
Decoupled Quorum-Based Byzantine-Resilient Coordination
in Open Distributed Systems

Alysson Neves Bessani† Miguel Correia† Joni da Silva Fraga‡Lau Cheuk Lung§
† LASIGE, Faculdade de Ciências da Universidade de Lisboa –Portugal

‡ Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina – Brazil

§ Prog. de Pós-Grad. em Informática Aplicada, Pontifı́cia Universidade Católica do Paraná – Brazil

Abstract

Open distributed systems are typically composed by an
unknown number of processes running in heterogeneous
hosts. Their communication often requires tolerance to tem-
porary disconnections and security against malicious ac-
tions. Tuple spaces are a well-known coordination model
for this sort of systems. They can support communication
that is decoupled both in time and space. There are cur-
rently several implementations of distributed fault-tolerant
tuple spaces but they are not Byzantine-resilient, i.e., they
do not provide a correct service if some replicas are at-
tacked and start to misbehave. This paper presents an ef-
ficient implementation of LBTS, a linearizable Byzantine
fault-tolerant tuple space. LBTS uses a novel Byzantine
quorum systems replication technique in which most opera-
tions are implemented by quorum protocols while stronger
operations are implemented by more expensive protocols
based on consensus. LBTS is linearizable and wait-free,
showing interesting performance gains when compared to
a similar construction based on state machine replication.

1. Introduction

The generative coordination model, originally intro-
duced in the LINDA programming language [11], uses a
shared memory object called atuple spaceto support co-
ordination between distributed processes. Tuple spaces can
support communication that is decoupled both in time – pro-
cesses do not have to be active at the same time – and space
– processes do not need to know each others’ addresses [5].
The tuple space can be considered to be a kind of storage
that storestuples, i.e., finite sequences of values. The op-
erations supported are essentially three: inserting a tuple in
the space, reading a tuple from the space and removing a
tuple from the space. The programming model supported
by tuple spaces is regarded as simple, expressive and ele-
gant, being supported by middleware platforms like Sun’s
JAVA SPACESand IBM’s TSPACES.

There has been some research about fault-tolerant tuple

spaces (e.g., [24, 2]). The objective of those works is essen-
tially to guarantee the availability of the service provided by
the tuple space, even if some of the servers that implement it
crash. This paper goes one step further by describing a tuple
space that tolerates Byzantine faults. More specifically, this
work is part of a recent research effort inintrusion-tolerant
systems, i.e., on systems that tolerate malicious faults, like
attacks and intrusions [23]. These faults can be modeled as
arbitrary faults, also called Byzantine faults in the literature.

The proposed tuple space is dubbed LBTS since it is a
Linearizable Byzantine Tuple Space. LBTS is implemented
by a set of distributed servers and behaves according to its
specification if up to a number of these servers fail, either
accidentally (e.g., crashing) or maliciously (e.g., by being
attacked and starting to misbehave). Moreover, LBTS also
tolerates accidental and malicious faults in an unbounded
number of clients accessing it. LBTS has two important
properties. First, it islinearizable, i.e., it provides a strong
concurrency semantics in which operations invoked concur-
rently appear to take effect instantaneously sometime be-
tween their invocation and the return of their result [13].
Second, it iswait-free, i.e., every correct client process
that invokes an operation in LBTS eventually receives a
response, independently of the failure of other client pro-
cesses or the contention in the system [12].

Another distinguished feature of LBTS is its novel use of
theByzantine quorum systemsreplication technique. Most
operations on the tuple space are implemented by pure asyn-
chronous Byzantine quorum protocols [15]. However, a tu-
ple space is a shared memory object with consensus number
higher than one [22], according to Herlihy’s wait-free hier-
archy [12], so it cannot be implemented using only asyn-
chronous quorum protocols. In this paper we identify the
tuple space operations that require stronger protocols, and
show how to implement them using aByzantinePAXOS

consensus protocol [6, 17]. The philosophy behind our de-
sign is that simple operations are implemented by “cheap”
quorum-based protocols, while stronger operations are im-
plemented by more expensive protocols based on consen-

sus. Although there are other recent works that use quorum-
based protocols to implement objects stronger than registers
[1] and to optimize state machine replication [7], LBTS is
the first to mix these two approaches supporting wait free-
dom and being efficient even in the presence of contention.

