

int32_t pid, uint8_t * value);

//Translate virtual address to physical address
uint64_t vmi_translate_kv2p(Vm *_vm, uint64_t

vaddr);

//Print hex and ascii versions of a chunk of bytes
from a kernel symbol

void vmi_print_hex_ksym(Vm * _vm, char * sym,
size_t length);

// Get memory size of the normal world (i.e., the
maximum physical address that ITZ can access)

uint64_t vmi_get_memsize(Vm * _vm);

//Get the memory offset associated with the given
offset_name

uint64_t vmi_get_offset(Vm * _vm, char *
offset_name);

Fig. 3. Sample of the ITZ Library API.

LibVMI functions ITZ functions
Initialization functions Stubs implemented (not used)
Destroy functions Stubs implemented (not used)
Translation function Implemented (excluding Windows)
Read functions Implemented (excluding Windows)
Write functions Implemented (excluding Windows)
Print functions Implemented
Get and Set functions Partially implemented (some not used)
Pause and Resume functions Stubs implemented (not used)
Cache functions Partially implemented (some not used)
Event functions Not implemented
Single Step functions Not implemented

TABLE I
COMPARING LIBVMI WITH ITZ.

to reduce the effort necessary to port tools based on LibVMI
to work with ITZ. Table I shows that we included all the
functions we considered relevant and some stubs to make the
API similar to LibVMI’s. We did not include some Windows-
only or LibVMI specific functions. The event and single step
functions available in LibVMI were not implemented in ITZ
due to limitations of the environment, which does not allow
for interruptions of the normal world (e.g., system calls) to
be handled by the secure world. Even if this was possible,
it would severely impact the performance of the device due
to constant world-switches. One possible workaround would
be to insert breakpoints in the software being monitored to
trigger a SMC call and perform a world switch. However, this
approach would be vulnerable to malicious software that could
remove these instructions, besides the overhead of changing
worlds.



E. Interaction Between Worlds

Although both the library and introspection tools run in the
secure world, the usual way for introspection to be started is
by an application from the normal world to call the secure
world. In order to support that, we have developed a way to
send arguments from the normal world to the secure world,
which allows us to control a memory region to perform
communication between worlds.

Whenever the normal world requests to switch worlds, the
CPU state is saved in order to be restored later. The component
responsible for handling and restoring the state of the normal
world is the TZ VMM. TZ VMM saves the processor state of
the normal world, allowing for the secure kernel to access it.
As such it is possible, from the secure world, to access CPU
registers, the stack pointer and the random-access memory
(RAM) pointer. The latter is a special pointer used to indicate
the top of the normal world’s RAM. When control is given
back to the normal world, TZ VMM restores the previously
saved CPU state.

Using the modified TZ VMM, we have designed a way
to send the desired arguments through worlds, by relying on
the use of the CPU registers. In the normal world, whenever
a request to switch worlds is issued, the OS can push the
registers to the stack, and then write the arguments onto them.
Afterwards on the secure world, by using the saved state of
the normal world’s processor, it is possible to extract the data
that was pushed. In order to send data back into the normal
world, the secure world is allowed to modify the saved CPU
state of the normal world, by replacing the values stored in the
registers. The normal world OS, after regaining control, can
then access them and extract the new data. Once this operation
is complete, the register values are restored, and the CPU state
is resumed to what it was before the world switch.

This method does not allow sending large amounts of data
in either direction, but only some bytes. However, these bytes
are enough to indicate the memory address and the size of the
shared memory buffer, which is then used to pass arbitrary
amounts of data. Specifically we use register r2 for the address
and r3 for the size.

III. ITZ LIBRARY IMPLEMENTATION

This section describes the implementation of ITZ. We im-
plemented a prototype of ITZ for the Freescale NXP i.MX53
Quick Start Board (QSB); some of the implementation details
described in this chapter are specific to this development
board. This board contains an ARM cortex-A8 processor
with TrustZone, 1GB DDR3, a SD/MMC card slot, two USB
adapters, and other interfaces and chips. In order to minimize
the size of the TCB in the secure world, we setup a small
microkernel based on a custom kernel (base-hw) provided by
Genode labs for our board [16].

A. System Configuration

The i.MX53 QSB has a mechanism to assure that memory
regions are protected to prevent unauthorized access from
the normal world. This works as part of the DDR memory

Fig. 4. i.MX53 QSB memory layout.

controller, through the Multi-Master Multi-Memory Interface
(M4IF). The M4IF enables the masking of DDR RAM re-
sources and guarantees that a configurable range of memory
is protected and used exclusively by the secure world.

