
Automated Rule-Based Diagnosis through a
Distributed Monitor System

Gunjan Khanna, Mike Yu Cheng, Padma Varadharajan, Saurabh Bagchi, Miguel P. Correia, and

Paulo J. Verı́ssimo, Senior Member, IEEE

Abstract—In today’s world, where distributed systems form many of our critical infrastructures, dependability outages are becoming

increasingly common. In many situations, it is necessary to not only detect a failure but also to diagnose the failure, that is, to identify

the source of the failure. Diagnosis is challenging, since high-throughput applications with frequent interactions between the different

components allow fast error propagation. It is desirable to consider applications as blackboxes for the diagnostic process. In this paper,

we propose a Monitor architecture for diagnosing failures in large-scale network protocols. The Monitor only observes the message

exchanges between the protocol entities (PEs) remotely and does not access the Internal Protocol state. At runtime, it builds a causal

graph between the PEs based on their communication and uses this together with a rule base of allowed state-transition paths to

diagnose the failure. The tests used for the diagnosis are based on the rule base and are assumed to have imperfect coverage. The

hierarchical Monitor framework allows distributed diagnosis handling failures at individual Monitors. The framework is implemented and

applied to a reliable multicast protocol executing on our campuswide network. Fault injection experiments are carried out to evaluate

the accuracy and latency of the diagnosis.

Index Terms—Distributed system diagnosis, runtime monitoring, hierarchical Monitor system, fault-injection-based evaluation.

Ç

1 INTRODUCTION

THE wide deployment of high-speed computer networks
has made distributed systems a fundamental infra-

structure in today’s connected world. The infrastructure,
however, is increasingly facing the challenge of depend-
ability outages resulting from both accidental and mal-
icious failures. These two classes are collectively referred
to as failures in this paper. The potential causes of
accidental failures are hardware failures, software defects,
and operator failures, including misconfigurations. The
malicious failures may be due to external attackers or
internal attackers. The financial consequences of failures to
distributed infrastructure can be gauged from a survey by
the Meta Group Inc. of 21 industrial sectors in October
2000 [1], which found that the mean loss of revenue due to
an hour of computer system downtime is $1,010,000.
Compare this to the average cost of $205 per hour of
employee downtime. Also, compare the cost today to the
average of $82,500 in 1993 [2], and the trend becomes clear.

In order to build a robust infrastructure capable of
tolerating the two classes of failures, it is required that
detection and diagnosis primitives be provided as part of a
fault-tolerant infrastructure. Following the definitions in
[24], a fault is an invalid state or a bug underlying in the

system, which, when triggered, becomes an error. A failure is
an external manifestation of an error manifested to the user.
A failure in a distributed system may be manifested at an
entity that is distant from the one that was originally in
error. This is caused by error propagation between the
different communicating entities. The role of the diagnosis
system is to identify the entity that originated the failure.
The diagnosis problem is significant in distributed applica-
tions that have many closely interacting PEs, since the close
interactions facilitate error propagation.

In our target approach, we structure the combined
system into two clearly segmented parts with well-defined
mutual interactions—an observer or Monitor system, which
provides detection and diagnosis, and an observed or payload
system, which comprises the protocol entities (PEs)—that is,
the processes that implement the functionality of the
distributed system. This paper builds the diagnosis function-
ality to complement the detection functionality in the
Monitor system that was presented earlier in [4]. The
monitoring and collection of the system state in various
forms have been widely studied (including [4], [5], [6], [41]),
but this paper addresses the problem of providing
diagnosis based on the system state.

There are several design motivations for the Monitor
system. First, it is desirable that the Monitor system operates
asynchronously to the payload system so that the system’s
throughput does not suffer due to the checking overhead.
Second, there is a requirement of fast detection and
diagnosis so that substantial damage due to cascaded
failures is avoided. Third, the Monitor system should not
be intrusive to the payload system. This rules out the
possibility of making changes to the PEs or creating special
tests that they respond to. Instead, this argues in favor of
having the payload system be viewed as a blackbox by the

266 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

. G. Khanna, M.Y. Cheng, P. Varadharajan, and S. Bagchi are with the
School of Electrical and Computer Engineering, Purdue University, 465
Northwestern Avenue, West Lafayette, IN 47907.
E-mail: {gkhanna, mikecheng, pvardha, sbagchi}@purdue.edu.

. M.P. Correia and P.J. Verı́ssimo are with the Departamento de Informática,
Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
E-mail: {mpc, pjv}@di.fc.ul.pt.

Manuscript received 17 Sept. 2006; revised 8 May 2007; accepted 23 May
2007; published online 22 June 2007.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0134-0906.
Digital Object Identifier no. 10.1109/TDSC.2007.70211.

1545-5971/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

Monitor system. Although it is possible to build very
optimized and specialized fault-tolerant mechanisms for
specific applications (for example, like our earlier work in
[3], with the Tree-based Reliable Multicast (TRAM) proto-
col), such solutions do not generalize well across applica-
tions. Thus, it is important to design the Monitor system to
have an application-neutral architecture and with ease of
deployment across applications.

In today’s distributed systems, the machines on which
the applications are hosted are heterogeneous in nature, the
applications often run legacy code without the availability
of their source, and the systems are of very large scales with
soft real-time guarantees, making it particularly challenging
to meet all of the above goals. In this paper, we propose a
generic Monitor architecture to provide diagnosis primi-
tives to distributed applications, meeting all the design
requirements mentioned above.

We use a hierarchical Monitor architecture to perform a
diagnosis of failures in the underlying protocol. The
Monitor snoops on the communication between the PEs
and performs diagnosis of the faulty PE once a failure is
detected. We use the terminology “the Monitor verifies a PE”
to mean that the Monitor provides the detection and the
diagnosis functionalities to the PE. The Monitors treat the
PEs as blackbox, and only the causal relation among the
messages deduced from the send-receive ordering, along
with a rule base containing correctness and quality-of-
service (QoS) rules, are used to perform the diagnosis. For
diagnosis, the PEs are not exercised with additional tests,
since that would make the Monitor system more invasive to
the application protocol. Instead, a state that has already
been deduced by the Monitors during a normal operation
through the observed external messages is used for the
diagnostic process.

A low-level Monitor, called a Local Monitor (LM), directly
verifies a PE, whereas a higher level Monitor, called an
Intermediate Monitor (IM), matches rules that span multiple
LMs. The Monitor architecture is generic and applicable to a
large class of message passing-based distributed applica-
tions. It is the specification of the rule base that makes the
Monitor specialized for an application. The Monitors
coordinate to perform a distributed diagnosis if the verified
PEs lie under the verification domains of different Monitors.
We assume that failures may occur in the Monitor system as
well and use replication to mask them. We enforce a hybrid
failure model on the Monitors through an existing dis-
tributed security kernel—the Trusted Timely Computing
Base (TTCB) [12].

The Monitor system is implemented and deployed on
our university’s campuswide network. It is used to provide
detection and diagnosis functionality to a streaming video
application running over a reliable multicast application
called TRAM [9]. The latency and accuracy of diagnosis are
measured by using fault injection experiments. The Monitor
accuracy is found to decrease with an increasing data rate
using a pessimistic version of the matching algorithm. The
pessimistic version performs matching of all observed
messages at the Monitor and is targeted at environments
with high failure rates. In contrast, the optimistic version of
the protocol only performs matching when a failure is

detected. Switching to an optimistic version gives an
improved diagnosis accuracy of 85 percent at 175 Kbyte/
sec compared to 63 percent in the pessimistic case, but this
comes at the cost of higher diagnosis latency.

The paper makes the following contributions:

1. It provides a distributed protocol for an accurate
diagnosis of failures. The diagnosis protocol is
optimal among algorithms in its class, where the
class is defined by the amount of information used
by the diagnosis algorithm.

2. It maintains a useful abstraction of the observer and
the observed systems, with nonintrusive interactions
between the two.

3. Diagnosis can be achieved in the presence of
failures in the Monitor framework itself and of
error propagation across the entire payload system.

4. The system’s performance and fault tolerance are
demonstrated on a real-world third-party application.

The rest of the paper is organized as follows: Section 2
presents the diagnosis protocol for the PEs, assuming
failure-free Monitors. Section 3 deals with Monitor failures.
Section 4 presents the analysis of diagnosis accuracy.
Section 5 discusses the implementation, experiments, and
results. Section 6 reviews related work, and Section 7
concludes the paper.

2 DIAGNOSING FAILURES

This section details the diagnosis protocol that is executed
in the system to determine the cause of the failure. We
assume in this section that a diagnosis is performed by a
failure-free Monitor hierarchy verifying the PEs, but we
explain in Section 3 how a diagnosis is handled in case of
failures in Monitors.

