
JITeR: Just-In-Time Application-Layer Routing

1Alysson Bessani, 1Nuno F. Neves, 2Paulo Veŕıssimo, 3Wagner Dantas,
4Alexandre Fonseca, 4Rui Silva, 4Pedro Luz, 4Miguel Correia

1LaSIGE/FCUL, Portugal 2Uni.Lu, Luxembourg 3UFSC, Brazil 4INESC-ID/IST,
Portugal

Abstract

The paper addresses the problem of providing message latency and reliability
assurances for control traffic in wide-area IP networks. This is an important
problem for cloud services and other geo-distributed information infrastruc-
tures that entail inter-datacenter real-time communication. We present the
design and validation of JITeR (Just-In-Time Routing), an algorithm that
timely routes messages at application-layer using overlay networking and
multihoming, leveraging the natural redundancy of wide-area IP networks.
We implemented a prototype of JITeR that we evaluated experimentally by
placing nodes in several regions of Amazon EC2. We also present a scenario-
based (geo-distributed utility network) evaluation comparing JITeR with
alternative overlay/multihoming routing algorithms that shows that it pro-
vides better timeliness and reliability guarantees.

Preprint submitted to Computer Networks February 25, 2016

JITeR: Just-In-Time Application-Layer Routing

1Alysson Bessani, 1Nuno F. Neves, 2Paulo Veŕıssimo, 3Wagner Dantas,
4Alexandre Fonseca, 4Rui Silva, 4Pedro Luz, 4Miguel Correia

1LaSIGE/FCUL, Portugal 2Uni.Lu, Luxembourg 3UFSC, Brazil 4INESC-ID/IST,
Portugal

1. Introduction

An increasing number of applications over wide-area IP networks exhibit
timeliness requirements. Many of them can be served by protocols that
provide those guarantees most of the time, for example by guaranteeing a
given average throughput and accepting occasional violations of deadlines
(e.g., video streaming). However, other applications exhibit more stringent
requirements, i.e., the need that some of their messages meet individual dead-
lines in the presence of faults like congestion and omissions. Whilst solutions
exist to the problem within over-provisioned datacenter networks, we know
of no solution for generic wide-area IP networks.

This paper addresses the problem of providing latency and reliability
assurances for control traffic – not for all traffic – in wide-area IP networks.
Two examples show the relevance of the work for what we designate by geo-
distributed information infrastructures (GDII).

First, cloud services with soft real-time requirements often span multiple
datacenters in different geographical locations, implying deadline propaga-
tion amongst them, hampered by the wide-area IP network interconnects [58].
An example are cloud services that need to exchange control traffic such as
Google’s Megastore coordination service access [8] and Amazon’s Dynamo
failure detection protocol [17].

The second example is the context of critical information infrastructures,
such as power generation, transport and distribution. Such cyber-physical
systems are spread over large geographical areas and controlled remotely
from command and control centers using SCADA/PCS1 systems, over com-

1Supervisory Control and Data Acquisition (SCADA) and Process Control Systems

Preprint submitted to Computer Networks February 25, 2016

munication networks usually based on wide-area IP networks [20, 31, 37, 10].
Despite the use of IP, the timeliness of critical remote commands is essential
to maintain the integrity of the infrastructure (e.g., to avoid power out-
ages). Several examples of such applications and commands were described
in project CRUTIAL [23].

We present the design and validation of a novel algorithm for Just-In-
Time Routing, JITeR (pronounced “jitter”), which routes deadline con-
strained messages –control messages– at application layer, using an overlay
network created on top of a multihomed communication infrastructure, lever-
aging the natural communication redundancy that exists in geo-distributed
information infrastructures [37]. JITeR uses a set of nodes located in differ-
ent sites of the GDII to route messages among them, instead of following the
routes imposed by the network-level routing. For instance, if the network-
level routing makes a message sent by node ra to node rb pass through the
autonomous system AS1, ra may send the message to rc and this node send
it to rb, letting the message pass alternatively through AS2 and AS3.

Our scheme is based on two important assumptions. The first is that
amongst a collection of alternative overlay routes between two sites, there
will be a subset which will be fast enough to perform reliable and timely
communication in the presence of faults. The second is that it is used to
send only control traffic and that that traffic consumes negligible resources
(e.g., bandwidth) in comparison to the rest of the traffic.

The key objective of our work is to devise a practical and non-intrusive
solution to achieve timely and reliable communication with high probability
in current GDIIs, taking three requirements into consideration: (1.) Com-
patibility with current GDIIs: JITeR should allow seamless integration with
current GDIIs, without requiring major changes to the operation and orga-
nization of existing networks; (2.) No wide-area IP network changes: the
solution should not require any special support from the underlying network
(e.g., resource reservation). Timeliness should be obtained on top of best-
effort communication channels such as those provided by IP-based networks,
and therefore, JITeR cannot ensure strict hard real-time properties (e.g.,
like in small-scale real-time networks); and (3) Cost consciousness: JITeR
should use redundancy parsimoniously, avoiding expensive solutions like traf-
fic flooding.

(PCS).

3

Unlike previous works on overlay networks, which aim to improve relia-
bility by detecting and deviating communication from faulty and congested
paths, JITeR aims to provide soft real-time communication by securing in-
dividual message delivery deadlines with high probability. To achieve this
goal, JITeR uses temporal and spatial redundancy judiciously. In a nut-
shell, each message is sent through several overlay channels, possibly from
different service providers: one base channel plus a few backup channels. In
the presence of delays or omissions, the message may be retransmitted. A
novel channel scheduling policy in the JITeR algorithm, which we call just-
in-time, selects the base and backup channels not to be the fastest, but the
ones which match each message’s deadline needs (some faster, some slower).
The reader may wonder that it is impossible to guarantee real-time behav-
ior on best-effort IP networks. As a matter of fact, not even hard real-time
systems have 100% coverage: they have to achieve sufficient coverage [53].

We implemented JITeR and evaluated it experimentally by placing nodes
in several regions of the Amazon AWS cloud offering (in the EC2 service).
Moreover, we evaluated the strategy by simulation of scenarios over a realistic
model of a wide-area utility network (the Italian electric power infrastructure)
with both accidental and malicious faults (DDoS attacks). Its effectiveness
and costs were compared with several other overlay/multihoming routing
algorithms in the literature. The evaluation showed that JITeR provides
better timeliness and reliability guarantees than the other schemes, very close
to those of a flooding strategy but sending much fewer messages.

The paper provides the following contributions:

1. JITeR, the first (to the best of our knowledge) wide-area IP over-
lay network algorithm and architecture with the objective of providing
message latency and reliability guarantees;

2. A comparative analysis of several overlay networks proposed in the
literature, showing that JITeR provides better timeliness;

3. The description and modelling of a representative critical information
infrastructure, the Italian power system utility network, which we be-
lieve to be of use as a benchmark for future studies.

4. An evaluation of JITeR and other techniques in providing timely com-
munication between Amazon EC2 regions. This analysis also shows the
communication latency and path diversity between the EC2 availability
zones.

4

2. Related Work

There is a vast bibliography on the topic of the paper, so this section
is necessarily a summary. It presents work along the following axes: the
properties we want to provide (QoS, timeliness); existing challenges (net-
work failures), the techniques we use (overlay networks, multihoming); the
scenarios we consider (clouds, critical information infrastructures).

QoS in multimedia networks. We assume that the network provides only a
best-effort service, with no latency and bandwidth guarantees. It is possible
to have these guarantees, e.g., by using DiffServ [38] or ATM [16]. However,
these services are not provided by the generality of Internet service providers
(ISPs), especially in a geo-distributed context, which would constrain the
applicability of our solution. It is also possible to use leased lines, which
are rather expensive. On the other hand, many ISPs provide phone and TV
over IP, which have timeliness requirements. These providers usually employ
fast convergence mechanisms for sub-second recovery from link and router
failures: bidirectional forwarding detection [33], stateful switchover [12], and
fast hello packets [11]. Nevertheless, deadlines are frequently missed, causing
image freezes of several seconds. We propose a solution that does not require
such guarantees from the network, only plain Internet-like IP network service.

Peer-to-peer networks have been proposed as a solution to stream multi-
media over best-effort networks such as the Internet. CoopNet is one of the
first of this line of research [39]. It focus on live streaming and leverages the
notion of multiple description coding, i.e., of encoding audio and video into
separate streams. Zigzag provides scalable single-source media streaming us-
ing an application-layer multicast tree [51]. Promise is a peer-to-peer media
streaming system that supports multiple senders and allows one recipient to
receive media from several senders [27]. These systems aim to provide QoS
guarantees, but not specifically the delivery of messages before a certain, pos-
sibly short, deadline. Moreover these systems tolerate some level of packet
loss, whereas we are interested in delivering all messages. On the other hand,
these systems handle much more traffic, as they are targeted at continuous
media (audio, video).

Timeliness in networks. When the web started to be adopted for commercial
purposes, it became clear that there are limits on the time users are willing
to accept for replies to arrive, i.e., that there are timeliness (maximum la-
tency) requirements for web communication. Content distribution networks

5

(CDNs) like Akamai [19] appeared as a solution to this problem [7, 40]. The
approach consists essentially in placing content geographically near its con-
sumers, reducing the latency. This solution is unfeasible for the applications
we envision as they do not have content to distribute, but control messages
that have to be sent over a distance that cannot be reduced. There are
common issues though, e.g., ensuring path diversity [7].