The i.MX53 QSB has 1GB of RAM split into two memory
banks, RAM 0 and RAM 1. Each memory bank has 512MB
of memory that can be configured and used. For our work,
and due to the limitations of the M4IF, that only allows for
up to 256MB of memory to be protected in each bank, we
choose to protect the initial 256MB of the first memory bank.
This process is done at boot time, and assures that 256MB of
memory are reserved for our secure world, while the rest of
the bank is used for the normal world OS. In Figure 4 we can
see the memory layout used in our device.

In the normal world, we run a custom version of the Linux
kernel. It is based on the kernel version 2.6.35.3 and we have
modified it to use it alongside the i.MX53 QSB. The OS kernel
has some additional system calls that allow to trigger a world
switch when needed. Moreover, an additional kernel module
has been added to create a shared memory buffer using DMA,
allowing for data exchange. The is an additional module that
allows obtaining the Linux offsets necessary for introspection
purpose, such as the offset of the symbol table.

B. Secure World and ITZ

The secure world is our TEE. It runs the Genode-based
microkernel and the TZ VMM. It is isolated from the normal
world, which makes it the ideal place to perform introspection
when security is a concern.

The ITZ library contains several classes of functions that
were inspired on LibVMI. Some of these functions allow
us to perform introspection of the memory, by enabling
the TZ VMM to read and write into specific addresses in
memory, and can be combined with the support functions,
such as those for translation and printing of contents. In the
paragraphs below, we will get into more detail, by providing
code samples of some of the available functions and explaining
their functionality. We will focus on the functions that are used
for memory manipulation, while also mentioning some of the
other available functions. These functions have been designed
to work within the secure world, and to have direct access to
the memory of the normal world.

1) Read and Write Functions: When dealing with memory
addresses in a normal world application or in the normal world
kernel, we are dealing with virtual memory addresses that are
translated by the MMU to physical memory addresses (if the
memory region has been swapped out to persistent memory,
the translation may fail, generating a page fault). Therefore, we



size_t vmi_read_pa (Vm *_vm, uint64_t paddr, void
*buf, size_t count){

...
//The buf_base is initialized with the physical

address to read
Genode::addr_t buf_base = paddr;

...
//Read the content in the ram at the given

address into the _buf and prints it
Genode::addr_t buf_off = buf_base - ram->base();
_buf = (void *)(ram->local() + buf_off);

...
}

Fig. 5. Sample code to read from a physical address.

* @param[in] *_vm Genode instance
* @param[in] vaddr Virtual address to translate
* @return phys_addr_SW Translated physical address
uint64_t vmi_translate_kv2p(Vm *_vm, uint64_t

vaddr){
Genode::addr_t phys_addr_SW =

_vm->va_to_pa(vaddr);
return phys_addr_SW;

};

Fig. 6. Code to translate a virtual address into a physical address.

are not able to access the virtual addresses directly, and as such
the translation to a physical address is always required when
requesting for a read function. The same problem happens
whenever we want to read the content of a kernel symbol, so
the solution is to request a translation from the symbol to a
valid address.

On the other hand, the reads from physical memory can
be done directly, without the need of a translation, provided
that the given address is valid, which is verified by our read
functions. Similarly to the read functions, the corresponding
write functions also require the translation beforehand, through
the same process described above.

In Figure 5 we can see a sample of the code used to read
from a physical address in the secure world, and verify that by
pushing the obtained physical address to the top of the stack
we are able to read its content.

2) Translate and Print Functions: In Figure 6 we can see
the code for translating a normal world virtual address into a
secure world physical address. As mentioned before, when in
the normal world, applications make use of virtual memory
addresses. Therefore, in order to obtain the corresponding
physical address of virtual address we access the MMU,
which will go through the map until it finds the pair (virtual
address, physical address) and gets the one we requested.
Unlike LibVMI, our translation function does not take as an
input the process id, as it can only translate kernel memory
addresses (a limitation of the current implementation).

A similar process happens when we want to obtain the
secure world’s virtual address of a physical address. The main
difference is that it requires a call to an internal service, which

class RAM{
...

Genode::addr_t va(Genode::addr_t phys)
{

if ((phys < _base) || (phys > (_base +
_size)))

throw Invalid_addr();
return _local + (phys - _base);

}
...
}

Fig. 7. Auxiliary code to get a virtual address from physical address.

will generate the virtual address using the code in Figure 7.
There is also another function that translates a kernel symbol
to its corresponding address, by searching a list of (virtual
address, kernel symbol) pairs and returning the address. The
print functions are very straightforward functions, which take
any virtual or physical address and print out the corresponding
hexadecimal and ASCII content of a chunk of bytes.