2.1 System Model

The Monitor employs a stateful model for rule matching to
perform detection and diagnosis, implying that it maintains
the state that persists across messages. It contains a rule base
consisting of combinatorial rules (valid for all points in time
in the lifetime of the application) and/or temporal rules
(valid for limited time periods). The Monitor observes only
the external messages of the PEs. It can be placed anywhere
in the infrastructure but is typically not cohosted with the
PEs to avoid performance impact to the payload system.
The desire to have low latency of detection and diagnosis
suggests the placement of the Monitor in the vicinity of the
PEs. The Monitor architecture consists of the Data Capturer,
Rule Matching Engine, State Maintainer, Decision Maker, and,
finally, the Diagnosis Engine to perform diagnosis. The Data
Capturer snoops over the communication medium to obtain
messages. It can be implemented using active forwarding by
the PEs to the Monitor or by a passive snooping mechanism.
In passive snooping, the Monitor captures the communica-
tion over the channel without any cooperation from the PEs,
for example, through the promiscuous mode in a local area
network (LAN) or using router support. In the active
forwarding mode, the PEs (or an agent resident on the same
host) forward each message to the overseeing Monitor. The
message exchanges correspond to the events in the rule

KHANNA ET AL.: AUTOMATED RULE-BASED DIAGNOSIS THROUGH A DISTRIBUTED MONITOR SYSTEM 267

base of the Monitor. The Rule Matching engine is used to
match the incoming events with the rules in the rule base.
The State Maintainer maintains the state-transition diagram
(SD) and the current state of each verified PE. Finally, the
Decision Maker is responsible for making decisions based on
the outcome from the Rule Matching Engine. The Diagnosis
Engine is triggered when a failure is detected, and it uses
state information from the State Maintainer to make
diagnosis decisions. The previous Monitor architecture in
[4] has been extended to add the diagnosis functionality.

The system is comprised of multiple Monitors logically
organized into the LM, IM, and Global Monitor (GM). The
LMs directly verify the PEs. An IM collects information from
several LMs. An LM filters and sends only aggregate
information to the IM. There may be multiple levels of IMs,
depending on the number of PEs, their geographical
dispersion, and the capacity of the host on which an IM
executes. There is a single GM, which only verifies the overall
properties of the network. An example of the hierarchical
setup with a single level of IM used in our experiments is
shown in Fig. 3. The Monitor’s functionality of detection and
diagnosis is asynchronous to the protocol. Each Monitor
maintains a local logical clock (LC) for each PE that it is
verifying, which it updates at each observable event (send or
receive) for that PE (similar to the Lamport clock [37]).

We assume that PEs can exhibit arbitrary failures. The
Monitor is capable of handling a varied set of failures. These
encompass any fault, which manifests in a failure that
violates a rule in the rule base (described in Section 2.2.4).
Specifically, the three categories of failures are correctness
failures, violation of performance guarantees, and violation
of security guarantees. We do not handle collusion at the
PE nodes to prevent detection at the Monitor and coding
faults at the Monitor. Errors can propagate from one PE to
another through the messages that are exchanged between
them. Failures in the PEs are detected by the Monitor
infrastructure by comparing the observed message ex-
changes against the normal rule base, as opposed to the
strict rule base (SRB) used during diagnosis (Section 2.2.4).
An anomaly in the behavior of the PEs detected by flagging
of a rule triggers the diagnostic procedure. We assume that
jitter on PE !Monitor link is bounded by phase ð�tÞ. We
further explain in Section 2.2.2 the need for such an
assumption. It is important to note that this assumption is
weaker than a complete synchrony.

2.2 Diagnosis Protocol

Diagnosis in a distributed manner based on observing only
external message exchanges poses significant challenges. It
is essential to consider the phenomenon of propagated
errors to avoid penalizing a correct node, in which the
failure first manifested as a deviation from the normal
protocol behavior. As the Monitor has access only to
external message exchanges and not to the internal state,
the diagnosis must be based on these messages alone. In
other words, the Monitor does not have perfect observa-
bility of the payload system’s state. The PEs may lie within
the domains of different LMs. In such cases, the diagnosis is
a distributed effort spanning multiple Monitors at different
levels (Local, Intermediate, and Global). In order to identify
the faulty PE from among a set of suspect PEs, each PE is

subjected to a test procedure. Since the Monitor treats PEs as
blackboxes, it is thus unaware of the valid request response
for the protocol and cannot send any explicit test message to
the PEs. Moreover, the PE may not currently be in the same
state as the one in which the fault was triggered. A failure
manifested at the PE could be because of a fault that
originated at this PE or because of error propagation
through a message that the PE received. If the error is
propagated through a message, then it must causally
precede the message that resulted in failure detection.
Given that an entity emits message m2 on the receipt of
message m1, we define causality as m1 ! m2, which is the
same definition used in distributed checkpointing [44].

2.2.1 Causal Graph

The causal graph captures the causal relationship between
messages that are sent and received by PEs, as observed by
the Monitor. The causal graph is updated during the normal
operation of the protocol. A causal graph at a Monitor m is
denoted by CGm and is a graph (V, E), where 1) V contains
all the PEs verified by m and 2) an edge e contained in E
between vertices v1 and v2 (which represent PEs) indicates
the interaction between v1 and v2 and contains the state
about all observed message exchanges between the corre-
sponding PEs, including the LC at each end. We thus
establish a correspondence between a PE in the payload
system and a node in the causal graph. Henceforth, we use
the term “detect a node” to mean detecting a failure in the
PE corresponding to the node. The edges are directed and
are stored separately as incoming and outgoing with
respect to a given node. The edges shall be referred to as
links from now on. The links are also time-stamped with the
local (physical) time at the Monitor, at which the link is
created. An example of a causal graph is given in Fig. 1 for
the sequence of events described on the lower left corner.

For example in the Link Table for node C, message “4” is
assigned an LC time 3. Message m3 is causally preceded by
message m2, which is causally preceded by message m1.
The messages may be received in a different order at the
Monitor because of the asynchronous nature of links. The
causality that the Monitor infers is based on the local
ordering of messages, as seen by the Monitor observing the
messages.

268 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

Fig. 1. A sample causal graph.

The Monitor may overestimate the causality because if
an entity emits m2 after receiving m1, this does not imply
from the application’s perspective that m1 is dependent on
m2. However, this latter kind of causality can only be
determined by a middleware (such as the Monitor) with
application hints.

If, in some applications, this causality information is
known a priori, then one can employ user-input methods to
modify the causal graph. This view of causality follows the
general principles laid down in distributed systems [45],
[46], which agree that causality can be characterized using
vector time or Lamport time.

2.2.2 Cycle and Phase

In modern distributed protocols, with thousands of com-
municating PEs, testing all the causally preceding messages
is not feasible. We define a time window, over which the
diagnosis protocol tests nodes. This time window is called a
Protocol Cycle to differentiate it from a graph theoretic cycle
in the causal graph. The start point of the Protocol Cycle (see
Fig. 2) denotes how far the diagnosis algorithm should go in
history to detect faulty nodes. (Henceforth, if there is no
scope for confusion, we use the term cycle as shorthand for
protocol cycle.) Cycle boundaries can be decided by using
either the SD of the application or the error latency of the
application in actual physical time or logical time. First, we
present the definition by using the SD.

In the Monitor design, a transition from one state to the
next state depends solely on the current state and the event
that occurs in the current state. Let there be n PEs verified
by the Monitor infrastructure. A reduced SD is maintained
at the LM for every verified PEk, denoted SDk. Owing to
the reduced and finite nature of the SD, it can be assumed
that there are repetitions in the set of states traversed by a
PE over a long-enough time interval.

There could be several possible runs of different dura-
tions for a given PE, each corresponding to a complete task
(transaction) as defined in the protocol, for example, a
complete round of data and ACK exchange.

Let S1k denote the starting state of the PEk being verified.
At an arbitrary starting time t0, the states of the n PEs would
be ~Sinit ¼ fS11; S12; S13; . . . ; S1ng. We define protocol cycle as
the completion of all the possible runs starting from ~Sinit.
Each protocol cycle will encapsulate several graph cycles,
each of which includes the start state of the particular PE.
Finding a protocol cycle is NP-complete, since the known

NP-complete problem of finding the Hamiltonian cycle can
be reduced to it in polynomial time.

When a failure is detected in protocol cycle Ci, the
checking has to be done till the beginning of Ci�1 for a
deterministic bug. The model for the deterministic bug is
that if it manifests itself in state Sij on the receipt of event Ek

for PEi, then it must manifest itself every time PEi goes
through the same state and event. For a nondeterministic
Heisenbug, the determination may have to go back to
further cycle boundaries, since by definition, a nondetermi-
nistic bug may not manifest itself repeatedly under the
same conditions (same state and event). Alternate strategies
may be needed if the number of states to be examined
becomes too large through this approach. Then, we can use
the upper bound on the error detection latency in the
system (for example, as given through analysis in [22]) to
come up with the cycle boundary. If we can provide a
bound that any error in the application will manifest in
time �, we can limit the messages that need to be checked
for errors as being no farther back in (physical) time than �.
If proactive recovery measures such as periodic rebooting
[38] are used, then the time points at which the proactive
recovery is performed can be taken as cycle boundaries.
This is motivated by the claim that latent errors are
eliminated at the proactive recovery points.