Although this is the first linearizable Byzantine tuple
space that we are aware of, there are several domains in
which it might be interesting to use this service. For exam-
ple, application domains with frequent disconnections and
mobility like ad hoc networks[19] andmobile agents[5]
can benefit from the time and space decoupling provided by
LBTS. Another domain isgrid computing, where a large
number of computers are used to run complex computa-
tions. These applications are decoupled in space and time
since the computers that run the application can enter and
leave the grid dynamically [10].

The main contributions of the paper are the following:
(i.) it presents the first linearizable tuple space that is
Byzantine fault-tolerant; the tuple space requiresn≥ 4 f +1
servers, from whichf can be faulty, and tolerates any num-
ber of faulty clients;(ii.) it introduces a new design philos-
ophy to implement shared memory objects with consensus
number higher than 1 [12], by using asynchronous quorum
protocols for the weaker operations and consensus protocols
(which require synchrony assumptions) for stronger opera-
tions; to implement this philosophy several new techniques
are developed; and(iii.) it compares the proposed approach
with Byzantine state machine replication [21, 6] and shows
that LBTS presents several benefits: some operations are
much cheaper and it supports the concurrent execution of
operations, instead of executing them in total order.

2. Preliminaries
2.1. Tuple Spaces

The generative coordinationmodel, originally intro-
duced in the LINDA programming language [11], uses a
shared memory object called atuple spaceto support the
coordination between processes. This object essentially
allows the storage and retrieval of generic data structures
calledtuples.

Each tuple is a sequence of fields. A tuplet in which all
fields have a defined value is called anentry. A tuple with
one or more undefined fields is called atemplate(usually
denoted by a bar, e.g.,t). An entryt and a templatet match
— m(t,t) — if they have the same number of fields and all
defined field values oft are equal to the corresponding field
values oft. Templates are used to allow content-addressable
access to tuples in the tuple space (e.g., template〈1,2,∗〉
matches any tuple with three fields in which 1 and 2 are the
values of the first and second fields, respectively).

A tuple space provides three basic operations [11]:
out(t) that outputs/inserts the entryt in the tuple space;
inp(t) that reads and removes some tuple that matchest
from the tuple space;rdp(t) that reads a tuple that matches

t without removing it from the space. Theinp() andrdp()
operations arenon-blocking, i.e., if there is no tuple in the
space that matches the template, an error code is returned.
Most tuple spaces also provide blocking versions of these
operations,in and rd. These operations work in the same
way of their non-blocking versions but stay blocked until
there is some matching tuple available on the space.

These few operations together with the content-
addressable capabilities of generative coordination provide
a simple and powerfull programming model for distributed
applications. The drawback of this model is that it depends
of an infrastructure object (the tuple space), which is usually
implemented as a centralized server, being a single point of
failure, the main problem addressed in this paper.

2.2. System Model

The system is composed by an infinite set ofclient pro-
cessesΠ = {p1, p2, p3, ...} which interact with a set ofn
servers U= {s1,s2, ...,sn} that simulates a tuple space with
certain dependability properties. We consider that each
client process and each server has an unique id.

All communication between client processes and servers
is made overreliable authenticated point-to-point channels.
All servers are equipped with a local clock used to compute
message timeouts. These clocks are not synchronized so
their values can drift.

In terms of failures, we assume that an arbitrary num-
ber of client processes and a bound of up tof ≤ ⌊n−1

4 ⌋
servers can be subject toByzantine failures, i.e., they can
deviate arbitrarily from the algorithm they are specified to
execute and work in collusion to corrupt the system behav-
ior. Clients or servers that do not follow their algorithm in
some way are said to befaulty. A client/server that is not
faulty is said to becorrect. We assumefault independence,
i.e., that the probability of each server failing is independent
of another server being faulty. This assumption can be sub-
stantiated in practice using several kinds of diversity [20].

We assume aneventually synchronous system model[8]:
in all executions of the system, there is a bound∆ and an
instant GST (Global Stabilization Time), so that every mes-
sage sent by a correct server to another correct server at
instantu > GST is received beforeu+ ∆. ∆ and GST are
unknown. The intuition behind this model is that the sys-
tem can work asynchronously (with no bounds on delays)
most of the time but there are stable periods in which the
communication delay is bounded (assuming local computa-
tions take negligible time)1. This assumption is needed to
guarantee the termination of the Byzantine PAXOS [6, 17].
An execution of a distributed algorithm is said to benice if
the bound∆ always holds and there are no server failures.

Additionally, we use adigital signature schemethat in-
cludes a signing function and a verification function that use

1In practice this stable period has to be long enough for the algorithm
to terminate, but does not need to be forever.

pairs of public and private keys. A message is signed using
the signing function and a private key, and this signature is
verified with the verification function and the corresponding
public key. We assume that each correct server has a private
key known only by itself, and that its public key is known
by all client processes and servers. We represent a message
signed by a serverswith a subscriptσs, e.g.,mσs.