Recently there has been some work on the problem of ensuring time-
liness in datacenter networks (e.g., [52, 57]). The fundamental difference
of these works in relation to ours is that they require modifications of the
network devices. Consequently, these solutions can not be easily adapted
to public/legacy networks, like the Internet and other WANs. However,
they increase the significance of our work, since they motivate the need
for solving the deadline propagation problem in the geo-distributed inter-
datacenter communication, for applications that span multiple datacenters,
without modifying the network.

Network failures in IP backbones. Network backbone failures may adversely
affect IP routing and delay or disrupt information infrastructure communi-
cation. Studies on the impact of failures in IP backbones have shown that
they occur daily, being often the result of problems either at or under the
IP level [35]. Some of these problems can lead to network instability pe-
riods and disrupt applications [30]. Other failures come from interference
of misconfigured or obsolete routing protocols running in customer networks
connected to the ISP backbone [55]. Even stable core routing infrastructures,
BGP-based, are prone to failures [46, 48]. Malicious faults can also happen
as a result of acts of hacktivism, cyber-crime or cyber-terrorism [56], such as
distributed denial-of-service (DDoS) attacks, in which the attacker(s) use a
large number of computers (bots or zombies) to generate traffic and cause
congestion [29, 36]. Depending on the capabilities of the attacker, the rate of
messages delayed and lost can be alarmingly high. Research on this matter
is vast and many ways of countering those attacks have appeared [44], but a
final solution is still to be found.

Overlay routing. Nodes of an overlay network relay messages through the
virtual paths among them, according to application-level criteria. This fits
quite well with applications with specific requirements, hard to satisfy by nor-
mal wide-area networks. Therefore, over the years application-aware overlay
routing solutions have been proposed, with various virtual channel selection

6

schemes [2, 4, 6, 49, 50]. However, to the best of our knowledge none of
these works aims to provide latency guarantees, which is the objective of our
work. The most common objective of overlay routing algorithms is to de-
viate traffic from channels that are faulty or congested. For instance, RON
monitors the network to decide to route messages directly or through an
overlay channel [4]. The works nearest to ours have the objective of improv-
ing end-to-end communication latency, not of attaining individual message
delivery deadlines [2, 49]. Spines, uses a dense overlay network with several
overlay nodes per-channel, recovering missing packets in a per-hop basis [2].
This recovery is attempted only once, since Spines targets video transmission,
in which missing packets are undesirable, but acceptable to a certain level.
Mesh-routing uses XML routers and the Diversity Control Protocol for mul-
ticasting data [49]. Although timeliness appears to be a requisite, it is not
clear whether or how it would be achieved in stringent scenarios with, for ex-
ample, persistent packet losses caused by long-term congestions [6]. OverQoS
explores the controlled loss virtual link abstraction to provide statistical loss
and bandwidth guarantees [50]. Han et al. introduced the idea of topology-
aware overlay routing to improve the diversity of paths when detouring traffic
to escape congestion or failures [26]. However, the topology may change due
to changes at network (IP) layer routing, so we do not create an overlay net-
work based on the topology, but instead select overlay channels dynamically
taking diversity into account.

We defer to Section 5.1 and Table 1 a more detailed comparison of RON,
Mesh-routing and other overlay routing strategies with JITeR.

Multihoming. Multihoming allows hosts to access a WAN through two or
more redundant links, to resist network failures like those exemplified above
and improve properties such as availability and performance [9]. Information
infrastructure stakeholders frequently deploy IP connections contracted with
more than one ISP [1]. The work closest to ours in the sense of exploiting
overlays and multihoming is MONET [5], but its objective is to mask faults
and improve the availability perceived by web clients. On the contrary to
JITeR, MONET does not take latency explicitly into consideration, as it
does not aim to meet message deadlines.

The initial ideas of JITeR appeared in a workshop position paper some
years ago [15]. That paper also explored overlay networks and multihoming.
The present paper thoroughly improves on that earlier version in several
ways: the algorithm was improved, is now formalized and its properties dis-

7

cussed; we compare it analytically with other representative routing strate-
gies; we implemented it and have experimental results; the simulations is
way more complete and realistic (e.g., underlying network routing effects are
accounted for, more strategies are compared) and provide more results.

Cloud communication and SDNs. The popularity of software defined net-
works (SDNs) promises to increase the possibility to control the network
fabric by applications. In particular, recently Google showed how it manages
its dedicated inter-datacenter backbone (a WAN) using SDN technology to
achieve impressive levels of bandwidth utilization without sacrificing appli-
cation SLAs (including latency) [32]. Their design is based on a centralized
traffic engineering algorithm that controls the network. Although not ex-
plicitly designed for timeliness, this solution can solve or at least alleviate
the need for an application level solution like JITeR. However, we do not
envision solutions like that being used for systems spanning multiple admin-
istrative domains (without centralized control) or for critical information in-
frastructures (GDIIs) that usually do not own the communication backbone
(e.g., power grid operators).

Critical information infrastructure communication. Ratatoskr [54] exploits
several channels and retransmissions to provide communication timeliness
in critical infrastructures, but on the contrary of JITeR it does not try to
enforce deadlines explicitly and it is based on a publish-subscribe middle-
ware, GridStat [24]. Esposito et al. present a broadcast protocol for publish-
subscribe systems [22]. This protocol aims to support reliable communication
among the nodes of an overlay network based on network coding and gos-
siping [21]. Although the paper mentions timeliness as a desirable property,
the protocol neither considers the existence of deadlines nor takes into ac-
count communication delays. The protocol is similar to flooding as it aims
to deliver the messages to all nodes. Todai is a peer-to-peer data dissemina-
tion scheme for large-scale complex critical infrastructures [10]. Similarly to
JITeR, it leverages an overlay network in order to improve communication
in GDIIs. However, its main goals are to provide reliability, scalability, and
resilience (using semi-active replication for this purpose), whereas JITeR’s
main goals are timeliness and reliability, as it is focused on delivering control
messages only.

8

3. The JITeR Algorithm

This section presents JITeR, a channel selection scheme that leverages
the available connection redundancy and diversity to provide timely and
reliable delivery of critical messages with high probability.

3.1. Design Rationale

WAN-of-LANs structure. The design rationale of JITeR is driven by the ar-
chitecture of modern GDIIs. GDIIs are geo-distributed over several facilities,
following a WAN-of-LANs model (see Figure 1). In this model, depending
on the kind of infrastructure (e.g., utilities, cloud providers), facilities can be
any of: cloud datacenters, corporate offices, substations, SCADA command
and control centers, etc. Facilities generally have high connectivity links, the
LAN-type part, interconnected by a point-to-point wide-area network, the
WAN-type part. Each LAN (or set thereof) of a facility is logically connected
to the WAN through a JITeR node, which executes the overlay and mul-
tihoming channel selection algorithm. If the company has too few facilities,
helper JITeR nodes can be placed somewhere else, e.g., in cloud services.
JITeR nodes, however, are neither access routers nor used to send all the
facilities’ traffic, only time-critical control messages. That traffic is assumed
to have negligible impact in terms of bandwidth. The JITeR architecture
makes no modification to the existing WAN network, and preserves legacy
features of internal subnetworks and systems, only requiring the introduction
of the JITeR nodes.

Stable overlay network. Contrary to classical uses of overlay networks, e.g.,
in the context of peer-to-peer applications, whose granularity is often at the
level of individual hosts, and whose dynamics is quite high, overlay network-
ing in GDIIs is best performed at the inter-facility level, i.e., amongst JITeR
nodes. These are pretty stable in time as well (it is unlikely to have GDII
facilities join and leave the system frequently) and this comes for free as a
design principle which presents several advantages. In consequence, we as-
sume each node knows all the other nodes of the overlay network. This allows
aggressive re-routing and monitoring policies, fundamental for providing the
strong timeliness properties desired. Finally, a JITeR node can be replicated
for fault tolerance and scalability reasons.

9

Facility 2

Facility 1

Facility 3

Facility 4

LAN

LAN

LAN

LAN

WAN

ISPc

ISPa
ISPb

ISPd

JITeR
Node

JITeR
Node

JITeR
Node

JITeR
Node

Figure 1: WAN-of-LANs model of an information infrastructure using JITeR.

One-hop source overlay routing. JITeR nodes define an overlay network
atop a general IP network, and run the JITeR algorithm to select overlay
channels that are expected to provide timely communication. The JITeR
algorithm is a one-hop source routing scheme. The overlay route of each mes-
sage is defined at the sender (source routing), based on the local knowledge
of the state of the links, and is composed of at most one intermediate relay-
ing JITeR node (one-hop). The option of having a single hop, i.e., a single
intermediate node, is due to its simplicity and the conclusion of Gummadi
et al. [25] that there is no considerable benefit in using more hops.

Proactive monitoring. JITeR does monitoring proactively in order to to deal
with network changes. JITeR nodes may be connected to the WAN via mul-
tihoming, i.e., by two or more access links provided by distinct ISPs, allowing
messages to be transmitted through several overlay channels. Multihoming
can only guarantee fault tolerance effectively if the ISPs’ networks share a
minimum amount of resources. GDIIs normally try to ensure this link inde-
pendence in a best-effort and ad-hoc manner when selecting the ISPs. The
JITeR algorithm uses route inspection mechanisms to assess the degree of
independence among the overlay channels [13], and keeps a metric of the sta-

10

tus and quality of the links between pairs of JITeR nodes, measured by
the latency or transmission time2 (TXT). Both kinds of information are
updated periodically and used to guide routing decisions. In fact there is a
tradeoff involved: if the periodicity is high the algorithm adapts slowly to
the network conditions; if low more messages are sent.