Let us consider two links in the causal graph L that have
been time-stamped with logical times tL1 and tL2 by the
Monitor. Given tL2 > tL1, we cannot conclude anything
about the actual order of these events, since the system is
asynchronous. Instead of the synchrony assumption, con-
sider the following more relaxed assumption. Consider that
a Monitor M is verifying two PEs: sender S and receiver R.
The assumption required by the diagnosis protocol is that
the variation in the latency on the S �M channel as well as
the variation in the sum of the latency in the S �R and
R�M channels is going to be less than a constant �t, called
the phase, which is known a priori. If messages M1 and M2,
corresponding to the two send events at S, are received at
Monitor M1 at (logical) times t1 and t2, it is guaranteed that
send event M1 happened before M2 if tL2 � tL1 þ�t. This
assumption is weaker than the synchrony assumption
because it is not dependent on absolute delays on the links;
rather, it is dependent on the jitter on the two links. Also,

KHANNA ET AL.: AUTOMATED RULE-BASED DIAGNOSIS THROUGH A DISTRIBUTED MONITOR SYSTEM 269

Fig. 2. Sample SD for a PE P1: illustration of Protocol Cycle.

Fig. 3. Redundancy in the Monitor hierarchy.

the jitter requirement is in terms of logical time rather than
clock time, which is less stringent, since one tick of the LC
corresponds to multiple ticks of the physical clock.

2.2.3 Suspicion Set

Flagging of a rule corresponding to a PE represented by
node N in the causal graph indicates a failure F and starts
the diagnostic procedure. Henceforth, we will use the
expression “failure at node N” for a failure detected at the
PE corresponding to the causal graph node N . Diagnosis
starts at the node where the rule is initially flagged,
proceeding to other nodes suspected for the failure at
node N . All such nodes, along with the link information
(that is, the state and event type), form a Suspicion Set for
failure F at node N , denoted as SSFN.

The suspicion set of a node N consists of all the nodes
that have sent their messages in the past, denoted by SSN. If
a failure is detected at node N , then initially SSFN ¼ fSSNg.
Let SSN consist of nodes fn1; n2 . . . ; nkg. Each of the nodes in
SSFN is tested using a test procedure, which is discussed in
Section 2.2.4. If a node ni 2 SSFN is found to be fault-free,
then it is removed from the suspicion set, resulting in
contraction of the suspicion set. If none of the nodes is
found to be faulty, then in the next iteration, the suspicion
set for the failure F is expanded to include the suspicion set
of all the nodes that existed in SSN in the previous iteration.
Thus, in the next iteration, SSFN ¼ fSSn1

; SSn2
. . . ; SSnk

g.
Arriving at the set of nodes that have sent messages to N in
this time window is done from the causal graph. Consider
that the packet that triggered the diagnosis is sent by N at
time �S . Then, all the senders of all incoming links into
node N , with time stamp t satisfying C � t � �S þ�t, are
added to the suspicion list, where �t is the phase
parameter, and C is the cycle boundary. The procedure of
contracting and expanding the Suspicion Set repeats
recursively until the faulty node is identified, or the cycle
boundary is reached, thereby terminating the diagnosis.

2.2.4 Test Procedure

We define the test procedure for a PE to be a set of rules to
be matched based on the state of the PE, as maintained in
the causal graph. This set of rules constitutes the strict rule
base, and like the normal rule base, which is used for error
detection, this consists of temporal and combinatorial rules
for expected patterns of message exchanges. The SRB is
based on the intuition that a violation does not determinis-
tically lead to a violation of the protocol correctness and, in
many cases, gets masked. However, in the case of a fault
being manifested through the violation of a rule in the
normal rule base as a failure, a violation of a rule in the SRB
is regarded as a contributory factor. The strict rules are of
the form

< Type >< State1 >< Event1 >< Count1 >

< State2 >< Event2 >< Count2 >;

where ðState1; Event1; Count1Þ forms the precondition to be
matched, whereas ðState2; Event2; Count2Þ forms the post-
condition that should be satisfied for the node to be deemed
not faulty. The SRB of form < state S; event E; count C >
refers to the fact that the event E should have been detected

in the state S at least count C number of times. Note that a
PE may appear multiple times in the Suspicion Set, for
example, in different states, and may be checked multiple
times during the diagnostic procedure. Also, the tests are
run on the state maintained at the Monitor, without
involving the PE, thus satisfying the design goal of
nonintrusiveness. Model-based testing discusses several
methods of forming these rules automatically. The authors
in [42], [43] discuss mechanisms for automatic rule
derivations from formal models like the Unified Modeling
Language (UML). However, rules for verifying the QoS
constraints or vulnerabilities that need to be detected will be
specified by the administrator. Thus, rules can be framed
through a mix of automated and manual means.

When an SRB rule is used to test a given link li in the
causal graph, it uses as the phase as preconditions and
postconditions in the rule events over a logical window of
��t, which is measured from the logical time of li. This is
attributed to the assumption of jitter bound on the commu-
nication link, that is, that a message at the Monitor cannot
arrive out of order with respect to another message more
than �t away, which originated at the same PE. Each rule in
the SRB has some coverage to verify a particular PE because it
only tests a specific state and event. Therefore, a message
sent by an entity in the Suspicion Set must be tested by
running multiple rules from the SRB on it. The diagnosis is
therefore probabilistic according to the traditional definition
[19]. However the PEs are deterministically diagnosed as faulty
or correct. We develop an analytical model on these
assumptions in Section 4.

Like the normal rule base, the rules in the SRB are
dependent on the state and the event of the link, but the
number of rules is typically much larger than that in the
normal rule base. Hence, it is conceivable that the system
administrator would not tolerate the overhead of checking
against the SRB during a normal protocol operation. A new
diagnostic procedure is started for every rule that is flagged
at the Monitor. Multiple faults manifesting nearly concur-
rently would result in multiple rules being flagged, leading
to separate and independent diagnostic procedures for each
of them. These rule types may not be expressive enough to
cover all possible misbehavior in the PEs. Also, rules that
depend on the state being aggregated across multiple
messages may not be matched under periods of heavy data
rate when the Monitor may be overloaded.

2.2.5 Diagnosis Protocol: Flow

This section illustrates the flow of control of the diagnosis
protocol and the interactions in the Monitor infrastructure
to arrive at a correct diagnosis. We illustrate the set of steps
for a failure at a single PE. The protocol for distributed
diagnosis among the Monitors comes into play when a
suspect node identified by an LM lies outside its domain;
that is, the PE required to be tested is not verified by this
LM. The LM does not contain causal graph information for
the suspect node and, hence, requests the corresponding
LM verifying the suspect node to carry out the test (step 4):

1. A failure F at PE N is detected by the LM LMi

verifying it.

270 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

2. LMi constructs the suspicion set SSN for the failure
and adds it to SSFN.

3. For every N 0 2 SSN that belongs to the domain of
LM1, LM1 tests N 0 for correctness for the suspect
link L0 by using rules from the SRB for that
particular event and state. If N 0 is not faulty, then
it is removed from SSN, and SSN0 is added to the
SSFN queue.

4. For every N 00 belonging to SSN that is not under the
domain of LMi but is under the domain of another
Monitor LMj, LMi sends a test request for N 00 and
faulty link L00 recursively to higher level Monitors till
a common parent for LMi and LMj is found, which
routes it to LMj. LMj tests N 00 and sends the result of
the test back to LMi through the same route. If N 00 is
not faulty, then LMj also sends the suspicion set
corresponding to link L00 for N 00.

5. The diagnostic procedure repeats recursively till a
node is diagnosed as faulty or till the cycle boundary
is reached. In the first case, the node corresponding
to which the link is diagnosed as faulty due to
violation of rules in the SRB is considered to be
faulty. In the latter case, the diagnostic procedure
terminates unsuccessfully.

3 DIAGNOSIS IN THE PRESENCE OF FAULTY

MONITORS

An external fault-free “oracle” performing detection and
diagnosis, although desirable, is not realistic. In our frame-
work, the Monitors are also considered susceptible to faults.
The goal of this section is to show how the diagnosis of
faulty PEs can be carried out in the face of arbitrary failures
of the Monitors. We assume that Monitors are susceptible to
runtime failures (for example, due to synchronization
errors). In our design, faults in the Monitors are not
diagnosed but masked.

3.1 Faults at Local Monitors

If an LM is faulty, then it may exhibit an arbitrary behavior
by sending false alarms to higher level Monitors or may drop
a valid alarm. In such scenarios, an LM cannot be allowed to
perform the diagnostic procedure. We use replication to
mask failures at the LMs by allowing multiple LMs to verify
a PE. Assuming that there can be failures on up to f LMs,
each PE is verified by 2f þ 1 LMs, called the Collaborative
LM Set (denoted CSLM). An IM can accept that there is an
error in the PE being monitored if it receives f þ 1 identical
alarms from the LMs in a CSLM. Note that if there is a set of
entities (the LMs) whose responses are “voted on” by a fault-
free “oracle” (the IM), then only 2f þ 1 entities are required
under the Byzantine fault model. The communication
between LMs and IMs is authenticated to avoid multiple
alarms being sent by the same LM. Although all the LMs in
the CSLM verify the same PE, they are spatially disjoint,
leading to possibly different views of the state of the PE.