2.3. Byzantine Quorum Systems

Byzantine quorum systems[15] are a technique for im-
plementing dependable shared memory objects in message
passing distributed systems that can suffer Byzantine fail-
ures. Given a universe of data servers, a quorum system is a
set of server sets, calledquorums, that have a non-empty in-
tersection. The intuition is that if a shared variable is stored
replicated in all servers, any read or write operation has to
be done only in a quorum of servers, not in all servers. For-
mally, a Byzantine quorum system is a set of server quo-
rumsQ ⊆ 2U in which each pair of quorums intersect in
sufficiently many servers (consistency) and there is always
a quorum in which all servers are correct (availability).

The servers can be used to simulate one or more shared
memory objects. In this paper the servers simulate a single
object – a tuple space. The servers form af -masking quo-
rum system, which tolerates at mostf faulty servers [15].
This type of Byzantine quorum systems requires that the
majority of the servers in the intersection between any two
quorums are correct, thus∀Q1,Q2 ∈Q, |Q1∩Q2| ≥ 2 f +1.
Given this requirement, each quorum of the system must
haveq = ⌈n+2 f+1

2 ⌉ servers and the quorum system can be
defined as:Q = {Q ⊆ U : |Q| = q}. This implies that
|U | = n≥ 4 f + 1 [15]. With these constraints, a quorum
system with 4f +1 servers will have quorums of size 3f +1.

2.4. Byzantine PAXOS

Since LBTS requires some modifications to the ba-
sic Byzantine PAXOS total order protocol [6], this section
briefly presents this protocol.

The protocol begins with a client sending a signed mes-
sagem to all servers. One of the servers, called the leader,
is responsible for ordering the messages sent by the clients.
The leader then sends a PRE-PREPARE message to all
servers giving a sequence numberi to m. A server ac-
cepts a PRE-PREPARE message if the proposal of the
leader isgood: the signature ofm verifies and no other
PRE-PREPARE message was accepted for sequence num-
ber i. When a server accepts a PRE-PREPARE message,
it executes two steps of message exchange with the other
servers to commitm as thei-th message to be delivered.

When the leader is detected to be faulty, a leader elec-
tion protocol is used to freeze the current round of the pro-
tocol, elect a new leader and start a new round. When a new
leader is elected, it collects the protocol state (messagesex-
changed) from⌈n+ f

2 ⌉ servers. This information is signed

and allows the new leader to verify if some message was
already committed with some sequence number. Then, the
new leader continues to order messages. For a complete
description of the Byzantine PAXOS protocol and its many
subtleties, we refer the reader to [6, 17].

3. Linearizable Byzantine Tuple Space

This section presents LBTS. Since we are interested only
in wait-free operations, we concentrate our discussion only
in tuple space non-blocking operations. The tuple space
correctness condition and the protocols correctness proofs,
as well as some optimizations and improvements are omit-
ted due to lack of space. We refer the interested reader to
the extended version of this paper [3].

3.1. Design Rationale and New Techniques

As already discussed in the introduction, the design phi-
losophy of LBTS is to use quorum-based protocols for read
(rdp) and write (out) operations, and an agreement primitive
for the read-remove operation (inp). The implementation of
this philosophy requires the development of some new tech-
niques, described in this section.

To better understand these techniques let us recall how
basic quorum-based protocols work. Traditionally, the ob-
jects implemented by quoruns are read-write registers (e.g.,
[14, 15, 16, 18]). The state of a register in each replica is
represented by its current value and a timestamp (a kind of
“version number”). The write protocol usually consists in
(i.) reading the register current timestamp from a quorum,
(ii.) incrementing it, and(iii.) writing the new value with
the new timestamp in a quorum (deleting the old value).
In the read protocol, the standard procedure is(i.) reading
the pair timestamp-value from a quorum and(ii.) apply-
ing some read consolidation rule such as“the current value
of the register is the one associated with the greater times-
tamp that appears f+1 times” to define what is the current
value stored in the register. To ensure register linearizabil-
ity (a.k.a. atomicity) two techniques are usually employed:
write-backs– the read value is written again in the sys-
tem to ensure that it will be the result of subsequent reads
(e.g., [16, 14]) – or thelistener communication pattern–
the reader registers itself with the quorum system servers
for receiving updates on the register values until it receives
the same register state from a quorum, ensuring that this
state will be observed in subsequent reads (e.g., [18]).