3) Other Functions: The functions mentioned above are
those that we considered more important when developing our
library. However, there are other classes of functions offered
by LibVMI and by our own library. These functions exist to
support and provide extra functionality to the introspection
library, and as such we decided to only implement some of
them, while creating stubs for the remaining ones in order to
provide a more complete library.

The get and set functions have been implemented partially,
to provide some useful data that the LibVMI offers, e.g. the
offsets of the kernel running in the normal world. For the
cache functions, we modified some of the functions to support
our work, such as maintaining a log of the used functions,
accessed memory addresses, and the hashes obtaining from
specific memory regions.

To complement our library, and to be used as part of our use
case application, we decided to support four hashing functions.
Instead of developing our own versions, we decided that it
was better to use well-known and tested implementations of
these functions. As such we turned to OpenSSL [17], which
is (mostly) written in the C programming language. Its core
library implements basic cryptography functions and provides
various utility functions. This library was ported to be used
inside the secure world, using the porting tools provided by
Genode.

The chosen functions were MD5, SHA1, SHA256 and
SHA512. All of them have been integrated within the library,
and can be used to hash the content stored in memory. In the
Figure 8 we can see the code used by our use case application
to perform the SHA256 hash on a given content.

As such, most of the implementation differs from the one
offered by LibVMI, but with similar results.

C. Implementation Challenges

The implementation of the ITZ library and its integration
with a hardware board with the TrustZone extension has shown



...
} else if(Genode::strcmp(str3,hashname)==0) {

//Initalizates the context with SHA256
SHA256_CTX c;
unsigned char out[SHA256_DIGEST_LENGTH];
SHA256_Init(&c);

//Add the message data
for (i=0; i<51; i+= 1) {

vmi_read_addr_va(_vm, pt[i], 0, buf, 8);
SHA256_Update(&c, buf, 8);

}
//Finalize the context to create the signature

SHA256_Final(out, &c);
//Save and print the digest as one long hex value

printf("kernel section hash value: ");
for (i=0; i<SHA256_DIGEST_LENGTH; i++)

printf("%x ", out[i]);
printf("\n");

...

Fig. 8. SHA256 on the TZ VMM.

several implementation challenges inherent to the development
of the features and components described in our architecture:

• Configuration of the monitor mode in the secure world,
to assure that the library can be used.

• Guaranteeing secure memory regions and memory man-
agement.

• The scope of the work itself, which has no middleware
and requires low-level programming knowledge, as well
a specific knowledge of how the Genode works.

There was also an interest in keeping a small TCB, i.e., a
small amount of code in the secure world. By achieving a small
TCB, we simplify the code, which in turn decreases the chance
of design flaws, code flaws and unnecessary services that can
be used by attackers to compromise the system, and therefore
compromise the secure introspection we aim to achieve. This
required fine-tuning Genode and other software to reduce its
footprint. While maintaining a small TCB we also want our
kernel to be flexible enough to feature memory management,
threading and interrupt handling.

IV. ITZ TOOLS

This section describes a set tools that use the ITZ library.

A. Kernel Integrity Check Tool

As use case, we wanted to perform a kernel check, using
the majority of the functions available in our library. This
tool was inspired by an existing tool that uses LibVMI [18],
that we adapted to use ITZ instead. This was not exactly a
port, as some parts of the code were restructured. However,
these changes required little effort, mainly due to our goal
of maintaining a similar API to LibVMI. The idea behind
the existing tool is simply to generate an MD5 hash for a
given kernel boundary. Since there are parts of the kernel
that remain unchanged during runtime, the generated hash
for those boundaries is expected to remain the same, and any
modification could be a sign of malware [19].

The tool needs to know some kernel addresses. Therefore,
we first need to obtain the System.map file from the normal
world Linux kernel. This file is a symbol table used by the
kernel. With this we have a way to associate kernel symbol
names to their corresponding virtual addresses in memory. To
assure that the file is not compromised, we obtain it right after
compiling the kernel, and feed it directly into our tool in the
secure world.

This tool starts by using the translation functions to obtain
the addresses corresponding to the kernel boundaries. Then
the tool reads the kernel memory between the starting and end
address and calculates a cryptographic hash over the memory
content.

To verify if there has been any change in the kernel
addresses, we simply need to compare an initial hash with
the new one. If they are not the same then the kernel has been
compromised. If all is verified, a certificate is generated which
can be sent to a third party in order to assure that the results
are not tampered by returning them to the normal world.