However, for our system, we need to have all correct
LMs in a CSLM agree on the failure alarms that they send to
the IM. Another requirement is defining an order among
the alarms sent out by the LMs in a CSLM. The solution to
both issues is based on an atomic-order or total-order multicast
protocol (see the definition in [10]).

This problem is known to be equivalent to consensus
[15], which requires a minimum of 3f þ 1 process replicas
to be solvable in asynchronous systems with Byzantine
faults [11]. We reduce this number of LM replicas to 2f þ 1
by using an existing method called the architectural-hybrid
fault model [14] (Section 3.3.1).

The algorithm used by the LMs in a CSLM to agree in an
alarm is the following. When the Monitor is initialized, each
LM starts a counter with 0. When a rule in an LM raises an
alarm, it atomically multicasts that alarm to all LMs in CSLM

(including itself). When the atomic multicast delivers an LM
the ðf þ 1Þth copy of the same alarm sent by different LMs in
CSLM, it gives that alarm the number indicated by the
counter, increases the counter, and sends the message to the
IM. It guarantees that all correct LMs agree on the same
alarms with a unique order number, ensuring an atomic
order. Therefore, the algorithm guarantees that an IM
receives identical alarms from all correct LMs verifying a PE.

3.1.1 TTCB and Architectural-Hybrid Fault Model

In this paper, we use the architectural-hybrid fault model
provided by a distributed security kernel called the TTCB.
The notion of architectural-hybrid fault model is simple: We
assume different fault models for different parts of the
system. Specifically, we assume not only that most of the
system can fail arbitrarily or in a Byzantine manner but also
that there is a distributed security kernel in the system (the
TTCB) that can only fail by crashing [12]. The TTCB can be
considered a “hard-core” component that provides a small
set of secure services such as a Byzantine-resilient con-
sensus to a collection of external entities like the LMs. These
entities communicate in a world full of threats, and some of
them may even be malicious and try to cheat, but the TTCB
is an “oracle” that correct entities can trust and use for the
efficient execution of their protocol.

The design and implementation of the TTCB was
discussed at length in [13] and, here, we give a brief
overview relevant to its application in the Monitor system.

The local TTCB components are connected using a
dedicated channel (Fig. 4). The local TTCBs can be protected
by being inside some kind of software secure compartment
or hardware appliance like a security coprocessor. The
security of the control channel can be guaranteed using a
private LAN.

3.1.2 Atomic Multicast Protocol

The atomic multicast primitive provides the following
properties: 1) All correct recipients deliver the same
messages. 2) If the sender is correct, then the correct
recipients deliver the sender’s message. 3) All messages are

KHANNA ET AL.: AUTOMATED RULE-BASED DIAGNOSIS THROUGH A DISTRIBUTED MONITOR SYSTEM 271

Fig. 4. Architecture of n hosts with a TTCB.

delivered in the same order by all correct recipients. The
Byzantine-resilient atomic multicast that is tolerant to f out
of 2f þ 1 faulty replicas is presented in detail in [14]. Here,
we describe briefly how it is applied to the Monitor system.
Notice that only the nodes with LMs need to have a local
TTCB, not the nodes with IMs or the GM. The reason is that
the local TTCBs at the different entities need to be
connected through a dedicated control channel. Although
it may be feasible to connect the LMs monitoring a specific
PE cluster, which are likely to be geographically closely
placed, through such a control channel, it is unwieldy for
IMs that are unlikely to have geographical proximity.

The core of the solution that we use is one of the simple
services provided by the TTCB, that is, the Trusted Multicast
Ordering (TMO) [12]. Being a TTCB service, its code lies
inside the local TTCBs, and its communication goes in the
TTCB control channel. When an LM wants to atomically
multicast a message M, it gives the TMO a hash of M
obtained using a cryptographic hash function, for example,
SHA-2. When an LM receives a message M, it also gives the
TMO a hash of the message. Notice that the messages are
sent through the normal payload network, that is, outside
the TTCB. However, these channels guarantee the authen-
ticity and integrity of the messages. These channels could be
implemented using the Secure Sockets Layer (SSL) or
Transport Layer Security (TLS). Finally, when the TTCB
has information that f LMs received M, it gives M and all
LMs in CSLM the next order number.

3.2 Faults at the Intermediate Monitors

Next, we augment the model to allow IM failures by having
a redundant number of IMs. To tolerate f 0 faults at the
IM level, at least 2f 0 þ 1 IM replicas must be used.
Therefore, all LMs in a Collaborative LM Set ðCSLMÞ send
alarms to all IMs in a Collaborative IM Set, denoted by
CSIM. The output of replicas is voted on by a simple voter
(GM in our case). The simplicity of the GM and the fact that
it is not distributed makes it reasonable to assume that
efforts can reasonably be made to make it fault free. Secure
coding methodologies, which are based on a formal
verification and static code analysis, can be used to build
a fault-free GM. The possibility of faults in Monitors forces
an LM in CSLM to accept a test request only if it receives
f þ 1 identical test requests from Monitors in CSIM. An
alternative design choice would be to control the entire
diagnosis protocol from the lower level (failure prone)
Monitors through the use of consensus. This was consid-
ered to have unacceptable overhead in a number of
messages and rounds for consensus, which would be
required for every member of the suspicion set. Also, if
the suspicion set spans boundaries of the LM, IMs would
anyway be needed for distributed diagnosis.

3.3 Flow of Control of Diagnosis with Failing
Monitors

Assume that CSIM initiates the diagnosis:

1. Failure F at PE N is detected by the CSLM verifying
it, which constructs the suspicion set SSN and adds it
to SSFN.

2. The LMs assign an order to the alarm by using the
atomic multicast protocol and send an alarm, along
with SSFN, up to all the IMs in CSIM.

3. The IMs wait for f þ 1 identical alarms and then
start the diagnostic procedure.

4. For every N 0 2 SSFN, the (correct) IMs in a CSIM send
a test request to the CSLM to verify N 0.

5. Each LM 2 CSLM that receives f þ 1 identical test
requests from IMs in CSIM tests N 0 for the correct-
ness of the suspect link L0 by using the SRB.

6. The test results are sent above to the IMs in CSIM,
who vote on the f þ 1 identical responses to decide if
N 0 is faulty. If N 0 is not faulty, then it is removed
from SSN, and SSN0 is added to SSFN.

7. If a PE N 00 lies outside the verification domain of the
IMs in CSIM, then a test requests for N 00, and faulty
link L00 is sent recursively to higher level Monitors,
which send the request down the tree to the relevant
set of LMs verifying N 00. The result of the test is sent
back to the IMs through the same route. If N 00 is not
faulty, then the corresponding suspicion set is also
sent along.

8. The diagnostic procedure repeats recursively until a
node is diagnosed as faulty or until the cycle
boundary is reached.

4 ANALYSIS OF DIAGNOSIS ACCURACY

For easier understanding and comparison, we follow a
similar notation to that in [23]. Consider a k-regular
directed graph, with a node representing a PE and an
edge representing the message exchange between the PEs.
A node is faulty with probability �. An error can propagate
through a message sent by the node with probability �,
given that the node is faulty. The probability of error
propagation through the message is ��. An error in the
node can be caused by a fault in the node or due to an
error propagated through one of the incoming links. A test
executed on the node has a fault detection coverage ci if
the node ni is faulty (that is, the probability of detecting a
faulty node is ci) and a coverage di if the node has an error
that has propagated from some incoming links. For an
ideal test, ci ¼ 1, and di ¼ 1. Let c and d be the average
values for the detection coverage for the fault and
propagated error over all nodes. Let the number of tests
from the SRB performed on the node be T and the total
number of nodes be N . Each test yields an output
O 2 f0; 1g, where an output 0 means that the node passes
the test, and output 1 means that it fails the test. Assume
that a node is determined to be faulty if there are z or more
ones in the total number of tests z 2 ð0; T Þ. Let � be the
event that a node is faulty and �0 be the complement event.
Based on the model

A ¼ Probðtest ¼ 1j�Þ ¼ c; ð1Þ

B ¼ Probðtest ¼ 1j�0Þ ¼ dð1� ð1� ��ÞkÞ; ð2Þ

Probðz� onesj�Þ ¼ CðT; zÞAz ð1�AÞT�z

ðwhere C is the binomial coefficientÞ;
ð3Þ

Probðz� onesj�0Þ ¼ CðT; zÞBz ð1�BÞT�z: ð4Þ

272 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

One figure of merit for the diagnostic process is the
probability of detecting the original faulty node causing the
failure. The posterior probability is given by

Probð�jz� onesÞ ¼ Probðz� onesj�Þ:
Probð�Þ=Probðz� onesÞ;

where Probðz� onesÞ is given by ð3Þ:�þ ð4Þ:ð1� �Þ using
the total probability formula:

¼ � CðT; zÞ Azð1�AÞT�z

� CðT; zÞ Azð1�AÞT�z þ ð1� �Þ CðT; zÞ Bzð1�BÞT�z

¼ 1

1þ ð1��Þ
�

B
A

� �z 1�B
1�A
� �T�z :

ð5Þ

Equation (5) matches with the one derived by Fussel and
Rangarajan (FR) [19], with the following mapping: R
(number of rounds) there maps to T here, since in each
round of the FR algorithm, the same test is performed.