Deadline-aware multichannel transmission. Since IP offers only best-effort
communication guarantees, JITeR has to use temporal and spatial redun-
dancy to obtain the desired message latency and reliability assurances. Each
message is transmitted using one or more tries, until either an ACK is re-
ceived or the message reception deadline is reached.

In each try, the message is sent through one base channel plus B backup
channels . These channels are selected in a way that improves the number of
possible retransmissions of the message before the deadline. For each mes-
sage, JITeR starts by using a base channel that does not offer the best
TXT but is fast enough to still permit messages to arrive in time and be
retransmitted through other channels. This approach leaves the best TXT
channels to be used: (1) for retransmissions, as the available time for deliver-
ing the message becomes shorter; (2) for transmitting other messages with a
shorter deadline. This solution achieves some load balancing among messages
with different deadlines scheduled for transmission within a given short inter-
val. Messages with stringent deadlines are transmitted through the fastest
channels, while messages allowing larger delivery times go through slower
channels.

The backup channels are selected in such a way that they have as little
correlation as possible with the base channel and between themselves (based
on monitoring information about the used links and routers), while still being
able to deliver the message within the time constraints. As a result, the
messages are not sent as fast as possible, but fast enough, or just in time.

Immediate and incremental deployment. From the deployment point of view,
using baseline IP protocols ensures immediate deployment, without the need
for global changes at the network level. In consequence, GDII stakeholders do
not need to add the JITeR nodes immediately to all facilities: deployment

2This time includes not only the physical-level transmission delay at the sender, but
also other delays such as transmission delays, propagation delays, queuing and processing
delays at routers

11

may be incremental.

3.2. System model

The system is composed by a set of JITeR nodes R = {r0, ..., rn−1}.
A JITeR logical overlay channel interconnects two JITeR nodes, and is
implemented either by a direct channel or by a one-hop indirect channel. In
this sense, each pair of nodes ri, rj (with i 6= j) is connected by at least one
direct channel cij, provided by routing across the network IP level. When two
nodes are connected by an indirect channel, another JITeR node works as a
relay. In this sense, an indirect channel connecting ri to rj passing through
rk, is the composition of two direct channels cik and ckj, and denoted by cikj.

The notion of channel is, however, deeper than this. A channel is an
abstraction defined at each JITeR node. The algorithm takes advantage of
multihoming, so each channel begins with the connection to one of the ISPs
the node is connected to, from the ISP set I = {p0, ..., pn′−1}. Whenever
needed, we use a superscript to indicate the ISP. For example, if the direct
channel is cpij, then when ri sends a message through this channel the message
is first passed to ISP p. The recipient rj typically receives the message from
a different ISP q (the message can pass through several ISPs / autonomous
systems, see Section 5.3); if it replies to the message, it sends the reply
through q. For indirect channels, we employ a superscript with the ISPs
to which the sender and the relay pass the messages. For instance, if the
channel is cpqikj, then the sender ri passes the messages to ISP p and the relay
rk passes the messages to ISP q. If p = q we abuse of the notation and write
only one letter.

The algorithm is used to exchange control messages m = 〈data, d〉 ∈ M,
where data is the content of the message and d the deadline by which it has
to be delivered, relative to the instant when it was sent (it is a time interval,
not an instant). These messages are assumed to be sporadic (do not create
congestion) and small (fit in one IP datagram). In this work we disregard
the delays that occur within the LANs of the facilities (typically smaller than
0.2ms, much less than the values in a WAN), and we also ignore the processing
delays in the JITeR nodes, since these delays are usually much smaller than
the WAN transmission times. In the cases where this is not true, one can
assume a bound on these two delays Textra, and use it to update the deadline
d accordingly (one would use a deadline d

′
= d − 2 × Textra). A message is

said to be sent when it is placed in the external transmission queue at the
sender JITeR node, and is said to be delivered when it is put in the internal

12

transmission queue of the destination JITeR node, to be forwarded to its
destination by the receiver node.

We assume that channels are lossy and asynchronous, i.e., they can lose
messages and there are no bounds on the communication delays within the
WAN links. We also assume that corrupted messages are detected and
dropped (e.g., using cyclic redundancy checks or message authentication
codes), allowing only correct messages to be delivered.

Channel correlation. Pairs of channels are assigned correlation numbers in
the range [0, 1]. 0 means that there is no correlation at all, i.e., that there
are no transmission media, equipment or administration common to both
channels; 1 means that these items are common to both channels.

There are several possibilities for the data employed to compute the cor-
relation. A practical solution is to use the set of routers common to both
channels, which can be obtained by running tools like traceroute. We con-
sider that each channel c is characterized in terms of a set of routers rout
such that, given the set of routers of another channel c′, the correlation of the
two channels can be computed from rout and rout ′ using the Sørensen-Dice
coefficient: s = 2|rout

⋂
rout ′|/(|rout |+ |rout ′|). Data about routes has to be

updated periodically to account for route changes.
An alternative solution is to consider diversity in terms of autonomous

systems. The concept of AS has been evolving [45], but it suggests a set
of routers under the same technical administration, so it can be used as a
unit of diversity. This makes sense especially in world-wide networks, as our
experiments with Amazon EC2 show that pairs of regions are connected by
a considerable number of ASs. The correlation of ASs can be calculated
similarly to what was given for routers.

A third solution would be to compute channel correlation based on path
availability history, as proposed by Zhang and Perrig [59].

Channel latency. Each node keeps information about the transmission time
(TXT) of every overlay channel. The actual measurement method of TXT
is independent from the algorithm, but currently we approximate it as half of
the round-trip-time (TXT = RTT/2). Measuring one-way delays is known
to be difficult as it requires strict time synchronization between hosts [41].
For the sake of example, in the experiments for this paper we have used a
method similar to the TCP protocol [42], estimating TXT using an expo-
nential weighted moving average: TXT = (1−α)×TXT +α×TXTmeasured.

13

If no normal traffic is being exchanged between the nodes, then messages are
exchanged periodically to support these measurements. The protocol used
to send these messages is UDP instead of ICMP, because JITeR sends mes-
sages over UDP. Moreover, it was recently shown that the use of ICMP for
this purpose is problematic due at least in part to strange processing that
some routers do to packets [43]. If round-trip-time measurement messages
for a direct channel take more than a certain threshold TXTmax to be an-
swered more than Odmax times, we assume this channel to have TXT = +∞,
and the algorithm stops using it. Notice that since these measurements are
done periodically, if a channel is reestablished, it will again be considered for
transmission.

If a message takes more than the current estimate TXT to be delivered (or
is not delivered) then there is a communication timing fault. More formally,
given any two nodes ri and rj and the estimate TXT ij of the transmission
time between them maintained at ri, there is a communication timing fault
if ri sends a message to rj at instant tsend and the message is not received at
rj by tsend + TXT ij.

3.3. Supporting Data Structures

Every node ri keeps a copy of a system-wide matrix DC that stores data
about all direct channels cpjk, for rj, rk ∈ R and p ∈ I. Each entry DC[j, k, p]
has two fields: txt is an estimate of the TXT of the channel cpjk; and rout
is the vector with the routers that messages traverse on this channel (as
explained above).3 Node ri periodically updates the entries DC[i, ∗, ∗] with
the new values estimated locally, and then disseminates this submatrix to
the other nodes. Whenever a node rk receives such a submatrix from ri,
it updates the entries corresponding to DC[i, ∗, ∗] in its own matrix. It is
important to notice that different nodes do not need to have exactly the
same DC matrix, but only converge to the same, just like in distance vector
routing protocols.

The data in the DC matrix is used to populate the overlay channel matrix
OC (see a representation in Figure 2). A node ri stores in the OC matrix
data about all overlay channels, direct and indirect, available to connect
itself and all other nodes rj. Each entry of the matrix represents an overlay

3Although there is at most one relay per channel, there can be an arbitrary of (network-
layer) routers per channel.

14

Entry OC[j-1,0]

txt = 6

…

Entry OC[j-1,1]

txt = 12

…

Entry OC[j,0]

txt = 8

…

Entry OC[j,1]

txt = 11

…

Entry OC[j,2]

txt = 14

…

Entry OC[j+1,0]

txt = 7

…

Destination

Node

j-1

j+1

j

Entry OC[j,1]

txt = 11

relay = rk

isp1 = p

isp2 = q

rout = {router1, router5, router7}

ccikjikj

pqpq

Entry OC[j,1]

txt = 11

relay = rk

isp1 = p

isp2 = q

rout = {router1, router5, router7}

cikj

pq

Entry OC[j,0]

txt = 8

relay = NULL

isp1 = p

isp2 = NULL

rout = {router1, router8}

ccijij

pp

Entry OC[j,0]

txt = 8

relay = NULL

isp1 = p

isp2 = NULL

rout = {router1, router8}

cij

p

direct channel

indirect channel

Figure 2: The Overlay Channel (OC) matrix of a node ri. A row j of the matrix
contains the channels for sending messages from ri to rj ordered by TXT . Each
matrix entry can represent either a direct channel (e.g., OC[j, 0]) or an indirect
channel (e.g., OC[j, 1]).

channel and contains a structure with the following fields: txt is the TXT
of the channel (the sum of the TXT s of the two sub-channels if it is an
indirect channel); relay is the node that relays the message (or NULL for
direct channels); isp1 is the ISP to which ri is connected; isp2 is the ISP to
which the relay node is connected (or NULL for direct channels); and rout
is the vector with the routers that have to be traversed. The entries OC[j, ∗]
in the array correspond to the overlay channels towards the destination node
rj, and they are ordered from the lowest TXT to the highest, which places
slow (i.e., high-latency) channels in the last columns.