In trying to develop a tuple space object using these tech-
niques two differences between this object and a register
were observed:(1.) the state of the tuple space (the tuples it
contains) can be arbitrarily large and(2.) the inp operation
cannot be implemented by read and write protocols due to
the requirement that the same tuple cannot be removed by
two concurrent operations. Difference(1.) turns difficult
the applicability of timestamps for defining what is the cur-
rent state of the space while difference(2.) requires that

concurrentinp operations are executed in total order by all
servers. The challenge is how to develop quorum protocols
for implementing an object that does not use timestamps
for versioning and, at the same time, requires a total order
protocol in one operation. To solve these problems, we de-
veloped three algorithmic techniques.

The first technique introduced in LBTS serves to avoid
timestamps in a collection object (one that its state is com-
posed by a set of items added to it): we partition the state of
the tuple space in infinitely many simpler objects, the tuples,
that have three states: not inserted, inserted, and removed.
This means that when a process invokes a read operation,
the space chooses the response from the set of matching tu-
ples that are in the inserted state. So, it does not need the
timestamp of the tuple space, because the read consolida-
tion rule is applied to tuples and not to the space state.

The second technique is the application of the listener
communication pattern in therdp operation, to ensure that
the usual quorum reasoning (e.g., a tuple can be read if it
appears inf +1 servers) can be applied in the system even
in parallel with executions of Byzantine PAXOS for inp op-
erations. In the case of a tuple space, theinp operation is
the single read-write operation: ‘if there is some tuple that
matcht on the space, remove it’. The listener pattern is
used to “fit” therdp between the occurrence of twoinp op-
erations. The listener pattern is not used to ensure lineariz-
ability as in previous works, but for capturing replicas’ state
between removals.

The third technique is the modification of the Byzantine
PAXOS algorithm to allow the leader to propose the order
plusa candidate result for an operation, allowing the system
to reach an agreement even when there is no state agreement
between the replicas. This is the case when the tuple space
has to select a tuple to be removed that is not present in all
servers. Notice that, without this modification, two agree-
ments would have to be executed: one to decide whatinp
would be the first to remove a tuple, in case of concurrency
(i.e., to orderinp requests), and another to decide which tu-
ple would be the result of theinp.

3.2. Protocols

Additional assumptions. We adopt several simplifications
to improve the presentation of the protocols. First, we as-
sume that all tuples are unique. In practice this might be
implemented by appending to each tuple its writer id and a
sequence number generated by the writer. Second, we as-
sume that any message that was supposed to be signed by a
serversand is not correctly signed is simply ignored. Third,
all messages carry nonces in order to avoid replay attacks.
Fourth, access control is implicitly enforced: the tuple space
has some kind of access control mechanism (like an ACL)
specifying what processes can insert tuples in it and each
tuple has two sets of processes that can read and remove
it. Fifth, the algorithms are described considering a single

tuple spaceT, but their extension to support multiple tuple
spaces is straightforward: a copy of each space is deployed
in each server and all protocols are executed in the scope of
one of the spaces (adding a field in each message indicating
which tuple space is being accessed). Finally, we assume
that the reactions of the servers to message receptions are
atomic (e.g., lines 3-4 in Algorithm 1).
Protocol variables. Before we delve into the protocols, we
have to introduce four variables stored in each servers: Ts,
rs, Rs andLs. Ts is the local copy of the tuple spaceT in
this server. The variablers gives the number of tuples pre-
viously removed from the tuple space replica ins. The set
Rs contains the tuples already removed fromTs. We callRs

the removal set and we use it to ensure that a tuple is not
removed more than once fromTs. Finally, the setLs con-
tains all clients registered to receive updates from this tuple
space. This set is used in therdp operation. The protocols
use a functionsend(to,msg) to send a messagemsgto the
recipientto, and a functionreceive(from,msg) to receive a
messagemsgsent byfrom.
Tuple insertion. Algorithm 1 presents theout protocol.

Algorithm 1 out operation (clientp and servers).
{CLIENT}
procedure out(t)

1: ∀s∈U , send(s,〈OUT,t〉)
2: wait until ∃Q∈Q : ∀s∈Q, receive(s,〈ACK-OUT〉)

{SERVER}
upon receive(p,〈OUT,t〉)

3: if t /∈Rs then Ts← Ts∪{t}
4: send(p,〈ACK-OUT〉)

When a processp wants to insert a tuplet in the tuple
space, it sendst to all servers (line 1) and waits for acknowl-
edgments from a quorum of servers (line 2). At the server
side, if the tuple is not in the removal set (indicating that it
has already been removed), it is inserted in the tuple space
(line 3). An acknowledgment is returned (line 4).