Now, consider B from (2):

B ¼ dð1� ð1� ��ÞkÞ;

taking the number of messages to be very large, we can
assume that k!1 reduces to dð1� ek��Þ because ��! 0.
We can rewrite (5) as

Probð�jz� onesÞ ¼ 1=1þ FðzÞ;
where FðzÞ ¼ ðð1� �Þ=�Þ:ðB=AÞz:ðð1� BÞ=ð1�AÞÞT�z:

We claim that (5) is a monotonically increasing function
of z. Note that A and B 2 ð0; 1Þ. Also, for realistic
situations, the probability of a node being faulty is much
greater than the probability of a propagated error affecting
a node (this is a common assumption in the fault tolerance
literature [7], [25]). Any reasonable diagnosis test should
be able to distinguish between a node being the originator
of a fault (high probability of � ¼ 1) and one that is the
victim of a propagated error (low probability of � ¼ 1).
Therefore, A > B. Let us represent FðzÞ as k�z�T�z. For
A > B, � < 1, and � > 1 and, therefore, Probð�jz� onesÞ
increases with z. This can also be proved through showing
dðProbð�jz� onesÞÞ=dz > 0. This implies that the higher
the value of z for a fixed T , the greater the confidence in
the diagnostic process. In other words, the diagnostic
process is well behaved as per the definition in [23].

Theorem. The diagnosis algorithm provides an asymptotically
correct diagnosis for N !1 for k � 2 and T � 	ðNÞlogðNÞ,
where 	ðNÞ ! 1 arbitrarily slowly as N !1. It is also
optimal in the diagnosis accuracy among the diagnosis
algorithms in its class.

Proof. We observe that the posterior probability given by (5)
matches the posterior probability of the FR algorithm
[19]. Further, it is proved in [19] that a diagnosis
algorithm that produces this form of posterior prob-
ability is asymptotically optimal if T is chosen at least as
large as 	ðNÞlogðNÞ, where 	ðNÞ grows arbitrarily
slowly as compared to N . Note that tests T can grow
sublinearly compared to the number of nodes to satisfy
the condition. Thus, if we increase the number of nodes

by � such that each additional node is similar in nature
to one of the existing N nodes, then tests from the
existing rule base can be used on the new nodes. For
example, scaling the system by increasing the number of
receivers would meet this condition. If such a mechan-
ism is followed, then, trivially, the total number of tests
grows linearly with the number of nodes and would
satisfy the theorem. This property is true for the largest
class of distributed applications. There are a small
number of distinct types of entities, and for large
deployments, the number of entities of a kind increases.
Thus, having T grow linearly with N is simply a case of
performing the tests on the new entities. Note that the
test results are still independent, assuming independent
PE failures.

Our algorithm falls in the 3AM (m-threshold local

diagnosis) category, as defined in [23], since 1) all testing

are done with local knowledge and 2) a threshold

number of tests needs to fail for an entity to be diagnosed

as faulty. Hence, the algorithm tends to perfect the

behavior asymptotically when k � 2, and T grows as

	ðNÞlogðNÞ. Note that our diagnosis algorithm is also

asymptotically correct for the asymptotic behavior of T ,

which is independent of N , since (5) lim
T!1

lim
z!T

Probð�jz�
onesÞ approaches 1. Equation (5) is an increasing

function of z. Hence, we find the value z ¼ zth, which

provides Probð�jz� onesÞ ¼ 0:5, and set the algorithm to

conclude that the node is faulty if z > zth and nonfaulty

otherwise. Equating (5) to 0.5 and simplifying, we get

zth ¼
logð1��� Þ

log Að1�BÞ
ð1�AÞB

� �þ T logð1�B1�AÞ
log Að1�BÞ

ð1�AÞB

� � :

Therefore, using the property of Probð�jz� onesÞ being
an increasing function of z and [39, Theorem 1], we
conclude that our diagnosis algorithm is optimal in its
class 3AM. It is important to note that although the
models considered in [19] and in this paper are
completely different, the equations for a posteriori
probability have the same form, making our diagnosis
algorithm optimal. tu

5 IMPLEMENTATION, EXPERIMENTS, AND RESULTS

The diagnosis protocol implementation is demonstrated by
running a streaming video application on top of TRAM.
TRAM is a tree-based reliable multicast protocol consisting
of a single sender, multiple repair heads (RHs), and
receivers [9]. Data is multicast by the sender to the
receivers, with RH(s) being responsible for local repairs of
lost packets. An ACK message is sent by a receiver after
every ACK window worth of packets has been received, or
an ACK interval timer goes off. The RHs aggregate ACKs
from all its members and send an aggregate ACK up to the
higher level to avoid the problem of ACK implosion.
During the start of the session, beacon packets are sent by the
sender to advertise the session and to invite receivers.
Receivers join by using head bind (HB) messages and are

KHANNA ET AL.: AUTOMATED RULE-BASED DIAGNOSIS THROUGH A DISTRIBUTED MONITOR SYSTEM 273

accepted using head acknowledge (HA) messages from the
sender or an RH. TRAM entities periodically exchange hello
messages to detect failures. The Monitor is given the SRB,
along with the STD and the normal rule base, as input. An
example of a temporal rule in the normal rule base is that
the number of data packets observed during a time period
of 5,000 ms should be between 30 and 500. The thresholds
are calculated using the maximum and minimum data rates
required by TRAM, as specified by the user. Another
example is that there should not be two HB messages sent
by a receiver within 500 ms during the data receiving state,
as the receiver could be malicious and be frequently
switching RHs. An example of a strict rule used in our
experiments for the sender is SR: HI S2 E11 1 S2 E9 1. Here,
SR stands for a strict rule (as opposed to normal rule base
rules used for detection), with HI denoting the hybrid
incoming rule. It signifies that the precondition event is
incoming, and the post condition event is outgoing. If in
state S2, the receiver has received a data packet (E11), say,
with link ID as d, then there must be an ACK packet (E9)
within the phase interval around d. This rule ensures that
the receiver sends an ACK packet upon receiving data
packet(s). Another SRB rule bounds the hello to be only sent
when an entity is in the data-transmission-reception state to
prevent a malicious receiver from hello flooding. In our
experiments, the number of SRB rules to test a link varied
from 4 to 8, depending on the state of the link.

5.1 Optimistic and Pessimistic Link Building

There are two approaches to building the causal graph at
the Monitor based on the observed messages. Each
incoming (outgoing) message to (from) a node is stored in
a vector of incoming (outgoing) links for that node. A link
ID (logical time stamp) is assigned to the link, along with
the physical time, state, and event type. A link contains two
IDs: one is for the node that sent it, and another for the
receiving node. For this link to be completed in the causal
graph, a matching is required between the sending and the
receiving PEs’ messages. The link A! B will be matched
once the message sent by A and the corresponding one
received by B are seen at the Monitor. Matching all the
incoming packets during runtime is referred to as the
pessimistic approach, and this entails an enormous overhead.
This approach results in low diagnosis latency but also
results in some links not being matched at runtime due to
an overload at the Monitor. This causes a drop in the
accuracy of the diagnosis protocol.

Note that the matched links are not used if a failure is not
detected in the same cycle. This is leveraged in the optimistic
approach. In this approach, at runtime, the Monitor simply
stores the link in the causal graph and marks it as being
unmatched. Link matching is performed when the diag-
nosis is triggered on failure. This results in less overhead at
the Monitor but high storage overhead and diagnosis
latency. We perform experiments to give a comparative
evaluation of the optimistic and the pessimistic approaches.

5.2 Fault Model and Fault Injection

For exercising the diagnosis protocol, we perform fault
injection in the header of the TRAM packets transmitted by
the sender. It must be noted that the faults are considered

to be accidental faults. Malicious nodes launching deliber-
ate attacks on the system are beyond the scope of this
paper. The Monitor inspects only the header and is not
aware of the payload. Hence, the faults are only injected
into the packet header. The fault is injected by changing bits
in the header after the PE has sent the message. Note that
the emulated faults are not simply message errors but are
also symptomatic of faults in the protocol itself. For
example, a faulty receiver may send a NACK instead of
an ACK upon successfully receiving a data packet. Errors
in message transmission can indeed be detected by a
checksum that is computed on the header. However, the
Monitor is responsible for detecting and diagnosing errors
in the protocol itself, which are clearly outside the purview
of the checksum. As explained previously, the faults at the
Monitor level are masked through replication. The strict
rules are used to diagnose the faults, with each rule having
some coverage. We use the following kinds of injections for
a burst length period of time:

. Stuck-At injection (SA). For all packets in the burst
length, a randomly selected header field value is
changed to a random but valid value. This kind of
injection mimics multiple protocol errors, where
because of a software bug or misconfiguration, a PE
sends incorrect packets repeatedly. An important
class of security errors that this injection mimics is
flooding of packets (like the SYN packet in the TCP
SYN attack) instead of protocol-legitimate packets.

. Directed injection (Dir). For each packet, a specific
header field is chosen for one experiment and
changed to a random but valid value, with different
values in different runs.