B. Tools Based on the LibVMI Examples

To establish some comparison to LibVMI, we decided
to recreate some of the examples provided in their GitHub
repository [20]. From these examples, we were able to confirm
the simplicity of porting code from LibVMI to ITZ, while at
the same time assuring that the results were those expected
when using our functions.

1) Memory Dump: This example does a simple memory
dump. It obtains the size of the physical addresses, then goes
through them, writing the obtained content into a file. It starts
by opening the file for writing, and then we use a library
function to obtain the maximum physical address. Afterwards
the tool reads the content of each address using the library
function to read physical addresses, and writes them to a file,
until it reaches the last address.

The file can be either stored in the secure world memory
or in a memory card (e.g., if the space in the secure world
memory is not enough). We tested this functionality with a
microSD card inserted in the SD/MMC card slot of the device.

2) Map Address: The map address example aims to get an
hexadecimal print of the requested address. In order to achieve
that, it receives the address to map as input, which will then
be processed to print the corresponding content by calling the
function to print from virtual addresses. Before this process
there is a check to verify the validity of the address, and if it
returns true the function to print the content is executed.

Regarding the implementation, there is little difference in
using LibVMI or the ITZ. The main differences are the lack
of need to initialize the library using ITZ, as well as a
difference in the inputs for the used functions, due to our
own implementation. Other than that, they are identical and
produce the same output.

3) Map Symbol: The map symbol example is similar to the
one we just described, but instead of receiving an address it
receives a symbol. Each symbol corresponds to an address in
our symbol table, which we obtain through the System.map



...
/* this is the symbol to map */
char *symbol = argv[2];
/* initialize the libvmi library */
if (VMI_FAILURE == ... {

printf("Failed to init LibVMI library.\n");
goto error_exit;

}
/* get memory starting at symbol for the next

PAGE_SIZE bytes */
if (VMI_FAILURE == vmi_read_ksym(vmi, symbol,

PAGE_SIZE, memory, NULL)) {
printf("failed to get symbol’s memory.\n");
goto error_exit;

}
vmi_print_hex(symbol, PAGE_SIZE);
...

Fig. 9. Map symbol example for LibVMI.

...
/* this is the symbol to map */
char *symbol = symb;
/* get memory starting at symbol */
if (VMI_FAILURE == vmi_read_ksym(_vm, symbol,

memory, PAGE_SIZE)) {
printf("failed to get symbol’s memory.\n");
goto error_exit;

}
vmi_print_hex_ksym(_vm, symbol, PAGE_SIZE);
...

Fig. 10. Map symbol example for ITZ.

file. To map the content of a given symbol, we first verify the
validity of the symbol, by getting the corresponding virtual
address. Once that is done the process is similar to the example
above, obtaining the contents for the given symbol and printing
them afterwards. By observing the Figures 9 and 10, we see
that they present similar differences to those exposed on the
example above.

V. EXPERIMENTAL EVALUATION

In order to evaluate our system we have decided to measure
and study different aspects of this implementation. In this
section we start by describing the methodology used through-
out our experiments, then we present microbenchmarks of the
library functions and macrobenchmarks with the tools.

A. Methodology

Our evaluation testbed consisted of the above-mentioned
i.MX53 QSB. For each experiment, we report the mean of
at least 30 runs. To measure the execution time of a specific
operation executed in the development board, either on the
normal or secure worlds, we implemented two functions which
leverage the gettimeofday system call to obtain start and end
timestamps.

B. Context-Switch Overhead

Before analyzing the performance overhead of using the
library in the secure world, we first evaluate the overhead

Translate
Kernel Symbol

Translate Physical
Address to Virtual

Translate Virtual
Address to Physical

Execution Time
(Secure World) 36.79± 0.22 33.22± 0.22 37.90± 0.24

Execution Time
(Normal World) 0.09± 0.002 0.085± 0.002 0.09± 0.002

TABLE II
MICROBENCHMARKS FOR TRANSLATION FUNCTIONS (IN MILLISECONDS).

of switching from the normal world Linux kernel to the
secure world run time. This allows us to better understand
how much of the overhead measured in the sections below is
caused by the context-switch. Since the value is expected to
be very small, we have decided to perform 1000 runs, and
then calculate the mean and standard deviation.

To evaluate the context-switch overhead, we measured the
execution time of a simple call for the world switch, starting
the timer right before the normal world executes the call,
returning immediately and stopping the timer once the normal
world OS is back in control. We measured an average of 0.08
ms, with a standard deviation of 0.03 ms. By observing these
results we can say that the time spent with a world switch is
negligible in most situations.