With this simple algorithm a faulty client process can
inserts a tuple in a subset of the servers. In that case, we
say that it is anincompletely inserted tuple. The number of
incomplete insertions made by a process can be bounded to
one, as described in [3]. As can be seen in next sections,
rdp (resp. inp) operations are able to read (resp. remove)
such a tuple if it is inserted inf +1 servers.
Tuple reading. rdp is implemented by Algorithm 2. The
protocol is more tricky than the previous one for two rea-
sons. First, it employs the listener communication pattern
to capture the replicas state between removals. Second, if
a matching tuple is found, the process may have to write it
back to the system to ensure that it will be read in subse-
quent reads, satisfying linearizability property.

Whenrdp(t) is called, the client processp sends the tem-
platet to the servers (line 1). When a servers receives this

Algorithm 2 rdp operation (clientp and servers).
{CLIENT}
procedure rdp(t)

1: ∀s∈U , send(s,〈RDP,t〉)
2: ∀x∈ {1,2, ...},∀s∈U,Replies[x][s]←⊥
3: repeat
4: wait until receive(s,〈REP-RDP,s,T t

s , rs〉σs)
5: Replies[rs][s]← 〈REP-RDP,s,Tt

s , rs〉σs

6: until ∃r ∈ {1,2, ...},{s∈U : Replies[r][s] 6=⊥} ∈Q

7: {From now onr indicates ther of the condition above}
8: ∀s∈U , send(s,〈RDP-COMPLETE,t〉)
9: if ∃t,count tuple(t, r,Replies[r])≥ q then

10: return t
11: else if ∃t,count tuple(t, r,Replies[r])≥ f +1 then
12: ∀s∈U , send(s,〈WRITEBACK,t,Replies[r]〉)
13: wait until ∃Q∈Q : ∀s∈Q, receive(s,〈ACK-WB〉)
14: return t
15: else
16: return ⊥
17: end if
{SERVER}
upon receive(p,〈RDP,t〉)

18: Ls← Ls∪{〈p,t〉}
19: Tt

s ←{t ∈ Ts : m(t,t)}
20: send(p,〈REP-RDP,s,Tt

s , rs〉σs)

upon receive(p,〈RDP-COMPLETE,t〉)

21: Ls← Ls\{〈p, t〉}

upon receive(p,〈WRITEBACK,t,proof〉)

22: if count tuple(t,proof)≥ f +1 then
23: if t /∈ Rs then Ts← Ts∪{t}
24: send(p,〈ACK-WB〉)
25: end if
upon removal oft from Ts or insertion oft in Ts

26: for all 〈p,t〉 ∈ Ls : m(t, t) do
27: Tt

s ←{t
′ ∈ Ts : m(t ′, t)}

28: send(p,〈REP-RDP,s,Tt
s , rs〉σs)

29: end for
Predicate: count tuple(t, r,msgs) ,

|{s∈U : msgs[s] = 〈REP-RDP,s,Tt
s , r〉σs∧ t ∈ Tt

s}|

message, it registersp as a listener, and replies with all tu-
ples inTs that matcht and the current number of tuples al-
ready removedrs (lines 18-20). Whilep is registered as
a listener, whenever a tuple is added or removed from the
space the tuples that matcht is sent top 2 (lines 26-29).

Processp collects replies from the servers, putting them
in the Repliess matrix, until it manages to have a set of
replies from a quorum of servers reporting the state after
the same number of tuple removalsr (lines 2-6). After that,
a RDP-COMPLETE message is sent to the servers (line 8).

The result of the operation depends on a single rowr
of the matrixRepliess. This row represents a cut on the
system state in which a quorum of servers processed exactly
the samer removals, so, in this cut, quorum reasoning can
be applied. This mechanism is fundamental to ensure that

2In practice, only the update is sent top.

agreement algorithms and quorum-based protocols can be
used together for different operations, one of the novel ideas
of this paper. If there is some tuplet in Repliess[r] that was
replied by all servers in a quorum, thent is the result of the
operation (lines 9-10). This is possible because this quorum
ensures that the tuple can be read in all subsequent reads,
thus ensuring linearizability. On the contrary, if there isno
tuple replied by an entire quorum, but there is still some
tuplet returned by more thanf servers3 for the same value
of r, thent is write-back in the servers (line 11-12). The
purpose of this write-back operation is to ensure that ift
has not been removed untilr, then it will be readable by all
subsequentrdp(t) operations requested by any client, with
m(t, t) and untilt is removed. Therefore, the write-back is
necessary to handle incompletely inserted tuples.