3.4. The Algorithm

The algorithm works in a loop. Each cycle consists in sending the message
though one or more channels, then waiting for an acknowledgment. If the
acknowledgment is not received until a certain timeout, a new iteration of
the loop is executed.

When node ri wants to send a message to rj, the algorithm selects from

15

row j of the OC matrix a number of channels accordingly to the following
rules:

Base channel: The base channel is chosen to maximize the possible num-
ber of retransmissions of the message through different channels before the
deadline expires, and to allow some level of load balancing among messages
with different deadlines, leaving the best channels for the messages with
shortest deadline. Therefore, the base channel is not the one that provides
the best TXT , only a TXT that is enough for the message to be delivered
in time.

Backup channels: A total of B backup channels are selected in a way that:
(i) minimizes the correlation with the base channel and between themselves;
(ii) preserves their ability to deliver the message before the deadline.

Upon a transmission, a timeout of 2× TXT sets the waiting time for an
acknowledgment of the message delivery. If no acknowledgment is received,
then the selection process is executed again to allow for the retransmission
of the message, possibly through other channels.

Algorithm 1 contains the pseudo-code executed by node ri when a mes-
sage m = 〈data, d〉 is to be sent to node rj. The algorithm uses primi-
tive send(TYPE,m, c) to transmit message m of type TYPE through an over-
lay channel c (TYPE is one of DATA or ACK). The destination node is im-
plicit in c, and can be obtained with function destination(c). Function
channel(OC[j, i]) returns the overlay channel of the corresponding entry of
OC, while function correlation() gives the correlation between the routes of
two OC entries. The number of channels in an OC matrix row j is denoted
by #OC[j, ∗]. The deadline of message m relative to the instant in which
the message was sent is in the field m.d.

The main part of the algorithm is in procedure jiter send (Lines 3-21).
This procedure is executed in two cases: (i) when ri receives a message m
to be transmitted through the WAN (Lines 1-2); (ii) when the timer that is
started when the message is sent (Line 21) expires (Lines 22-23). Node ri
first checks if the fastest channel has a TXT low enough to allow the message
to be received before the deadline, i.e., if TXT is at least equal to the time
available to send the message (Line 4). If the TXT is not low enough, an
error signal is raised (Line 5).

Otherwise, the algorithm will find the base channel by testing the OC[j, ∗]
entries in ascending TXT order (Lines 7-16). The algorithm predicts the
maximum possible number of future retransmissions of m through different
base channels based on the reference deadline value m.d. It progressively

16

Algorithm 1 JITeR algorithm executed by node ri
1: upon there is a message m to deliver to rj :
2: jiter send(m, rj)

3: procedure jiter send(m, rj)
4: if (OC[j, 0].txt > m.d) then
5: signal NOT ENOUGH TIME(m) {no time to send, exit}
6: end if
7: bc← 0 {the base channel}
8: elapsed ← OC[j, 0].txt {overall used time}
9: while bc + 1 < #OC[j, ∗] do

10: if (elapsed + 2×OC[j, bc + 1].txt ≤ m.d) then
11: elapsed ← elapsed + 2×OC[j, bc + 1].txt
12: bc← bc + 1
13: else
14: exit loop {no time to use more channels}
15: end if
16: end while
17: send(DATA,m, channel(OC[j, bc])) {send to base channel}
18: P ← set of B backup channels where

(i) OC[j, ∗].txt ≤ m.d and
(ii) correlation(OC[j, bc],OC[j, ∗]) and between themselves is the lowest

19: ∀p ∈ P : send(DATA,m, p) {send to backup channels}
20: m.d← m.d− 2×OC [j, bc].txt
21: start timer(m, rj , 2×OC [j, bc].txt)

22: upon expires timer for m to reach rj :
23: jiter send(m, rj) {retry to send m to rj}

24: upon (DATA,m, c) is received:
25: if (destination(c) = ri) then
26: send(ACK,m, c′) {c′: is the backward channel of c}
27: deliver m to its final destination
28: else
29: send(DATA,m, destination(c)) {relay m to its destination}
30: end if

31: upon (ACK,m, c) is received:
32: if (destination(c) = ri) then
33: stop timer(m)
34: signal OK DELIVERED(m)
35: else
36: send(ACK,m, destination(c)) {relay m to its destination}
37: end if

17

takes advantage of the distinct overlay channels available in the entries of
OC, each of which with latency cost OC[j, ∗].txt. The algorithm chooses as
base channel the one with the highest TXT , from those that in principle
allow the transmission of the message , and sends the message through that
channel (Lines 17).

Next, a set P of B backup channels is created (Line 18). Backup channels
satisfy two conditions: (i) they expectedly allow the delivery of m before its
deadline; and (ii) they have the lowest correlation with the base channel
and between themselves. The message is sent through the backup channels
(Line 19), and then the algorithm updates the message deadline and starts a
timer (Lines 20-21). If the timer expires, the message is resent (Lines 22-23).
Notice that the message can be resent without need due to a late ACK, but
this is not problematic4.

When the node receives a DATA message m, it either delivers it to its
final destination in the LAN, sending an ACK to the sender node (Lines 26-
27), or relays m to its destination JITeR node (Line 29), depending on its
destination. If ri receives an ACK message from node rj, the timer is stopped
and the algorithm terminates with success (Lines 33-34). Notice that the
error signaled in Line 5 can be pessimistic, as the message may be delivered
but the acknowledgment lost or received later, after the signal is raised.

3.5. Properties

The main property that the algorithm guarantees is timely message de-
livery with high probability, despite communication timing faults. Consider
that bc is the index of the base channel (starting with 0) when a message m
is first transmitted (Algorithm 1, Line 17) and that B is the number of addi-
tional backup channels used on each try (Line 18). The algorithm transmits
m through 1 +B diverse channels in each try (execution of jiter send), and
at most bc+ 1 tries are executed to send m. It means that the system toler-
ates at most (1 + B)× (bc+ 1)− 1 communication timing faults on overlay
channels. This expression reflects the main idea of JITeR: to explore space
and time redundancy to increase the probability of timely message transmis-
sion. Naturally, the effectiveness of the redundancy employed is dependent

4Instead of setting the timeout to 2×TXT , line 21 might add to that value four times
an estimative of the deviation, similarly to what is done for TCP’s retransmission timer
[42]. However, this would waste time that could be used to resend the message through a
different channel and improve the chances of reception on time.

18

on the characteristics of the network. If the network is very unstable (the
channels’ TXT estimates do not reflect the actual transmission times) and/or
if the links exhibit a high correlation, neither JITeR nor any other routing
strategy can effectively ensure timely communication. However, given ISP di-
versity and considering the natural redundancy of well-engineered networks,
our algorithm will explore both quite effectively, even under harsh scenarios
of disasters or DDoS attacks, as we show in Section 5.2.

3.6. An Example

This section presents an example to show: (1) the way a JITeR node
selects channels to transmit a message; (2) that bad channels are not used;
and (3) that load balancing is achieved and the best channels are left for
the messages with shortest deadline. We consider an overlay with four nodes
{ri, rj, rk, rl} and B = 1. Node ri is connected to two ISPs, p and q, and sends
two messages m1 and m2 to node rk in a row, with deadlines respectively of
30ms and 70ms. Figure 3 represents the line of the OC matrix with channels
connecting ri to rj (line j of Figure 2). Each column corresponds to a channel.
The channel id was added to help our explanation.

Message m1 has a deadline of 30ms. Lines 7-16 of the algorithm conclude
that to send m1 there is time to use channels 0 and 1 (2× 11 + 8 ≤ 30), but
not channel 2 (2 × 14 + 2 × 11 + 8 > 30). Therefore, the first base channel
used for m1 is channel 1. For backup channel it chooses the less correlated
channel that allows achieving the deadline, channel 5, which has correlation
s = 0.33 with channel 1. Channel 9 is excluded because its TXT is too
high. If an acknowledgment is not received until 2× TXT 2 = 22ms, then ri
picks the second base channel (channel 0) and another backup channel and
retransmits the message.

For m2 something similar happens. The deadline is 70ms, so it has time
to use channels 0 to 2 (2× 14 + 2× 11 + 8 ≤ 70), but not channel 3, so the
first base channel is 2. For backup channel it chooses among channels 1, 3,
7 and 9, all with correlation s = 0.5 with channel 2.

This example shows how nodes select channels. It also demonstrates
that bad channels are never selected (channel 9 is never selected to send
m1). Finally, it shows load balancing in action: the two messages are sent
through different base channels the first time they are sent. Its is important
to recall that the OC matrix is quite dynamic: our aggressive monitoring
strategy ensures that the values of this table (and the order of the channels)

19

channel'id' 0' 1' 2' 3' 4' 5' 6' 7' 8' 9'

txt# 8# 11# 14# 16# 17# 18# 20# 23# 25# 33#

relay# null# rk# rk# null# rl# rl# rk# rk# rl# rl#

isp1# p# p# p# q# p# p# q# q# q# q#

isp2# null# p# q# null# q# p# p# q# p# q#

rout# {R1,R8}# {R1,R5,
R7}#

{R1,R3,
R5,R8,#
R9}#

{R5,R7,
R9}#

{R1,R3,
R5,R7,#
R8,R9}#

{R1,R3,
R8}#

{R1,R3,
R5,R7,#
R8,R9}#

{R5,R7,
R9}#

{R1,R3,
R7,R8}#

{R5,R7,
R9}#

Figure 3: Line of the OC matrix at Jiter node ri with the channels connecting it
to rj .

are constantly being updated, ensuring the system adapts to changes in the
network conditions.