C. Microbenchmarks of the Library Functions

In order to evaluate our library functions in the secure world,
we decide to measure the execution time of the functions
that deal with memory manipulation. To establish a baseline
for our different functions, we measure the execution time
of corresponding versions in the normal world, and compare
these times with the execution time of processing the functions
using the secure world. By comparing these execution times
we can conclude if there is a significant overhead caused by
context-switching between normal and secure world, which is
intrinsic in ITZ.

With that in mind, we focused on the functions responsible
for reading, writing, translating and printing, and performed
1000 runs for each function. The execution flow for the testing
the library is as follows: the test starts with the normal world
running a tool which fills the shared memory buffer. Then we
obtain the physical address and the size of the buffer, and
put them on registers r2 and r3 respectively. Right before
the system call to perform the world switch, we start the
timer. On the secure world, we execute the library functions
providing the obtained address and size from the registers.
Upon returning the value, the timer stops, and we verify its
content. From the values obtained we measure the average
execution time and standard deviation. On the paragraphs
below we have the tables for each class of functions and an
analysis of the values.

Table V-C shows the times for the translation function
available in our library. To measure the times and maintain
consistency, we used the physical address for our shared buffer,
and translated it to the corresponding secure world virtual
address. From that we obtained an average of 33.22 ms with
a standard deviation of 0.22 ms. We then used the obtained



Write 8 bits Write 16 bits Write 32 bits Write 64 bits
Execution Time
(Secure World) 34.02± 0.25 34.45± 0.23 34.70± 0.24 35.04± 0.23

Execution Time
(Normal World) 0.049± 0.001 0.050± 0.001 0.051± 0.001 0.051± 0.001

TABLE III
MICROBENCHMARKS FOR WRITING TO MEMORY (IN MILLISECONDS).

Read 8 bits Read 16 bits Read 32 bits Read 64 bits
Execution Time
(Secure World) 37.74± 0.25 40.25± 0.25 45.24± 0.29 55.39± 0.27

Execution Time
(Normal World) 0.048± 0.001 0.052± 0.001 0.058± 0.002 0.071± 0.002

TABLE IV
MICROBENCHMARKS FOR READING FROM MEMORY (IN MILLISECONDS).

address to perform the reverse operation and obtained an
average of 37.90 ms with a standard deviation of 0.24 ms.

Regarding the translation of a kernel symbol, we chose the
symbol lookup processor type with the corresponding virtual
address of c00081bc, according to the System.map file. The
average of this translation is 36.79 ms with a standard devi-
ation of 0.22 ms. The value of the kernel symbol translation
is not higher, due to the fact that we save the pair (symbol,
address) of the System.map file inside the secure world. That
way by handling the file before using the library, allows us
to save execution time, since the symbol and corresponding
values are cached inside the secure world.

In Table V-C, we have the times for writing different sizes
of data into memory. The chosen sizes are according to our
library functions, that provide writes for 8, 16, 32 and 64
bits, as well as a custom size. To measure these functions,
we decided to write characters from a string onto the physical
address of the shared buffer. That way we measured only the
time of copying the data to the memory, without the need
to perform any additional tasks, such as address translation,
which is needed when writing to a virtual address. The buffer
had 128 bytes allocated to receive data, which was more than
enough for our tests, which required a maximum of 8 bytes.

As we can see by the values obtained, the cost of writing
more bytes does not increase by much the overhead of writing
from the secure world. Since writing 1 byte took an average
of 34.02 ms with a standard deviation of 0.25 ms and writing
8 bytes took an average of 35.04 ms with a standard deviation
of 0.23 ms, we can say that most of the cost of the execution
is in locating the given memory position, rather that copying
the data.

In Table V-C, we can observe the times measured when
performing reads from memory. These read functions allow
the user to read 8, 16, 32 or 64 bits from a given address.
There is also an additional function for a custom amount of
bits. Similarly to what was done with the writing functions, we
prepared the shared buffer by filling it from the normal world
with a string of 128 bytes. Since we have the physical address
for the shared buffer and want to avoid additional translations,
we perform the reads on that address.

Print from
Kernel Symbol

Print from
Physical Address

Print from
Virtual Address

Execution Time
(Secure World) 104.52± 0.34 89.78± 0.28 99.18± 0.33

Execution Time
(Normal World) 50.22± 0.23 47.27± 0.23 52.57± 0.24

TABLE V
MICROBENCHMARKS FOR PRINTING FROM MEMORY (IN MILLISECONDS).

As we can observe, there is a bigger difference in the
average time of each function, than there was for the writing
functions. This can be explained by the fact that the read
function print the obtained value to the terminal, which does
not happen on the writes. Due to that we see an approximately
47% increase from reading 8 bytes, when compared to the
value of reading 1 byte.