Upon the reception of a write-back message
〈WRITEBACK,t,proof〉, server s verifies if the write-
back is justified, i.e., if proof includes at leastf + 1
correctly signed REP-RDP messages from different servers
with r andt (line 22). A write-back that is not justified is
ignored by correct servers. After this verification, ift is not
already inTs and has not been removed, thens insertst in
its local tuple space (line 23). Finally,s sends a ACK-WB
to the client (line 26), which waits for these replies from a
quorum of servers and returnst (lines 13-14).
Tuple destructive reading. The previous protocols are im-
plemented using only Byzantine quorum techniques. The
protocol for inp, on the other hand, requires stronger ab-
stractions. This is a direct consequence of the tuple space
semantics that does not allowinp to remove the same tuple
twice (once removed it is no longer available).

An approach to implement this semantics is to execute
all inp operations in the same order in all servers. This can
be made using a total order multicast protocol based on the
Byzantine PAXOS algorithm (Section 2.4). A simple ap-
proach would be to use it as an unmodified building block,
but this requires two executions of the protocol for eachinp
[4]. To avoid this overhead, the solution we propose is based
onmodifyingthis algorithm in three specific points:

1. When the leaders receives a requestinp(t) from client
p (i.e., a message〈INP, p,t〉), it sends to the other
servers a PRE-PREPARE message with not only the
sequence numberi but also〈tt ,〈INP, p,t〉σp〉σs, where
tt is a tuple inTs that matchest. If there is no tuple that
matchest in Ts, thentt =⊥.

2. A correct servers′ accepts to remove the tuplett pro-
posed by the leader in the PRE-PREPARE message if:
(i.) the usual Byzantine PAXOS conditions for accep-
tance described in Section 2.4 are satisfied;(ii.) s′ did
not accept the removal oftt previously;(iii.) t t andt

3If a tuple is returned byf or less servers it can be a tuple that has not
been inserted in the tuple space, created by a collusion of faulty servers.

match; and(iv.) tt is not forged, i.e., eithert ∈ Ts or s′

receivedf +1 signed messages from different servers
ensuring that they havet in their local tuple spaces.
This last condition ensures that a tuplet can be re-
moved if and only if it can be read, i.e., only if at least
f +1 servers report having it.

3. When a new leaderl ′ is elected, each server sends its
protocol state tol ′ (as in the original total order Byzan-
tine PAXOS algorithm4) and a signed set with the tu-
ples in its local tuple space that matcht. This informa-
tion is used byl ′ to build a proof for a proposal with a
tuplet (in case it gets that tuple fromf +1 servers). If
there is no tuple reported byf +1 servers, this set of tu-
ples justifies a⊥ proposal. This condition can be seen
as a write-back from the leader in order to ensure that
the tuple will be available in sufficiently many replicas
before its removal.

Giving these modifications on the total order protocol,
an inp operation is executed by Algorithm 3.

Algorithm 3 inp operation (clientp and servers).
{CLIENT}
procedure inp(t)

1: TO-multicast(U,〈INP, p,t〉)
2: wait until receive〈REP-INP,tt〉 from f +1 servers inU
3: return tt

{SERVER}
upon paxosleader(s)∧Ps 6= /0

4: for all 〈INP, p,t〉 ∈ Ps do
5: i← i +1
6: if ∃t ∈ Ts : m(t, t)∧¬marked(t) then
7: tt ← t
8: mark(i,t)
9: else

10: tt ←⊥
11: end if
12: paxospropose(i,〈tt ,〈INP, p,t〉〉)
13: end for
upon paxosdeliver(i,〈tt ,〈INP, p,t〉〉)

14: unmark(i)
15: Ps← Ps\{〈INP, p,t〉}
16: if tt 6=⊥ then
17: if tt ∈ Ts then Ts← Ts\{tt}
18: Rs← Rs∪{tt}
19: rs← rs+1
20: end if
21: send(p,〈REP-INP,tt〉)

For a clientp, the inp(t) algorithm works exactly as if
the replicated tuple space was implemented using Byzantine
state machine replication [6, 21]:p sends a request to all

4The objective is to ensure that a value decided by some correct server
in some round will be the only possible decision in all subsequent rounds.

servers and waits untilf + 1 servers reply with the same
response, which is the result of the operation (lines 1-3).