. Specific injection (Spec). Specs consist of specific
protocol errors like slow data rate, dropping ACKs,
and hello message flooding. Burst error is chosen as
the fault model over a single error, since the protocol
is robust enough that single errors are almost always
tolerated by built-in mechanisms in the protocol.

5.3 Test Setup and Topology

Fig. 5b illustrates the topology used for the accuracy and the
latency experiments on TRAM, with the components
distributed over the campus network (henceforth called
TRAM-D), whereas Fig. 5a shows the topology for the local
deployment of TRAM (TRAM-L). TRAM-D is important,
since a real deployment will likely have receivers that are
distant from the sender. TRAM-L lets us control the
environment and therefore run a more extensive set of
tests (for example, with a large range of data rates). The PEs
and the LMs are capable of failing, whereas we assume for
these experiments that the IMs and the GM are fault free.
The sender, the receivers, and the RHs do active forwarding
of the packet to the respective LMs. The minimum data rate
in TRAM needed to support the quality of the video
application is set at 25 Kilobits per second (Kbps). The
Monitors are on the same LAN, which is different from the
LAN on which the PEs are located. The routers are
interconnected through links of 1 gigabit per second (Gbps),
and each cluster machine is connected to a router through a
link of 100 megabits per second (Mbps).

274 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

5.4 Accuracy and Latency Results for TRAM-L

We measure the accuracy and latency for the diagnosis
algorithm on the TRAM protocol through fault injection in
the header of sender packets.

Although Fig. 5a depicts multiple receivers and our
experiment indeed uses multiple receivers, we monitor (or
collect data) for a single receiver receiving packets from an
RH, which is connected to the sender. Accuracy is defined
as the ratio of the number of correct diagnosis to the total
number of diagnosis protocol execution. This definition
eliminates any detection inaccuracy from the diagnosis
performance. The diagnosis accuracy decreases if the
algorithm terminates without diagnosing any node as
faulty (incomplete) or if it flags a correct node to be faulty
(incorrect). Latency is defined as the time elapsed between
the initiation of diagnosis and diagnosing a node as being
faulty, either correctly or incorrectly, or an incomplete
termination of the algorithm. We perform experiments with
both the optimistic and the pessimistic approaches of link
building. There are thus two dimensions to the experi-
ments: the link building approach (abbreviated as Opt and
Pes) and the fault injection strategy (SA for Stuck-at, Dir for
Directed, and Spec for Specific). In the interest of space, a
representative sample of results is shown. The results are
plotted for Opt-SA, Opt-Dir, and Pes-Dir, with a fixed burst
length of 300 ms for each injected fault. The interpacket
delay is varied to achieve the desired increase in the data
rate. Delay d is inserted using a Gaussian random variable
with mean d and standard deviation 0:01d. Each point is

averaged over four injections and 20-58 diagnosis instances,
depending on the number of detections, which, in turn,
depends on the rate of incoming faulty packets.

Fig. 6a shows that for Pes-Dir, the accuracy is a
monotonically decreasing function with data rate. The
diagnosis accuracy drops to as low as 33 percent for data
rate at 355 Kbytes/sec. A rate mismatch between the
matching of links for causal graph creation (slower process)
and the arrival of packets at high data rates (faster process)
causes this decrease. The lack of adequate buffer causes
packet drops, leading to missing links in the causal graph,
which leads to a drop in accuracy. Another factor is the lack
of synchronization between the causal graph formation
process and the suspicion set creation and testing process.
Thus, the latter may be triggered before the former
completes, leading to inaccuracies.

For Opt-Dir, the accuracy is high for a small data rate but
decreases with the increase in data rate. Unlike Pes-Dir,
here, the accuracy does not drop below 80 percent. The link
matching and the causal graph completion are triggered
when the diagnosis starts, and the diagnosis algorithm tests
the links only after the causal graph is complete, resulting
in a higher accuracy compared to Pes-Dir. This advantage
becomes significant at high data rates. Also, beyond a
threshold, further increasing the data rate does not affect
the latency because the number of incorrect packets
increases, which helps the diagnosis because the current
algorithm stops as soon as a single faulty link is identified.
The accuracy of Opt-SA is slightly lower than that of Opt-
Dir, since in the former, the same message type is injected
for the entire burst. If a rule for the message type does not
exist in the SRB, the diagnosis is incomplete.

Fig. 6b shows the scalability results, where the latency
and accuracy of diagnosis is observed over an increasing
number of receivers. We employ the TRAM-L topology
depicted in Fig. 5a, with each receiver receiving data at
40 Kbytes/sec. Thus, the total incoming rate for each
receiver at the Monitor is 80 Kbytes/sec, taking both sender
and receiver. We can observe that at 40 receivers, the
Monitor system gets overwhelmed, causing the latency to
increase and the accuracy to drop. The load on the system is
CPU intensive, composed of detection and diagnosis, which
are being constantly performed on the incoming messages
and forming the causal graph, which is performed when
diagnosis is done. Beyond the breaking point, the excessive

KHANNA ET AL.: AUTOMATED RULE-BASED DIAGNOSIS THROUGH A DISTRIBUTED MONITOR SYSTEM 275

Fig. 5. Topology used for accuracy and latency experiments in

(a) TRAM-L and (b) TRAM-D.

Fig. 6. (a) Variation of diagnosis accuracy with data rate of sender. (b) Latency and accuracy, with an increasing number of receivers.

load on the Monitor system causes several diagnoses to be
incomplete, leading to a drop in accuracy. Diagnosis
instances can be incomplete because of either the IM or
the LM being overloaded. If an LM is overloaded, then it is
likely that the CG is incomplete, leading to an inaccurate SS,
which causes the diagnosis to fail. If an IM is overloaded,
then it may drop incoming messages containing the SS from
the LMs, leading to incomplete diagnosis.

Fig. 7a graphs the latency of diagnosis with an increasing
data rate. Notice the significantly higher latency for the
optimistic case compared to the pessimistic one. We can see
that for the Pes-Dir case, the latency increases with the data
rate, which is expected because there are more packets to be
tested by each rule in the SRB. The latency tends to saturate
at high data rates because of an incomplete causal graph,
which leads to an inaccurate early termination. On the other
hand, in the Opt-Dir scenario, the latency keeps increasing
with the data rate because of the lazy link matching.

Effect of burst length. We study the impact of burst
length on the diagnosis accuracy. We keep the data rate
low, that is, at 15 KBytes/sec, to isolate the effects due to
high data rate. The diagnosis, as shown in Fig. 7, is accurate
for low and high values of burst length. For a small burst
length, a small number of incorrect packets get injected,
leading to low entropy in the payload system, which is easy
to detect. As the burst length increases, more incorrect
packets are received by the Monitor, which increases the
entropy and, hence, decreases the accuracy. Beyond a

certain burst length, more incorrect packets come in,
helping in the diagnosis. A more “systems-level” explana-
tion for the increasing part of the curve on the right side is
that as the burst length increases, the proportion of SRB
rules that match across the boundary of the burst length
decreases. These are the SRB rules that are likely to lead to
incorrect diagnosis, since they are dealing with a mix of
correct and incorrect packets.

5.5 Accuracy and Latency Results for TRAM-D

In this set of experiments, we measure the accuracy and
latency of the pessimistic approach of the diagnosis protocol
on TRAM while performing specific fault injection, namely,
reducing the data rate from the sender. The latency and
accuracy values are averaged over 200 diagnosis instances
for each data rate. Fig. 8a shows that the accuracy of
diagnosis drops from a high of 98 percent at 15 Kbytes/sec to
91 percent for 50 Kytes/sec. As the data rate increases, the
creation of links in the causal graph gets delayed, as
incoming packets are pushed off to a buffer for subsequent
matching.

If a diagnosis is triggered, which needs to follow one of
the missing links, it results in an incomplete diagnosis,
leading to a drop in the accuracy. Fig. 8b shows the latency
of diagnosis with an increasing data rate. Intuitively, when
the data rate increases, increasing the load on the Monitor
should cause the latency to increase. However, the data rate
used is low enough that it has no significant effect.

276 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

Fig. 7. (a) Variation of latency with data rate. (b) Diagnosis accuracy with burst length for optimistic and pessimistic approaches.

Fig. 8. (a) Diagnosis accuracy and (b) latency variation with increasing data rate of sender in TRAM-D.

6 RELATED WORK

Different problem. Prior to diagnosis is detection of
failures, whether accidental or malicious. There is a
plethora of work on failure detection using heartbeats,
watchdogs, and Intrusion Detection Systems (IDSs). They
differ in the level of intrusiveness with respect to the
application entities. Interestingly, the automated response
mechanisms associated with many detectors take local
responses, assuming that the detection site is the origin of
the fault, with no error propagation. This is clearly a leap of
faith, as has been shown repeatedly (see [25], [26]). King
and Chen proposed building a dependency graph by using
logs at the operating system level to track intrusions [40].
This can be looked upon as an alternative way of extracting
causal information, which can be incorporated in the
Monitor’s Causal Graph formation. An extensive hierarch-
ical framework to provide a data management system was
proposed through Astrolabe [41]. Renesse et al. provide a
dynamic data management system, which is used to
maintain aggregate management information base (MIB)
information about the underlying system. This is primarily
a data management framework, where this collected data
could be used for various purposes, including system
monitoring. System monitoring has been proposed by
several researchers. Our contribution is not in system
monitoring, instead in using the monitoring for a distrib-
uted diagnosis. In that sense, an existing monitoring
technique, if it can work with blackbox participants, can
be adapted to work with the Monitor framework.