In Table V-C we have the average time for printing the
hexadecimal and ascii values of a chunk of bytes, obtained
from virtual and physical addresses, as well as kernel symbols.
These values were obtained once again by using the shared
buffer to store 128 bytes of data, which was then printed on the
terminal upon calling each function. As expected the values
for printing from a virtual address were higher than from a
physical address, due to the fact that there is the need for an
additional translation of the address.

Regarding the values for printing from a kernel symbol,
these were also according to what was expected, due to the
translation of the kernel symbol into the corresponding virtual
address, and then that address into the physical address.

In general when comparing the results of both worlds, we
can observe lower times in the normal world. This can be
explained by the lack of a context switch, and due to the fact
that the similar functions were tested at a kernel level in the
normal world. The print functions are the most costly due
to the writing to the terminal, which causes a big overhead.
Overall we can conclude that despite these differences there is
not a significant cost of using the library in the secure world
for most of the functions, and the security advantages provided
by the TrustZone overcome the overhead.

D. Microbenchmarks of the Hash Functions

This section evaluates the performance of the hashing
functions used in the secure world, which can be used to
assess data integrity. In order to measure this we have used a
27 characters string that is obtained from the normal world,
and executed on it the different implemented hash functions
in order to compare the execution times. To have a basis for
comparison we have used the same string and functions in
the normal world. With this we want to check if is there any
significant overhead caused by using the secure world.

The execution flow for the secure world case is as follows:
we start to measure the execution time as soon as the string is
allocated in the normal world. Our normal world application
then triggers the SMC system call to proceed with the world-
switch request. On the secure world the string is read and
then processed with a hash function, returning to the normal



Fig. 11. Comparison of hashing functions - normal world vs secure world.

Dump Memory Map Address Map Symbol
Execution Time 186.34 2.10± 0.003 2.11± 0.003

TABLE VI
MACROBENCHMARKS FOR THE EXAMPLES FROM LIBVMI (IN SECONDS).

world when it finishes. Upon returning to the normal world the
measuring of the execution time stops. The execution flow in
the normal world is more straightforward, using an application
to execute the hash function on the string without switching
worlds. The measuring is done the same way.

Figure 11 shows the execution times of all the hashing
functions for the given string. By analyzing this graph, which
depicts the execution time in milliseconds in the Y-axis and the
corresponding hash in the X-axis, we can observe a constant
penalty for the secure world execution flow when compared to
the same functions executed in the normal world. This over-
head is associated to the context-switch, the implementation
of the microkernel’s memory manager, scheduler and compiler
optimization.

E. Macrobenchmark - LibVMI Examples

To test our library using more practical cases, we decided
to look into the examples provided by the LibVMI. One of
our main objectives of measuring these cases, is to study the
impact that the use of the secure world has in the normal
world, since every time an application runs in the secure
world, the normal world is in a paused state. From the several
examples available we decided to adapt the memory dump,
and the mapping of addresses and symbols, to support our
library functions. With this we aim to have both a way of
comparing our library to LibVMI, as well as a way to measure
the portability of existing applications. Each of these examples
was executed 30 times, measuring the mean and standard
deviation of the executions in milliseconds.

As we can see in Table V-E, the most costly example is as
expected the memory dump, with 186 seconds of execution
time. This was already expected due to the fact that we are

Fig. 12. Macrobenchmarks for kernel integrity check.

dumping the whole normal world memory onto a file and
saving it to the file system located in the micro SD card.

The memory dump is done using our library functions to
obtain the initial address and size of the RAM of the normal
world. Then we proceed by dumping all the RAM data into
a file, which ends up with a size of 268.4 MB, which can be
used to perform further memory analysis.

The map address and map symbol examples, offer similar
execution times, with an average in seconds of 2.10 and 2.11
accordingly. This can be explained due to their similarity
of both implementation and execution. The way they were
implemented was according to the LibVMI example, where
the former receives an address to map, while the other receives
a symbol. The execution process is also similar, with the first
one using the function to print the hex from virtual addresses,
provided by our library, which requires the translation of the
virtual address to physical to obtain the corresponding memory
page. On other hand the map symbol prints the hex from kernel
symbol function, which requires two additional function, the
first being the translation of kernel symbol to virtual address,
and then from virtual address to physical. Only then it is
possible to print the corresponding hexadecimal.