4. JITeR Implementation

Current implementation. We implemented the JITeR nodes in Java (around
6000 lines of code). The prototype uses the JGroups toolkit5 to manage mem-
bership, i.e., to keep and update views of the JITeR nodes that are active.
The prototype uses the functions of that toolkit to allow nodes to enter the
group of JITeR nodes, to leave that group, and to be removed automati-
cally in case they become inaccessible, similarly to membership services in
the literature [3]. Otherwise the prototype does not use the communication
primitives provided by JGroups, but sends messages on top of UDP. The
prototype also implements the Flooding and Primary-Backup strategies (see
Table 1).

In normal operation the nodes constantly monitor the TXT between
themselves, either explicitly by sending heartbeat messages, or implicitly by
measuring the time taken to get replies to the data messages they send. The
diversity among channels is periodically assessed using information about
routers obtained using traceroute.

Scalability and node replication. The JITeR node of a facility can be repli-
cated to cope with more messages (scalability) and to tolerate faults. The
basic idea is to replicate each JITeR node in a set of hosts in the same

5http://www.jgroups.org/

20

Strategies Technique Basic idea Reference

Best-Path OV Send message through the best overlay channel. In case of fail-
ure, retransmit message at most 3 times using a timeout of 3
seconds using the best overlay channel.

RON [4]

JITeR0 OV/MH JITeR without backup channels. This work

JITeR1 OV/MH JITeR with 1 backup channel. This work
Flooding OV/MH Send message a single time using all available overlay channels. N/A
Multi-Path OV Send message through 2 overlay channels: the direct channel and

a randomly chosen overlay channel (direct or not).
Mesh-routing [49]
with variation
in [6]

Hybrid OV Send message through one direct channel. If failure, send mes-
sage via 4 randomly chosen overlay channels (direct or not).

SOSR [25]

Round-Robin MH Send message in a circular fashion alternating among all existent
access links. Retransmit 3 times at most using a timeout of 3
seconds.

N/A

Primary-Backup MH Send message always through one specific access link until it
fails. In case of failure and if there are redundant links, pick
another one. Retransmission scheme as RR.

Used in the Ital-
ian backbone

Table 1: List of the strategies evaluated. OV and MH means that an overlay or
multihoming are used.

geo-location. Each replica handles a fraction of the messages and availability
is ensured by the other replicas if some of them crash.

The implementation is basically the following. Each replica has soft state
reflecting cached data structures that are maintained in a coordination ser-
vices such as Zookeeper [28]. The membership (list of replicas) of each node
is also kept in Zookeeper, that can trivially detect replica failure and support
replica addition and removal.6 All replicas will monitor different channels of
the network in order to update the data structures on Zookeeper, and will
read this matrix to memory periodically (e.g., every few seconds). A client
that wants to send a message using such replicated node will choose one of
the replicas randomly and use it as its JITeR node. The same thing hap-
pens when other JITeR nodes want to use this node as a relay. This solution
allows scaling up as long as Zookeeper is not the bottleneck, which is unlikely
as it scales well with the number of read operations [28].

Access and admission control. JITeR improves the timeliness of control traf-
fic that we assume to be negligible in comparison to the overall network
traffic. However, in practice access control and admission control have to
be implemented to limit, respectively, who can send messages using JITeR
and how much traffic can be sent. There are several options to implement
both mechanisms. For instance, access control can be based on SOCKS5 and
admission control similar to ATM’s [16].

6http://zookeeper.apache.org/doc/trunk/recipes.html

21

Strategies Technique
Features Fault tolerance Cost (extra messages sent)

#Res- #Channels #ISPs #faulty channels #faulty ISPs no one two
ends used used tolerated tolerated faults omission omissions

Best-Path OV 3 4 1 3 0 1 2 3

JITeR0 OV/MH bc bc + 1 #ISPs bc #ISPs−1 1 2 3

JITeR1 OV/MH bc 2(bc + 1) #ISPs 2(bc + 1)− 1 #ISPs−1 2 2 4
Flooding OV/MH 0 #ch #ISPs all−1 #ISPs−1 #ch #ch #ch
Multi-Path OV 0 2 1 1 0 2 2 2
Hybrid OV 1 5 1 4 0 1 5 5
Round-Robin MH 3 #ISPs #ISPs #ISPs−1 #ISPs−1 1 2 3
Prim.-Backup MH 3 #ISPs #ISPs #ISPs−1 #ISPs−1 1 2 3

Table 2: Analytical comparison of the algorithms. Refer to Table 1 for the evaluated
algorithms descriptions (#ch is the number of overlay channels available).

5. Evaluation

This section evaluates JITeR analytically, using simulations, and exper-
imentally. These three evaluations complement each other and shed light on
the fundamental characteristic of JITeR and related strategies.

5.1. Analytical Comparison of Strategies

This section compares analytically JITeR with other potential candi-
dates to improve the timeliness of control traffic in wide-area IP networks,
whether with overlays, multihoming or both. Table 1 describes the strategies,
where we consider two possible configurations for JITeR: using B = 0 or
B = 1 backup overlay channels, dubbed JITeR0 and JITeR1, respectively.
Results are not presented for higher numbers of backup channels because our
experiments have not shown benefits in relation to JITeR1.

The various strategies can be roughly characterized in terms of three met-
rics: the number of times they can resend messages; the number of channels
they use (overlaying); and the number of access ISPs they exploit (multi-
homing). Notice that these numbers are not constant, as they depend on the
actual physical configuration of the network (e.g., the number of ISPs) and
the runtime conditions (e.g., the message deadlines and the channels’ TXT
actually define how many retransmissions are possible in JITeR). In any
case, it is still possible to calculate a level of fault tolerance of each strategy:
the number of faulty channels (channels that are interrupted or with very
high delay) and access ISPs that are tolerated. These metrics mean that
if that number of channels or ISPs fail altogether it is still possible for a
message to be received in time, because there is still redundancy in the sys-
tem (assuming that failures are independent). They do not mean that the
message will actually be received because they disregard temporary issues,

22

like short duration congestion that can affect the other channel/ISP and de-
lay the message. It is also possible to obtain values of cost in terms of the
number of extra messages transmitted.

These metrics and numbers are shown in Table 2. The symbol # means
“number of” and bc is the index of the base channel when the message is
first transmitted (Algorithm 1, Line 17), which gives the number of times
the message can be sent through base channels minus one. Notice that #Re-
sends accounts for tries to resend the message; for instance JITeR resends
a message up to bc times. Briefly, the table was obtained the following way.
The 3rd to 5th columns come from Table 1. The number of faulty channels
tolerated (6th column) is equal to the number of channels used (4th column)
minus 1. The number of faulty access ISPs tolerated (7th column) is the
number of ISPs used by the scheme (5th column) minus 1. The cost with
no faults (8th column) is the number of packets sent without faults (e.g.,
JITeR1 always sends two packets per application-level message and flood-
ing sends as many as the number of channels). With omissions this number
increases (9th/10th column).

The table clearly shows that JITeR1 and JITeR0 explore all the di-
mensions of diversity, considering time, channel and access ISP redundancy.
This suggests that they are able to achieve better timeliness than alternative
schemes that do not explore all those options. Flooding exploits channel and
ISP redundancy to the extreme, with the associated high cost of transmit-
ting messages through all available channels (#channels). The Best-Path,
Multi-Path and Hybrid strategies explore time and/or channel redundancy
within a single ISP. Round-Robing and Primary-Backup explore time and
ISP redundancy, but not channel redundancy through other facilities.

5.2. Scenario-based Simulation: Critical Information Infrastructure

This section presents a simulation-based evaluation of the strategies de-
scribed in Table 1 using a model of a real-world critical information infras-
tructure. We developed a detailed model of the Italian power grid GDII
using information publicly available [18, 47]. We opted for simulation be-
cause it would be virtually impossible to have access to any GDII production
environment.

The evaluation aims to answer two important questions: (1) Given a
set of messages with different deadlines, to what extent are these messages
received in time when employing the various strategies? (2) What are the
transmission costs incurred by these strategies?

23

Simulated network environment. Simulations were carried out on the J-Sim
simulator7. The simulated network is based on a ISP backbone topology
that is used by the largest Italian power grid company for control communi-
cation [47]. This topology is composed of 31 routers and 51 direct channels,
as depicted in Figure 4(a). Each router is capable of pushing data at 1
Gbps, and network channels provide a propagation delay of 50ms. To rep-
resent multihoming, we replicate the network topology to create two fully
decoupled ISP backbones.

(a) Italian ISP topology [47]. (b) Simulation topology.

Figure 4: ISP network topology: reality and simulation.

On the underlying network topology, we considered 17 candidate gate-
ways (the polygons in Figure 4(b)), each corresponding to an Italian region.
Gateways are located at a control center (CC) or a substation (SS), and they
can send data at 100Mbps. Four special gateways (circles in the figure) are
located in the main Italian cities in different regions. They connect regional
remote controller stations, thus being responsible for passing along all traffic

7http://sites.google.com/site/jsimofficial/.