Different approaches to the same problem. Diagnosis in
distributed systems has been an important problem area and
was first addressed in a seminal paper by Preparata et al.
[17], known as the Preparate-Metze-Chien (PMC) method.
The PMC approach, along with several other deterministic
models [8], assumes tests to be perfect and mandates that
each entity be tested a fixed number of times. The fault
model assumed is often restrictive such as permanent
failures [21]. Probabilistic diagnosis was first introduced in
[18]. Probabilistic diagnosis can only diagnose faulty nodes
with a high probability but can relax assumptions about the
nature of the fault (intermittent faulty nodes can be
diagnosed) and the structure of the testing graph. Follow-
up work focused on multiple syndrome testing [19], where
multiple syndromes were generated for the same node
proceeding in multiple lock steps. Both use the comparison-
based testing approach, whereby a test workload is executed
by multiple nodes, and a difference indicates suspicion of
failure. More recently, Duarte and Nanya [30] propose a
fully distributed algorithm that allows every fault-free node
to achieve diagnosis in, at most, ðlog NÞ2 testing rounds. All
of these approaches are fundamentally different from ours,
since the tested and the testing systems are the same, and the
explicit tests for diagnosis make the process intrusive to the
tested entity.

Similar approach to a different problem. There has been
considerable work on diagnosing performance problems in
distributed systems. They can be classified into active
probing or perturbation and passive monitoring ap-
proaches. In the first class, in [27], [28], the authors use,
respectively, fault injection and forcible locks on shared
objects to determine the location of performance bottle-
necks. The second approach uses execution traces for

blackbox applications and has similarities to the Monitor
approach (see [29], [31], [32]). For example, in [29], the
debugging system performs an analysis of message traces to
determine the causes of long latencies. However, in all of
these work, the goal is not the diagnosis of faults but the
deduction of dependencies in distributed systems, which
may enable humans to debug performance problems. These
may be regarded as point solutions in the broader class of
diagnosis problems.

TTCB. There is an abundance of work on consensus. The
consensus has been applied to various kinds of environ-
ments, with different timing assumptions and types of
failures ranging from crash to arbitrary (see [20] for a
survey). Our approach of using TTCBs on the Monitor
replicas for atomic multicast is derived from the work in
[13], [14], which showed how consensus can be achieved in
a hybrid failure and communication model system.

7 CONCLUSIONS

We have presented a Monitor system for a distributed
diagnosis of failures in the PEs in a distributed application.
The overall system is structured as a payload system and a
Monitor system, each of which may fail in arbitrary ways.
The demonstration is given for a streaming video applica-
tion running on top of a reliable multicast protocol called
TRAM. The hierarchical Monitor system is shown to be able
to perform diagnosis in the presence of error propagation
and using cooperation between the individual Monitor
elements. The diagnosis accuracy is higher than 90 percent
for the streaming video application under a large range of
scenarios. Next, we plan to explore the cooperative testing
by multiple Monitors, testing in the face of uncertain
information, and effect of placement of the Monitors.

ACKNOWLEDGMENTS

This material is based upon work partially supported by the
Purdue Research Foundation. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the Purdue Research Foundation.

REFERENCES

[1] META Group, “Quantifying Performance Loss: IT Performance
Eng. and Measurement Strategies,” http://www.metagroup.
com/cgi-bin/inetcgi/jsp/displayArticle.do?oid=18750, 2000.

[2] Costs of Computer Downtime to American Businesses, FIND/
SVP, 1993.

[3] G. Khanna, J. Rogers, and S. Bagchi, “Failure Handling in a
Reliable Multicast Protocol for Improving Buffer Utilization and
Accommodating Heterogeneous Receivers,” Proc. 10th IEEE Pacific
Rim Dependable Computing Conf. (PRDC ’04), pp. 15-24, 2004.

[4] G. Khanna, P. Varadharajan, and S. Bagchi, “Self-Checking
Network Protocols: A Monitor-Based Approach,” Proc. 23rd IEEE
Symp. Reliable Distributed Systems (SRDS ’04), pp. 18-30, 2004.

[5] M. Diaz, G. Juanole, and J.-P. Courtiat, “Observer—A Concept for
Formal On-Line Validation of Distributed Systems,” IEEE Trans.
Software Eng., vol. 20, no. 12, pp. 900-913, Dec. 1994.

[6] M. Zulkernine and R.E. Seviora, “A Compositional Approach to
Monitoring Distributed Systems,” IEEE Dependable Systems and
Networks, pp. 763-772, 2002.

[7] S. Bagchi, Y. Liu, Z. Kalbarczyk, R.K. Iyer, Y. Levendel, and L.
Votta, “A Framework for Database Audit and Control Flow
Checking for a Wireless Telephone Network Controller,” Proc.
Int’l Conf. Dependable Systems and Networks (DSN ’01), pp. 225-234,
2001.

KHANNA ET AL.: AUTOMATED RULE-BASED DIAGNOSIS THROUGH A DISTRIBUTED MONITOR SYSTEM 277

[8] R. Buskens and R. Bianchini Jr., “Distributed On-Line Diagnosis in
the Presence of Arbitrary Faults,” Proc. 23rd Int’l Symp. Fault-
Tolerant Computing (FTCS ’93), 1993.

[9] D.M. Chiu, M. Kadansky, J. Provino, J. Wesley, H. Bischof, and H.
Zhu, “A Congestion Control Algorithm for Tree-Based Reliable
Multicast Protocols,” Proc. IEEE INFOCOM ’02, pp. 1209-1217,
2002.

[10] T. Chandra and S. Toueg, “Unreliable Failure Detectors for
Reliable Distributed Systems,” J. ACM, vol. 43, no. 2, pp. 225-
267, 1996.

[11] G. Bracha and S. Toueg, “Asynchronous Consensus and Broadcast
Protocols,” J. ACM, vol. 32, no. 4, pp. 824-840, 1985.

[12] M. Correia, N.F. Neves, and P. Verı́ssimo, “How to Tolerate Half
Less One Byzantine Nodes in Practical Distributed Systems,” Proc.
23rd Int’l Symp. Reliable and Distributed Systems (SRDS ’04), pp. 174-
183, 2004.

[13] M. Correia, N.F. Neves, and P. Verı́ssimo, “The Design of a COTS
Real-Time Distributed Security Kernel,” Proc. Fourth European
Dependable Computing Conf. (EDCC ’02), pp. 234-252, 2002.

[14] M. Correia, N.F. Neves, L.C. Lung, and P. Verı́ssimo, “Low
Complexity Byzantine-Resilient Consensus,” Distributed Comput-
ing, vol. 17, no. 3, pp. 237-249, 2005.

[15] A. Mostefaoui, M. Raynal, and C. Travers, “Crash-Resilient Time-
Free Eventual Leadership,” Proc. 23rd IEEE Int’l Symp. Reliable
Distributed Systems (SRDS ’04), pp. 208-217, 2004.

[16] I. Katzela and M. Schwartz, “Schemes for Fault Identification in
Communication Networks,” IEEE/ACM Trans. Networking, vol. 3,
no. 6, pp. 753-764, 1995.

[17] F.P. Preparata, G. Metze, and R.T. Chien, “On the Connection
Assignment Problem of Diagnosable Systems,” IEEE Trans.
Electronic Computers, vol. 16, no. 6, pp. 848-854, 1967.

[18] S. Maheshwari and S. Hakimi, “On Models for Diagnosable
Systems and Probabilistic Fault Diagnosis,” IEEE Trans. Compu-
ters, vol. 25, pp. 228-236, 1976.

[19] D. Fussel and S. Rangarajan, “Probabilistic Diagnosis of Multi-
processor Systems with Arbitrary Connectivity,” Proc. 19th Int’l
IEEE Symp. Fault-Tolerant Computing (FTCS ’89), pp. 560-565, 1989.

[20] M. Barborak, A. Dahbura, and M. Malek, “The Consensus
Problem in Fault-Tolerant Computing,” ACM Computing Surveys,
vol. 25, no. 2, pp. 171-220, June 1993.

[21] A. Bagchi and S. Hakimi, “An Optimal Algorithm for Distributed
System Level Diagnosis,” Proc. 21st Int’l Symp. Fault Tolerant
Computing (FTCS ’91), pp. 214-221, 1991.

[22] R. Chillarege and R.K. Iyer, “Measurement-Based Analysis of
Error Latency,” IEEE Trans. Computers, vol. 36, no. 5, May 1987.

[23] S. Lee and K.G. Shin, “On Probabilistic Diagnosis of Multi-
processor Systems Using Multiple Syndromes,” IEEE Trans.
Parallel and Distributed Systems, vol. 5, no. 6, pp. 630-638, June 1994.