F. Macrobenchmark - Kernel Integrity Check

In order to perform an evaluation of our work in a more
complex scenario, we used an application to perform a kernel
check, using our introspection library, as mentioned in greater
detail in the section above. For the purpose of our evaluation,
we have selected 15, 30 and 50 kernel addresses from a read
only data section. We then ran our application with them for a
total of 30 runs. Figure 12 shows the execution times for the
different hashes on those addresses.

As we can observe the difference in the execution time for
the different hashes is not very significant. If we increase our
application to include more addresses, the time increases ac-
cordingly resulting in a larger overhead if we wanted to include
all the 40K addresses that are inside the kernel boundaries. By
comparing the obtained hash with a previously obtained one, it



is possible to verify if there have been any modification to the
read only data section, which would mean that the system
had been compromised. Overall we can conclude that this
application is viable to use if we want to verify the integrity
of segments of the kernel memory, such as parts of the read
only data section. Also these results show that the most viable
and secure hash to use would be SHA256, which shows an
acceptable increase of the execution time when compared to
SHA1, which has already been compromised.

G. Trusted Computing Base Size
One of our goals was having a small TCB. In order to

evaluate the size of the TCB, we counted the number of lines
of code present in our systems’ components and compared
it to other similar kernels and LibVMI. To count the lines of
code (loc) we have used cloc [21], an application that does that
task for many programming languages, including all types of
lines: blank lines, comment lines, and physical lines of source
code.

World Component Lines of Code
Normal world Linux kernel 9132 K
Secure world Microkernel 20 K
Secure world Genode OS framework 10 K
Secure world TZ VMM 3 K
Secure world ITZ Library 2 K

TABLE VII
CODE BASE SIZE OF OUR SYSTEM.

Table VII shows the lines of code of the several components
of our system. The first component is the Linux kernel, which
was used as the normal world kernel. This is provided as
baseline, as the Linux kernel is not part of the TCB. This
kernel comprises a large and complex code base of more than
9 million loc, mainly due to the necessary additional libraries
such as libc in order to run applications. Nevertheless, this is
still much smaller than the current Linux kernel (4.15.9) that
has 20323 Kloc.

The second and third components are the micro kernel and
the Genode OS Framework that we have running in the secure
world. In order to avoid high complexity kernels, Genode
provides a micro kernel with 20 Kloc, alongside with some
modules that can be compiled with it. From those, we use the
Genode OS Framework, that has a small code base of 10 Kloc
and provides some tools to handle the world switch.

The fourth component is the TZ VMM, which is based
on the version distributed by Genode, which includes the
VMM implementation, the secure memory manager and the
necessary code to boot the normal world Linux kernel. With
the additional code to support the shared memory buffer as
well as the use of our library and a file system, we managed
to have a code base size of 2.5 Kloc.

Finally the fifth component is the ITZ library that has
2 Kloc, and contains several classes of functions, such as
reading, writing, translating and printing from memory.

Adding the values in the table, we have a TCB of 35
Kloc that is 2 orders of magnitude lower than an OS like

Linux. ITZ is much smaller (2 Kloc) than LibVMI that has 20
Kloc, although LibVMI supports more OSs and a few different
hypervisors.

VI. SECURITY CONSIDERATIONS AND LIMITATIONS

The attack surface of ITZ is mainly composed by the SMC
instruction used in the normal world OS to perform the world
switch and the shared memory buffer also allocated by the
normal world. The applications to perform the world switch
in the normal world are comprised of few lines of code, and as
such the probability of vulnerabilities is relatively narrow. The
main concern on these applications is the possibility of abusing
the SMC instruction to perform a loop of world switches,
resulting in a denial of service by locking the normal world
OS.

The other security concern is related to the shared memory
region, which allows to read and write data between worlds.
However due to the fact that it is limited to that, the only
possible attack is writing wrong information into the secure
world through the shared memory region. This is not exactly
an issue because we assume the possibility of the normal
world OS faking information, by accessing the data directly
in the secure world. There are also hashing functions in the
secure world that can be used to verify the veracity of the data
provided by the normal world, by hashing both the received
and the introspected and comparing the hashes. Due to the
support of secure memory provided by the ARM TrustZone,
we can safely say that the memory allocated for the secure
world is protected and therefore cannot be accessed by the
normal world in any way.

The normal world is not protected, so it can be compro-
mised. For instance an user that creates an application to
request the secure world for introspection information of a
given process, can have its application compromised. Since
the normal world OS is vulnerable an attacker can spoof the
world switch and return fake information the user. As such we
can only consider secure information obtained in the secure
world and by the library in the secure world. The solution
to this would be create such application inside the secure
world, and schedule the secure world to do the world switch
automatically. Since the time period could be random, the
normal world could never guess at which time the switch
would take place and therefore could not spoof it. Regarding
limitations, it is worth noting that in its current state, we do
not provide support for Android or dynamic tracing. Finally
any kind of system on chip attacks to the ARM architecture
are out of the scope of this paper and are not considered.