24

related to them (e.g., receive monitoring data from various SSs and transmit
commands to reconfigure a SS). The remainder gateways (squares in the fig-
ure) are in charge of traffic relative to a SS (e.g., signaling messages sent by
the SS to the respective CC). The gateways correspond to the JITeR nodes
, but they can run any of the strategies of Table 1. To limit the number of
transmitted messages, we used only 7 of the 17 gateways in the simulations:
the 4 CCs and 3 other well positioned nodes (dark squares in Figure 4(b)).
Every node had access to the WAN through two redundant links, each one
provided by a distinct ISP.

Workload. The traffic of each CC and SS nodes involved in the setup was
generated separately. We created 17 different traffic sources with the same
duration of a simulation, totalizing 90,134 messages sent. The same traffic
sources were used in all strategies.

The workload was generated based on information about typical power
control traffic [18]. Traffic can be periodic or sporadic and have different
deadlines, according to the type of operation. Five distinct traffic patterns
were identified, as shown in Table 3. All these patterns are applied in the
simulation, with periodic messages starting to be sent after a random initial
delay.

Message Deadline Period Description

CC-STATE 4s 4s CCs state info exchange
SS-STATE 1s 2s SS state info to its CC
SS-ALARM 1s sporadic SS alarm to its CC
CC-CMD 2s sporadic CC command to a SS

CC-HPCMD 1s sporadic
CC high-priority com-
mand to a SS

Table 3: Power control messages of the simulation.

Faultloads. The faultloads were generated for the simulation interval of 5
hours. A faultload has a total number of faults f = 148 to be injected
across all network components. Faults are injected in backbone routers, links
and gateway interfaces (to emulate the effect of a failure on the ISP access
routers). A fault number fc was defined for each component class, following
the distribution of unplanned ISP IP backbone failures shown in [35].

• Faultload 1 (fault-free). Ideal, no failures.

25

• Faultload 2 (accidental faults). A scenario where there are accidental
problems in the WAN. Accidental faults are generated using a combi-
nation of three network failure models from the literature. The model
in [35] is used to determine the failure starting time and localization
per network component, and the failure duration is based on the mod-
els in [14, 34]. The resulting model states that (1) the starting time
of failures is randomly picked following a Weibull distribution over the
network-wide simulated time window [35]; (2) 30% of all failures last
more than 30 seconds according to a Pareto truncated distribution [14],
while the remainder ones last up to 30 seconds following an Exponen-
tial distribution [34]; (3) for each class of network devices, an individual
element is selected according to a Power-Law based distribution [35] to
inject the fault.

• Faultload 3 (crisis). A more stringent scenario where the WAN is sub-
ject to accidental and malicious faults. This faultload is similar to
faultload 2, but it also includes faults that have a longer duration and
affect more components to simulate DDoS attacks. After analyzing
data about real DDoS attacks in the literature [29, 36], a model was
built with the following characteristics: (1) the initial time of a single
failure is obtained by uniformly selecting a random number within the
simulation interval; (2) 80% of all failures last more than 30 seconds
according to a Pareto truncated distribution, and the remainder 20%
last up to 30 seconds following an Exponential distribution; (3) for each
class of network components, an element is uniformly chosen for fault
injection.

Simulation results. Table 4 shows the results of the simulations. Two met-
rics are used to evaluate the strategies of Table 1 in the simulations: the
number of missed deadlines, which is a measure of the effectiveness of the
scheme to achieve timely communication; and the percentage of extra mes-
sages sent, which is a measure of cost. This last metric is the total number
of messages sent by the scheme minus the number of messages transmitted
by the application, divided by the number of messages sent.

The table shows that there were no deadlines missed in the simulations of
any of the strategies in the failure-free (FF) scenario. However, a few of the
schemes incurred in additional costs in terms of extra messages. Not surpris-
ingly, Flooding was the most expensive scheme, as it sends messages through

26

Strategy
Missed deadlines % of extra messages sent
FF AF C FF AF C

B.P. 0 101 1,527 0.00 0.16 1.76
JITeR0 0 0 97 0.04 0.96 49.29
JITeR1 0 0 37 100.02 100.41 167.63
Flood. 0 0 5 2410.09
M.P. 0 43 8,041 100.00
Hybrid 0 111 8,627 0.00 0.21 26.62%
R.R. 0 109 9,600 0.00 0.16 18.67
P.B. 0 5 1,535 0.00 0.01 1.78

Table 4: Simulation results in terms of missed deadlines (effectiveness) and % extra
messages sent (cost) considering fault-free (FF), accidental faults (AF) and crisis
(C) scenarios.

all channels. Its cost was several orders of magnitude higher than those of
JITeR0 and JITeR1. However, on the contrary of JITeR, Flooding does
not need to keep information about the transmission time of the overlay
channels, so there is a tradeoff involved. Comparing our strategies with the
others, one can conclude that applying an additional backup channel im-
plied an increase in the overhead, since JITeR1 duplicates each transmitted
message by always exploring the backup channel (like Multi-Path). JITeR0

does not use a backup channel, so the cost is negligible.
When accidental faults (AF) are considered, we observe that the Hybrid

algorithm had the highest amount of deadlines missed. Flooding missed
no deadlines, but also did not JITeR0 and JITeR1 at much lower costs.
Interestingly, the non-overlay primary-backup scheme that is used by most
GDIIs outperformed some of the overlay strategies, confirming that often it
can cope with accidental fault scenarios.

In the crisis (C) scenario the non-overlay Round-Robin scheme exhibited
the highest number of deadlines missed: 9,600 out of 90,134, which is more
than 10%. Similarly to the previous scenario, Primary-Backup had better
efficiency at a lower cost than both Hybrid and Multi-Path. Flooding had a
small number of deadlines missed (5), which shows that there were cases in
which it was impossible to mask all faults (there were network partitions).
When our solution was employed without backup channels (JITeR0), it
missed 97 deadlines, which is about 1% of the missed deadlines by the RR
scheme (the worst performing strategy) and 6% of those missed by BP (the

27

Figure 5: Number of messages delivered by JITeR1 and Best-Path (RON) per
range of latencies (faultload 3; log scale).

best strategy excluding our solution and flooding). These percentages de-
crease further with JITeR1 since it adds one backup channel to the basic
scheme – here, the fraction is about 0.4% of the missed deadlines by RR and
2.4% of those missed by Best-Path (i.e., RON).

The results for missed deadlines of JITeR are not as good as flooding’s in
this scenario, but the cost of the latter is much higher. The JITeR approach
allows a tradeoff by setting the number of backup channels, as shown by the
improvement from JITeR0 (no backups) to JITeR1 (one backup) from 97
to 37 missed deadlines.

Just as observed with fautload 2, JITeR had a higher overhead than
some other strategies. However, even though Multi-Path and Hybrid explore
the spatial redundancy as JITeR1, they could not exhibit the same progress
in terms of reducing the number of missed deadlines. The difference comes
from the overlay channel selection algorithm employed by our strategy.

Best-Path either delivers the messages in the initial 0.2s interval or too
late. JITeR1 instead does not try to achieve the best latency, so only about
half of the messages are delivered in the first 0.2s, and the rest is distributed
over the bins, but it delivers more messages on time.

Figure 5 compares in more detail the behavior of JITeR1 and Best-Path
(BP) in the crisis scenario (Faultload 3). Recall that the BP strategy aims to
minimize the communication latency by picking the channels with the lowest
TXT to send the messages. Notice that the y-axis is logarithmic and that

28

this figure only displays data for messages with deadlines of 2 seconds. The
graph shows the number of messages that arrived with different latencies to
the destination using bins with size of 0.2s. It can be observed that Best-
Path either delivers the messages in the initial 0.2s interval or too late (1,527
messages miss the deadline of two seconds). JITeR1 instead does not try
to achieve the best latency, so only about half of the messages are delivered
in the first 0.2s, and the rest is distributed over the bins with increasingly
higher latencies. However, when compared with Best-Path, JITeR1 only
misses a few deadlines (37 messages arrive after two seconds), showing that
being just-in-time is a better strategy than being early in a utility network
application scenario.

5.3. Amazon EC2 Experiments

We run the JITeR prototype in the Amazon EC2 service. We deployed 5
nodes (micro instances) in 5 different Amazon AWS regions: Ireland, Tokyo,
S. Paulo, Oregon, and N. Virginia. We run experiments continuously for
around 100 hours with more than 55 thousand messages sent. Each node sent
messages to each of the other nodes in round-robin, using JITeR0, JITeR1,
Flooding and Primary-Backup, with deadlines of 250ms, 500ms, and 1s. All
messages had a payload of 1kB. We considered a single access ISP per node,
as to the best of our knowledge it is not possible to use multihoming in
Amazon EC2.

A difficulty in the experiments is the assessment if a message is received by
the deadline or not. To escape this issue, in the experiments we interpreted
the deadline as being the deadline for the sender to receive an acknowledg-
ment of the reception of the message, not for the receiver delivering the
message.

Experimental results. Table 5 summarizes the experimental results. The
main conclusion that can be extracted from the table is aligned with the simu-
lations: Flooding, JITeR0 and JITeR1 obtain similar results, with JITeR1

slightly better than Flooding, and this one slightly better than JITeR0.
Primary-Backup gives worse results (with 250ms deadlines). Notice that
although Flooding uses all overlay channels it does not retransmit the mes-
sage, which explains why JITeR1 performs better. In terms of additional
messages sent the results are almost the opposite: Primary-Backup is the
cheapest, very closely followed by JITeR0 – only 19% more messages for a
very low number of deadlines missed –, then JITeR1 and Flooding.