In the server side, the requests for executions ofinp re-
ceived are inserted in the pending setPs. When this set is not
empty, the code in lines 4-13 is executed by the leader (the
predicatepaxosleader(s) is true iff s is the current leader).
For each pending request inPs, a sequence number is at-
tributed (line 5). Then, the leader picks a tuple from the
tuple space that matchest (lines 6-7) and marks it with its
sequence number to prevent it from being removed (line 8).
The proceduremark(i,t) marks the tuple as the one pro-
posed to be removed in thei-th removal, while the predicate
marked(t) says ift is marked for removal. If no unmarked
tuple matchest, ⊥ is proposed for the Byzantine PAXOS

agreement (using the aforementioned PRE-PREPARE mes-
sage), i.e., is sent to the other servers (lines 10, 12). The
code in lines 4-13 corresponds to the modification 1 above.
Modifications 2 and 3 do not appear in the code since they
are reasonably simple changes of Byzantine PAXOS.

When the servers reach agreement about the sequence
number and the tuple to remove, thepaxosdeliverpredicate
is set totrue and the code in the bottom of the algorithm is
executed (lines 14-23). Then, each servers unmarks any
tuple that it marked for removal with the sequence numberi
(line 14) and removes the ordered request fromPs (line 15).
After that, if the result of the operation is a valid tuplett ,
the server verifies if it exists in the local tuple spaceTs (line
17). If it does, it is removed fromTs (line 18). Finally,tt is
added toRs, the removal counterrs is incremented and the
result is sent to the requesting client process (line 23).

It is worth noticing that Byzantine PAXOS usually does
not employ public-key cryptography when the leader does
not change. The signatures required by the protocol are
made usingauthenticators, which are vectors of message
authentication codes [6]. However, modification 3 requires
that the signed set of tuples will be sent to a new leader
when it is elected. Therefore, ourinp protocol requires
public-key cryptography, but only when the operation can-
not be resolved in the first Byzantine PAXOS round.

4. Evaluation

This section presents an evaluation of the system us-
ing two distributed algorithms metrics:message complexity
andcommunication steps. Message complexity measures
the maximum amount of messages exchanged between pro-
cesses, so it gives some insight about the communication
system usage and the algorithm scalability. The communi-
cation steps is the number of sequential communications be-
tween processes, so it is the main factor for the time needed
for a distributed algorithm execution to terminate.

In this evaluation, we compare LBTS with an imple-
mentation of a tuple space with the same semantics based
on state machine replication[21], which we call SMR-TS.
SMR is a generic solution for the implementation of fault-

tolerant distributed services using replication. The ideais
to make all replicas to start in the same state and deter-
ministically execute the same operations in the same order
in all replicas. The implementation considered for SMR-
TS is based on the Byzantine PAXOS [6] with fast decision
(two communication steps) in nice executions [17, 25]. The
fast decision is also considered for the modified Byzantine
PAXOS used in LBTS’inp protocol. The SMR-TS imple-
ments an optimistic version for read operations in which all
servers return immediately the value read without executing
the Byzantine PAXOS if no concurrency is perceived.

Operation LBTS SMR-TS
M.C. C.S. M.C. C.S.

out O(n) 2 O(n2) 4
rdp O(n) 2/4 O(n)/O(n2) 2/6
inp O(n2) 4/7 O(n2) 4

Table 1. Costs in nice executions
Table 1 evaluates nice executions of the operations in

terms of message complexity (M.C.) and communication
steps (C.S.)5. The costs of LBTS’ operations are presented
in the second and third columns of the table. The fourth and
fifth columns show the evaluation of SMR-TS. The LBTS
protocol forout is cheaper than SMR-TS in both metrics.
The protocol forrdp has the same costs in LBTS and SMR-
TS in executions in which there is no matching tuple being
written concurrently withrdp. The first values in the line
of the table corresponding tordp are about this optimistic
case (O(n) for message complexity, 2 for communication
steps). When a read cannot be made optimistically, the op-
eration requires 4 steps in LBTS and 6 in SMR-TS (opti-
mistic phase plus the normal operation). Moreover LBTS’
message complexity is linear, instead ofO(n2) like SMR-
TS. The protocol forinp uses a single Byzantine PAXOS

execution in both approaches. However, in cases in which
there are many tuples incompletely inserted (extreme con-
tention or many faulty clients), LBTS might not decide in
the first round (as discussed in [3]). In this case a new leader
must be elected. We expect this situation to be rare.