[24] A. Avizienis and J.-C. Laprie, “Dependable Computing: From
Concepts to Design Diversity,” Proc. IEEE, vol. 74, no. 5, pp. 629-
638, 1986.

[25] S. Chandra and P.M. Chen, “How Fail-Stop Are Faulty Pro-
grams?” Proc. 28th Ann. Int’l Symp. Fault-Tolerant Computing (FTCS
’98), pp. 240-249, 1998.

[26] H. Madeira and J.G. Silva, “Experimental Evaluation of the Fail-
Silent Behavior in Computers without Error Masking,” Proc. 24th
Int’l Symp. Fault-Tolerant Computing (FTCS ’94), pp. 350-359, 1994.

[27] A. Brown, G. Kar, and A. Keller, “An Active Approach to
Characterizing Dynamic Dependencies for Problem Determina-
tion in a Distributed Environment,” Proc. Int’l Symp. Integrated
Network Management (IM ’01), 2001.

[28] S. Bagchi, G. Kar, and J.L. Hellerstein, “Dependency Analysis in
Distributed Systems Using Fault Injection: Application to Problem
Determination in an e-Commerce Environment,” Proc. 12th Int’l
Workshop Distributed Systems: Operations and Management (DSOM
’01), 2001.

[29] M.K. Aguilera, J.C. Mogul, J.L. Wiener, P. Reynolds, and A.
Muthitacharoen, “Performance Debugging for Distributed Sys-
tems of Black Boxes,” Proc. 19th ACM Symp. Operating Systems
Principles (SOSP ’03), 2003.

[30] E.P. Duarte and T. Nanya, “A Hierarchical Adaptive Distributed
System-Level Diagnosis Algorithm,” IEEE Trans. Computers,
vol. 47, no. 1, pp. 34-45, Jan. 1998.

[31] J.L. Hellerstein, “A General-Purpose Algorithm for Quantitative
Diagnosis of Performance Problems,” J. Network and Systems
Management, 2003.

[32] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “Magpie: On-
Line Modelling and Performance-Aware Systems,” Proc. ACM
Ninth Workshop Hot Topics in Operating Systems (HotOS ’03), pp. 85-
90, 2003.

[33] R. Alur, R.K. Brayton, T.A. Henzinger, S. Qadeer, and S.K.
Rajamani, “Partial-Order Reduction in Symbolic State-Space
Exploration,” Proc. Ninth Int’l Conf. Computer-Aided Verification
(CAV ’97), pp. 340-351, 1997.

[34] K. Ravi and F. Somenzi, “High–Density Reachability Analysis,”
Proc. IEEE/ACM Int’l Conf. Computer-Aided Design (ICCAD ’95),
pp. 154-158, 1995.

[35] J.R. Burch, E.M. Clarke, and D.E. Long, “Symbolic Model
Checking with Partitioned Transition Relations,” Proc. Design
Automation Conf. (DAC ’91), pp. 403-407, 1991.

[36] K.L. McMillan, Symbolic Model Checking: An Approach to the State-
Explosion Problem. Kluwer Academic Publishers, 1993.

[37] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Comm. ACM, vol. 21, no. 7, pp. 558-565, July
1978.

[38] M. Castro and B. Liskov, “Proactive Recovery in a Byzantine-
Fault-Tolerant System,” Proc. Fourth Symp. Operating Systems
Design and Implementation (OSDI ’00), Oct. 2000.

[39] S. Lee and K. Shin, “Optimal and Efficient Probabilistic
Distributed Diagnosis Schemes,” IEEE Trans. Computers, vol. 42,
no. 7, pp. 882-886, July 1993.

[40] S.T. King and P.M. Chen, “Backtracking Intrusions,” Proc. Symp.
Operating Systems Principles (SOSP), Oct. 2003.

[41] R.V. Renesse, K.P. Birman, and W. Vogels, “Astrolabe: A Robust
and Scalable Technology for Distributed System Monitoring,
Management, and Data Mining,” ACM Trans. Computer Systems,
vol. 21, no. 2, pp. 164-206, 2003.

[42] J. Offutt and A. Abdurazik, “Generating Tests from UML
Specifications,” Proc. Second Int’l Conf. Unified Modeling Langua-
ge—Beyond the Standard (UML ’99), pp. 416-429, 1999.

[43] C. Meudec, “Automatic Generation of Software Tests from Formal
Specifications,” PhD dissertation, The Queen’s Univ. of Belfast,
1997.

[44] E.N. Elnozahy, L. Alvisi, Y.M. Wang, and D.B. Johnson, “A Survey
of Rollback-Recovery Protocols in Message-Passing Systems,”
ACM Computing Surveys, vol. 34, no. 3, pp. 375-408, Sept. 2002.

[45] R. Schwarz and F. Mattern, “Detecting Causal Relationships in
Distributed Computations: In Search of the Holy Grail,” Dis-
tributed Computing, vol. 7, no. 3, pp. 149-174, 1994.

[46] O. Babaoglu and K. Marzullo, “Detecting Global States of
Distributed System: Fundamental Concepts and Mechanisms,”
Distributed Systems, Addison-Wesley, pp. 55-96, 1993.

Gunjan Khanna received the BS degree from
the Indian Institute of Technology, Delhi, in
2002, the master’s degree in electrical and
computer engineering from Purdue University
in December 2003, and the PhD degree from
Purdue University in 2007. He currently is
working at McKinsey & Company in Pittsburgh.
He was an intern at the IBM Research Labora-
tory in the summers of 2004, 2005, and 2006.
His research interests include autonomic detec-

tion and diagnosis in distributed systems. He is also exploring fault
tolerance in wireless networks. He is a recipient of the Magoon Award
for Teaching Excellence in 2005.

278 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

Mike Yu Cheng received the BS degree in
computer engineering and the MS degree in
electrical and computer engineering from Pur-
due University in 2003 and 2007, respectively.
During his graduate studies, he worked on fault-
tolerant distributed systems. He is currently with
Morningstar in Chicago, Illinois.

Padma Varadharajan received the bachelor’s
degree from the Birla Institute of Technology
and Science, Pilani, India, and the master’s
degree from the School of Electrical and
Computer Engineering, Purdue University, in
2005. Her main research interest is reliability
in distributed systems. She is currently a
software design engineer at Microsoft Corp.
in Redmond, Washington.

Saurabh Bagchi received the MS and PhD
degrees from the University of Illinois, Urbana-
Champaign, in 1998 and 2001, respectively. He
is an assistant professor in the School of
Electrical and Computer Engineering, Purdue
University, West Lafayette, Indiana. He is a
faculty fellow at the Cyber Center and has a
courtesy appointment in the Department of
Computer Science, Purdue University. At Pur-

due, he leads the Dependable Computing Systems Laboratory (DCSL),
where he and a set of wildly enthusiastic students try to make and break
distributed systems for the good of the world. His work is supported by
the US National Science Foundation (NSF), Indiana 21st Century
Research and Technology Fund, Avaya, Motorola, and Purdue
Research Foundation, with equipment grants from Intel and Motorola.
His papers have been runners up for the best paper in the 15th IEEE
International Symposium on High Performance Distributed Computing
(HPDC ’06), 2005 International Conference on Dependable Systems
and Networks (DSN), and MTTS 2005. He has been member of the
organizing committee and the program committee for DSN and the
Symposium on Reliable Distributed Systems (SRDS).

Miguel P. Correia received the PhD degree in
computer science from the University of Lisbon
in 2003. He is an assistant professor in the
Department of Informatics, Faculty of Sciences,
University of Lisbon, where he is a member of
the Large-Scale Informatics Systems Laboratory
(LASIGE) and the Navigators Research Group.
He has been involved in several research
projects related to intrusion tolerance and
security, including the Information Society Tech-

nologies—Europe Canada (IST-EC) projects Malicious-and Accidental-
Fault Tolerance for Internet Applications (MAFTIA) and CRitical UTility
InfrastructurAL Resilience (CRUTIAL), the Resilience for IST Network of
Excellence (ReSIST NoE), and national projects. More information
about him is available at www.di.fc.ul.pt/~mpc.

Paulo J. Verı́ssimo is a professor in the
Department of Informatics (DI), Faculty of
Sciences, University of Lisbon (http://www.di.
fc.ul.pt/~pjv), and the director of the Large-Scale
Informatics Systems Laboratory (LASIGE, http://
lasige.di.fc.ul.pt). He is part of the European Sec
and Dep Advisory Board and is an associate
editor of the IEEE Transactions on Dependable
and Secure Computing. He is a former chair of
the IEEE Technical Committee on Fault Tolerant

Computing and of the steering committee of the International Con-
ference on Dependable Systems and Networks (DSN). He leads the
Navigators Research Group, LASIGE. His current research interests
include the architecture, middleware, and protocols for distributed,
pervasive, and embedded systems in the facets of real-time adaptability
and fault/intrusion tolerance. He is the author of more than 130 refereed
publications in international scientific conference proceedings and
journals in the area and a coauthor of five books. He is a senior
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KHANNA ET AL.: AUTOMATED RULE-BASED DIAGNOSIS THROUGH A DISTRIBUTED MONITOR SYSTEM 279

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