29

Strategy
% missed deadlines (per deadline) % extra
250ms 500ms 1sec Total messages

JITeR0 20.70% 0% 0% 6.92% 19%
JITeR1 20.06% 0% 0% 6.77% 134%
Flooding 20.49% 0% 0% 6.87% 300%
Prim.-Back. 43.57% 0% 0% 14.58% 0%

Table 5: Results of the Amazon EC2 experiments in deadlines missed (effectiveness)
and extra messages sent (cost).

Node pair Average Standard dev. Distance

N.Virginia-Oregon 53.76 4.00 4,000
N.Virginia-S.Paulo 73.09 8.54 6,000
N.Virginia-Ireland 49.73 1.97 6,000
N.Virginia-Tokyo 100.27 5.89 11,000
Oregon-S.Paulo 111.18 4.90 9,000
Oregon-Ireland 89.45 2.25 8,000
Oregon-Tokyo 69.01 10.15 8,000
S.Paulo-Ireland 111.66 7.19 7,000
S.Paulo-Tokyo 147.29 11.75 16,000
Ireland-Tokyo 138.63 11.49 10,000

Table 6: Average TXT between Amazon EC2 pairs of nodes during the period of the
experiments (in milliseconds). The distances between nodes are rough estimates
(in Km).

A second observation is that only messages with deadline of 250ms miss
the deadline. To understand this we need to have an idea of the TXT of
the communication between the nodes during the period of the experiments.
This information is provided in Table 6. This table shows clearly that 250ms
is short for sending and getting back an acknowledgment between the most
far apart nodes (plus S. Paulo-Ireland).

Path diversity. We wanted to understand the path diversity existing between
the 5 Amazon EC2 regions, as diversity is important to tolerate faults that
affect several routes. We ran the lft command between the 5 regions every
hour for two weeks in August 2013. lft is essentially a version of traceroute
that shows the ASs traversed. There were occasional changes but the ISPs
and ASs crossed remained mostly constant during that period, so we show

30

From \ To Ireland N. Virginia Oregon S. Paulo Tokyo

Ireland — Tinet (2),
Amazon (4)

Tinet (3),
Amazon (4)

Level3 (3),
Amazon (4)

Level3 (3),
BTN (1),
Amazon (5)

N. Virginia NTT (2),
Telia (3),
Amazon (4)

— Amazon (5) NTT (2),
Level3 (3),
Amazon (2)

Qwest (2),
BTN (1),
Amazon (4)

Oregon NTT (2),
Telia (3),
Amazon (4)

Amazon (5) — NTT (1),
Level3 (2),
Amazon (3)

NTT (3),
Amazon (3)

S. Paulo SeaBone (1),
Tinet (3),
Amazon (3)

SeaBone (2),
Amazon (4)

Telefonica
(2), NTT
(2), Amazon
(3)

— SeaBone (2),
Tata (1),
Amazon (3)

Tokyo NTT (2),
Telia (2),
Amazon (4)

NTT (3),
Amazon (5)

KDDI (4),
Amazon (5)

NTT (2),
SeaBone (2),
Amazon (3)

—

Table 7: ISPs and number of ASs (between parentheses) connecting Amazon’s
regions obtained using lft on August 2nd 2013.

data taken at a single day, August 2nd.
Table 7 presents the ISPs connecting the nodes deployed in the regions

of Amazon EC2. A first observation is that there is much diversity of ISPs
used, 10 for connecting the 5 nodes. A second interesting conclusion is that
the paths between two nodes are often different depending on the direction.
For instance, from N. Virginia to Ireland the path traverses NTT and Telia,
whereas from in the opposite direction it crosses Tinet, not NTT or Telia.
The network connecting N. Virginia and Oregon (and North California, not
shown) has only routers from Amazon.

The diversity of ASs is shown in the same table. The number after each
ISP (and Amazon) is the number of ASs of that ISP crossed by the path.
The number of ASs varies between 5 and 9. Again this suggests a consider-
able level of diversity, creating opportunities for the deployment of overlay
solutions such as JITeR.

5.4. Control Costs

JITeR has some control overhead in relation to the simplest alternative
strategy: flooding. This session evaluates this overhead.

In terms of memory footprint, nodes store two matrices, DC and OC
(Section 3.3). Matrix DC stores TXT and rout for every other node over
all ISPs. This matrix has an average size provided by the formula in the

31

Cost Formula 5 nodes 17 nodes 50 nodes

Size of Matrix
DC at a node

(#Nodes− 1)#ISPs(4 + 4(AvgRouters)) 352 B 1408 B 4312 B

Size of Matrix
OC at a node

(#Nodes− 1)(#Nodes− 2)(#ISPs2)×
(4 + 4× 2(AvgRouters) + 4 + 1)

7120 B 85440 B 837312 B

Bytes sent
(all nodes)

#Nodes(#Nodes− 1)×
(2Rep× PingSize+ SizeOfDC)

13.0 KB 464.6 KB 11299 KB

Table 8: JITeR control overhead. #Nodes is the number of nodes. The values
were calculated considering IPv4, 2 ISPs, average of 10 routers in direct chan-
nels (AvgRouters), 3 requests/replies to measure TXT (Rep), and size of these
messages of 50 B (PingSize).

second row of Table 8, where #Nodes is the number of nodes, AvgRouters
is the average number of routers of a direct channel, 4 bytes is the size of
the integers that represent TXT , and 4 bytes is the size of IPv4 address
that represent a router (a public IP address of one of the router’s interfaces).
Matrix OC has data about the overlay channels between the node and all the
others (see Figure 2). This matrix has (#Nodes−1)(#Nodes−2)(#ISPs)2

cells that store the same data as the cells of matrix DC, the IP of the relay
node, and the two ISPs. The size of the matrix is shown in the third row of
the table, assuming a single byte is used to store the identifier of the ISP.

In terms of communication overhead, each node has to measure the TXT
and send the DC matrix to all other nodes periodically. This cost is provided
by the formula in the last row of the table, where Rep is the number of
messages sent to measure the TXT to each node (ping), PingSize the size
of that message, and SizeOfDC the size of the DC matrix at a node (second
row of the same table). The communication overhead depends strongly on
the period considered; it is higher if the period is short, and smaller if the
period is long, as already pointed out.

The last 3 columns of the table provide concrete values for the memory
footprint and the communication overhead. 5 nodes is the number of JITeR
nodes we used in the AWS experiments, so it expresses the overheads in that
scenario. Next, 17 nodes is the number used in the simulations of Section 5.2.
Finally, 50 nodes is a value that we consider large for this kind of scenario,
which we depicted simply to show that the costs are reasonable. Traffic of
11 MB (bottom right) may seem considerable, but recall that this is not per
second, but per whatever period is used (e.g., per minute or 10 minutes).
Nevertheless, this value grows exponentially with the number of nodes.

32

6. Conclusion

We presented the design and validation of an algorithm, called JITeR
(Just-In-Time Routing), which routes deadline constrained messages at ap-
plication level, using novel overlay and multihoming channel selection strate-
gies, leveraging the natural redundancy of geo-distributed GDII’s networks.

JITeR solves an important problem, of providing real-time message la-
tency and reliability assurances for traffic in wide-area networks offering non-
differentiated IP services, although not with 100% coverage of the timeliness
properties. Design goals met in our approach, in order to improve its ap-
plicability, included: practicality and non-intrusiveness; compatibility with
current GDIIs; no wide-area IP network changes; cost consciousness.

Analytical, scenario-based and experimental evaluations with an imple-
mentation of JITeR nodes have show the main benefits of JITeR in relation
to other approaches. We believe JITeR can be a important contribution to
solving timeliness problems for control traffic in inter-datacenter communi-
cation, or distributed control of critical infrastructures.

Acknowledgments

This work was partially supported by the EC through project FP7-607109
(SEGRID), Alban scholarship E07D401192BR, and by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with references UID/CEC/
50021/2013 (INESC-ID) and PEst-OE/EEI/UI0408/2014 (LaSIGE). We thank
the anonymous reviewers and Fabrizio Garrone for the discussions and de-
tailed information on the Italian power grid in the context of EC project
CRUTIAL.

References

[1] Akella, A., Maggs, B., Seshan, S., Shaikh, A., Sitaraman, R., 2003. A
measurement-based analysis of multihoming. In: Proc. SIGCOMM’03.

[2] Amir, Y., Danilov, C., Goose, S., Hedqvist, D., Terzis, A., Dec. 2006. An
overlay architecture for high quality VoIP streams. IEEE Transactions
on Multimedia 8 (6).

[3] Amir, Y., Dolev, D., Kramer, S., Malkhi, D., Nov. 1992. Membership
algorithms for multicast communication groups. In: Proc. 6th WDAG.
pp. 292–312.

33

[4] Andersen, D., Balakrishnan, H., Kaashoek, M. F., Morris, R., 2001.
Resilient overlay networks. In: Proc. SOSP’01.

[5] Andersen, D., Balakrishnan, H., Kaashoek, M. F., Rao, R., 2005. Im-
proving web availability for clients with MONET. In: Proc. NSDI’05.

[6] Andersen, D., Snoeren, A., Balakrishnan, H., Oct. 2003. Best-path
vs. multi-path overlay routing. In: Proc. IMC’03.

[7] Apostolopoulos, J., Wong, T., Tan, W.-t., Wee, S., 2002. On multiple
description streaming with content delivery networks. In: Proc. INFO-
COM’02. pp. 1736–1745.