As explained in Section II-B, we assume that the hardware is
correctly implemented and the TrustZone mechanisms cannot
be circumvented.

VII. RELATED WORK

One of the main goals of VMI is to assure that even in an
untrustworthy OS, a secure policy is enforced while maintain-
ing functionality [22]. A virtual machine (VM) achieves strong
isolation and confines processes running inside the VM. That



makes it harder to compromise a system outside of the VM,
even if the system itself has been attacked by malware [23].
However this approach can only be considered secure if there
are no vulnerabilities in the virtualization system, which is not
always the case. Nguyen et al. discovered 74 vulnerabilites
in commonly used virtualization systems, such as Xen and
VMWare [24].

The notion of VMI was first introduced in 2003 by Garfinkel
and Rosenblum [6]. It was focused on security and it was
proposed to address the paradox of intrusion detection sys-
tems running in untrusted environment. As such it is of no
surprise that on the years that followed its introduction, several
libraries were created with focus on VMI. LibVMI [7] is a C
library with Python bindings. It is used for VMI, and makes
monitoring the low-level details of a running virtual machine
easier by viewing its memory, trapping on hardware events,
and accessing the vCPU registers. All these functionalities
work with VMs running on QEMU, Xen or KVM. It also
works with static snapshots that have been saved to a file.
Xen supports a suite of VMI tools focused on digital forensics
[25]. Although developed for Xen, these tools can be applied
to other virtualization platforms by implementing the details
of memory access, which are different. Deng et al. presented
IntroLib, a tool that traces user-level library calls made by
malware with low overhead and high transparency [26]. Their
main goal is to detect user space malware, and as such they
want to avoid malware’s anti-analysis logic such as the detec-
tion of emulation or library API hooking. Our work differs
from these mainly because it uses the TrustZone technology
to provide strong isolation between the virtual machine that is
monitored and the one that does the monitoring.

Although the main focus of this project is the ARM
TrustZone extension, it is worth noting that there have been
other companies that have been exploring the trusted execu-
tion technology in order to improve security. One of these
companies is Intel, that under the name vPro provides a set of
security-related technologies including VT-x, trusted execution
technology (TXT), and the Software Guard Extensions (SGX).
Intel started delivering SGX with their 6th generation Intel
Core microprocessors based on the Skylake microarchitecture.
SGX can be described as a hardware isolation mechanism, that
supports several TEEs, called enclaves. SGX supports several
TEEs when TrustZone supports just one (the secure world),
but their memory size are limited.

ARM TrustZone has been used to support different security
mechanisms, although just a few related to VMI and no
VMI library. Dongtau Liu et al. proposed VeriUI [27], an
attested login mechanism for mobile devices. This system pro-
vides a secure hardware-based environment, using the ARM
TrustZone, for password inputs and transmissions, that helps
preventing phishing attacks. TrustZone has also been used to
develop a Trusted Language Runtime (TLR) for mobile appli-
cations, which is a system with the purpose of protecting the
confidentiality and integrity of .NET mobile applications from
OS security breaches [3]. TZ-RKP provides normal world
kernel protection using TrustZone [28]. It monitors critical

events in the normal world and protects critical memory parts.
Yalew et al. presented three services based on the TrustZone.
T2Droid is a service used to securely detect intrusions in an
Android device, by leveraging the use of dynamic analysis to
perform the detection of malware. This detection mechanism
works by using the traces of Android API function calls and
kernel system calls performed by an application, in order to
verify if its malicious or not. In order to assure security, the
authors perform the detection inside the secure world [29].
DroidPosture is a posture assessment service for Android that
reports posture information for external services. It is used to
securely detect intrusions by evaluating the security status of
the OS and applications of the mobile device it is running
[30]. Finally, TruApp is a software authentication service that
provides assurance of the authenticity and integrity of appli-
cations running on mobile devices. It relies on watermarking
and hashing to verify the integrity of the applications [31].

VIII. CONCLUSION

Malicious code is the root of many existing security prob-
lems [32]. The capability of inspecting code running on a sys-
tem grants the possibility to detect and prevent any malicious
code from doing harm. By using introspection combined with
the ARM TrustZone it is possible to achieve an inspection of
the code running on the system from the outside, thus allowing
for the system to be able to detect attacks. Ultimately this work
aims to provide a functional library for new developers, in a
way that eases up the extraction of run-time data for analysis.
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