[8] Baker, J., Bond, C., Corbett, J., Furman, J., Khorlin, A., Larson, J.,
Leon, J.-M., Li, Y., Lloyd, A., Yushprakh, V., 2011. Megastore: Provid-
ing scalable, highly available storage for interactive services. In: Proc.
CIDR’11.

[9] Blanchet, M., Seite, V. P., Nov. 2011. Multiple Interfaces and Provision-
ing Domains Problem Statement. IETF RFC 6418.

[10] Cinque, M., Di Martino, C., Esposito, C., 2012. On data dissemina-
tion for large-scale complex critical infrastructures. Computer Networks
56 (4), 1215–1235.

[11] Cisco Systems, 2010. IP Routing: OSPF Configuration Guide, Cisco
IOS Release 15.1MT. Cisco Systems, Ch. OSPF Support for Fast Hello
Packets, pp. 117–122.

[12] Cisco Systems, 2011. Cisco IOS Software Configuration Guide, Release
12.2SY. Cisco Systems, Ch. 6. Configuring Stateful Switchover, pp. 6–
1–6–18.

[13] Cui, W., Stoica., I., Katz, R., 2002. Backup path allocation based on a
correlated link failure probability model in overlay networks. In: Proc.
ICNP’02.

[14] Dahlin, M., Chandra, B., Gao, L., Nayate, A., 2003. End-to-end WAN
service availability. IEEE/ACM Transactions on Networking 11 (2).

34

[15] Dantas, W., Bessani, A., Correia, M., Jun. 2009. Not quickly, just in
time: Improving the timeliness and reliability of control traffic in utility
networks. In: Proc. HotDep’09.

[16] de Prycker, M., 1995. Asynchronous Transfer Mode: Solution for Broad-
band ISDN, 3rd Edition. Prentice Hall.

[17] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman,
A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W., 2007.
Dynamo: Amazon’s highly available key-value store. In: Proc. SOSP’07.

[18] Deconinck, G., Beitollahi, H., Dondossola, G., Garrone, F., Rigole, T.,
Jan. 2008. Testbed deployment of representative control algorithms. De-
liverable D9, EC Project CRUTIAL, IST-2004-27513.

[19] Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., Weihl, B.,
2002. Globally distributed content delivery. IEEE Internet Computing
6 (5), 50–58.

[20] Dzung, D., Naedele, M., Hoff, T. V., Crevatin, M., 2005. Security for
industrial communication systems. Proc. of the IEEE 93 (6), 1152–1177.

[21] Esposito, C., Cotroneo, D., Russo, S., Apr. 2013. Survey on reliability
in publish/subscribe services. Computer Networks 57 (5), 1318–1343.

[22] Esposito, C., Russo, S., Beraldi, R., Platania, M., Baldoni, R., 2012.
Achieving reliable and timely event dissemination over WAN. In: Dis-
tributed Computing and Networking. pp. 265–280.

[23] Garrone (editor), F., Jan. 2007. Analysis of new control applications.
Deliverable D2, EC Project CRUTIAL, IST-2004-27513.

[24] Gjermundrod, H., Bakken, D. E., Hauser, C. H., Bose, A., 2009. Grid-
Stat: A flexible QoS-managed data dissemination framework for the
power grid. IEEE Transactions on Power Delivery 24 (1), 136.

[25] Gummadi, K., Madhyastha, H., Gribble, S., Levy, K., Wetherall, D.,
2004. Improving the reliability of Internet paths with one-hop source
routing. In: Proc. OSDI’04.

[26] Han, J., Watson, D., Jahanian, F., March 2005. Topology aware overlay
networks. Proc. INFOCOM’05 4, 2554–2565.

35

[27] Hefeeda, M., Habib, A., Botev, B., Xu, D., Bhargava, B., 2003. Promise:
peer-to-peer media streaming using collectcast. In: Proc. of ACM Mul-
timedia. pp. 45–54.

[28] Hunt, P., Konar, M., Junqueira, F., Reed, B., Jun. 2010. Zookeeper:
Wait-free coordination for Internet-scale services. In: Proc. ATC’10.

[29] Hussain, A., Heidemann, J., Papadopoulos, C., 2003. A framework for
classifying denial of service attacks. In: Proc. SIGCOMM’03.

[30] Iannaccone, G., Chuah, C., Mortier, R., Bhattacharyya, S., Diot, C.,
2002. Analysis of link failures in an IP backbone. In: Proc. IMW’02.

[31] Igure, V., Laughter, S., Williams, R., 2006. Security issues in SCADA
networks. Computers & Security 25.

[32] Jain, S. et al, 2013. B4: Experiences with a globally-deployed software
defined WAN. In: Proc. SIGCOMM’13.

[33] Katz, D., Ward, D., Jun. 2010. Bidirectional Forwarding Detection
(BFD). IETF RFC 5880.

[34] Li, Z., Yuan, L., Mohapatra, P., Chuah, C.-N., 2007. On the analysis of
overlay failure detection and recovery. Computer Networks 51 (13).

[35] Markopoulou, A., Iannaccone, G., Bhattacharyya, S., Chuah, C., Gan-
jali, Y., Diot, C., 2008. Characterization of failures in an operational IP
backbone network. IEEE/ACM Transactions on Networking 16 (4).

[36] Moore, D., Shannon, C., Brown, D., Voelker, G., Savage, S., May 2006.
Inferring Internet denial-of-service activity. ACM Transactions on Com-
puter Systems 24 (2).

[37] Neves, N., (editors), P. V., Mar. 2009. Architecture, services and proto-
cols for CRUTIAL. Deliverable D18, EC Project CRUTIAL, IST-2004-
27513.

[38] Nichols, K., Blake, S., Baker, F., Black, D., Dec. 1998. Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers.
IETF RFC 2474.

36

[39] Padmanabhan, V. N., Wang, H. J., Chou, P. A., Sripanidkulchai, K.,
2002. Distributing streaming media content using cooperative network-
ing. In: Proc. NOSSDAV. pp. 177–186.

[40] Pallis, G., Vakali, A., 2006. Insight and perspectives for content delivery
networks. Communications of the ACM 49 (1), 101–106.

[41] Pathak, A., Pucha, H., Zhang, Y., Hu, Y. C., Mao, Z. M., 2008. A
measurement study of internet delay asymmetry. In: Proc. PAM’08. pp.
182–191.

[42] Paxson, V., Allman, M., 2000. Computing TCP’s Retransmission Timer.
IETF RFC 2988.

[43] Pelsser, C., Cittadini, L., Vissicchio, S., Bush, R., May 2013.
On the suitability of ping to measure latency. RIPE 66 Meeting.
https://ripe66.ripe.net/presentations/128-130513.tokyo-ping.pdf.

[44] Peng, T., Leckie, C., Ramamohanarao, K., 2007. Survey of network-
based defense mechanisms countering the DoS and DDoS problems.
ACM Computing Surveys 39 (1).

[45] Rekhter, Y., Li, T., Mar. 1995. A Border Gateway Protocol 4 (BGP-4).
IETF RFC 1771.

[46] Romijn, E., Aug. 2010. RIPE NCC and Duke University BGP
experiment, https://labs.ripe.net/Members/erik/ripe-ncc-and-duke-
university-bgp-experiment.

[47] Rosato, V., et al., 2007. Final report on analysis and modelling of LCCI
topology, vulnerability and decentralised recovery strategies. Deliverable
D2.1.2, EC Project IRRIIS.

[48] Segall, L., Nov. 2011. Internet routing glitch kicks millions offline.
http://money.cnn.com/2011/11/07/technology/juniper internet outage
/?hpt=hp t3.

[49] Snoeren, A., Conley, K., Gifford, D., 2001. Mesh-based content routing
using XML. In: Proc. SOSP’01.

37

[50] Subramanian, L., Stoica, I., Balakrishnan, H., Katz, R. H., 2004.
OverQoS: An overlay based architecture for enhancing internet QoS.
In: Proc. NSDI’04.

[51] Tran, D. A., Hua, K., Do, T., 2003. Zigzag: An efficient peer-to-peer
scheme for media streaming. In: Proc. INFOCOM’03. pp. 1283–1292.

[52] Vamanan, B., Hasan, J., Vijaykumar, T. N., 2012. Deadline-aware dat-
acenter TCP (D2TCP). In: Proc. SIGCOMM’12.

[53] Verissimo, P., Rodrigues, L., 2001. Distributed Systems for System Ar-
chitects. Kluwer Academic Publishers.

[54] Viddal, E., Abelsen, S., Bakken, D. E., Hauser, C. H., 2007. Ratatoskr:
Wide-area actuator RPC over GridStat with timeliness, redundancy,
and safety. Tech. Rep. EECS-GS-011, Washington State University.

[55] Watson, D., Jahaniam, F., Labovitz, C., 2003. Experiences with
monitoring OSPF on a regional service provider network. In: Proc.
ICDCS’03.

[56] Wilson, C., 2006. Terrorist capabilities for cyber-attack. In: Interna-
tional CIIP Handbook 2006. Vol. II. Center for Security Studies, ETH
Zurich, pp. 69–88.

[57] Wilson, C., Ballani, H., Karagiannis, T., Rowstron, A., 2011. Better
never than late: Meeting deadlines in datacenter networks. In: Proc.
SIGCOMM’11.

[58] Xu, H., Li, B., 2013. Joint request mapping and response routing for
geo-distributed cloud services. In: Proc. INFOCOM’13. pp. 854–862.

[59] Zhang, X., Perrig, A., 2010. Correlation-resilient path selection in multi-
path routing. In: Proc. of GLOBECOM’10.

38