The table allow us to conclude that an important advan-
tage of LBTS when compared with SMR-TS is the fact that
in SMR-TS all operations require protocols with message
complexity O(n2), turning simple operations such asrdp
andout as complex asinp. Another advantage of LBTS is
that its quorum-based operations,out andrdp, always ter-
minate in few communication steps while in SMR-TS these
operation relies on Byzantine PAXOS, that we can have cer-
tainty that terminates in 4 steps only in nice executions [17].

5. Related Work
Two replication approaches can be used to build Byzan-

tine fault-tolerant services: Byzantine quorum systems [15]
5Recall from Section 2.2 that an execution is said to benice if the max-

imum delay∆ always hold and there are no failures.

and state machine replication [21, 6]. The former is a data-
centric approach based on the idea of executing different
operations in different intersecting sets of servers, while the
latter is based on maintaining a consistent replicated state
across all servers in the system. One advantage of quo-
rum systems in comparison to the state machine approach
is that they do not need that the operations are executed in
the same order in the replicas, so they do not need to solve
consensus. Quorum protocols usually scale much better due
to the opportunity of concurrency in the execution of oper-
ations and the shifting of hard work from servers to client
processes [1]. On the other hand, pure quorum protocols
cannot be used to implement objects stronger than register
(in asynchronous systems), on the contrary of state machine
replication, which is more general [9].

To the best of our knowledge there is only one work
on Byzantine quorums that has implemented objects more
powerful than registers in a way that is similar to ours, the
Q/U protocols [1]. That work aims to implement general
services using quorum-based protocols in asynchronous
Byzantine systems. Since this cannot be done ensuring
wait-freedom, the approach sacrifices liveness: the opera-
tions are guaranteed to terminate only if there is no other
operation executing concurrently. A tuple space build us-
ing Q/U has mainly two drawbacks, when compared with
LBTS: (i.) it is not wait-free so, in a Byzantine environ-
ment, malicious clients could invoke operations continu-
ously, causing a denial of service; and(ii.) it requires 5f +1
servers,f more than LBTS, and it has an impact on the cost
of the system due to the cost of diversity [20].

Recently, Cowling et al. proposed HQ-REPLICATION

[7], an interesting replication scheme that uses quorum pro-
tocols when there are no contention in operations executions
and consensus protocols to resolve contention situations.
This protocol requiresn≥ 3 f +1 replicas and process reads
and writes in 2 to 4 communication steps in contention-free
executions. When contention is detected, the protocol uses
Byzantine PAXOS to order of contending requests. This
contention resolution protocol adds great latency to the pro-
tocols, reaching more than 10 communication steps even in
nice executions. Comparing LBTS with a tuple space based
on HQ-REPLICATION, in executions without contention,
LBTS’ out will be faster (2 steps instead of 4 of HQ),rdp
will be equivalent (the protocols are similar) andinp will
have the same latency in both, however, LBTS’ protocol has
O(n2) message complexity instead ofO(n) of HQ. In con-
tending executions, LBTS is expected to outperform HQ
in orders of magnitude since its protocols are little affected
by these situations. On the other hand, HQ-REPLICATION

requiresf fewer replicas than LBTS.
There are several works that replicate tuple spaces for

fault tolerance. Some of them are based in the state machine
replication (e.g., [2]) while others use quorum systems (e.g.,
[24]). However, none of these proposals deals with Byzan-

tine failures and intrusions, the main objective of LBTS.
The construction presented in this paper, LBTS, builds

on a preliminary solution with several limitations, BTS [4].
LBTS goes much further in mainly three aspects: it is lin-
earizable; it uses a confirmable protocol for operationout;
and it implements theinp operation using only one Byzan-
tine PAXOS execution, instead of two in BTS.

6. Final Remarks
In this paper we presented the design of LBTS, a Lin-

earizable Byzantine Tuple Space. This construction pro-
vides reliability, availability and integrity for coordination
between processes in open systems. The overall architec-
ture is based on a set of servers from which less than a
fourth may be faulty and on an unlimited number of client
processes, from which arbitrarily many can also be faulty.

LBTS combines Byzantine quorum systems protocols
with consensus-based protocols resulting in a design in
which simple operations use simple quorum-based proto-
cols while a more complicated operation, which requires
servers’s synchronization, uses more complex agreement-
based protocols. An important contribution of this work
is the assertion thatout and rdp can be implemented us-
ing quorum-based protocols, whileinp requires consensus.
This design shows important performance benefits when
compared with the same object implemented using state
machine replication.

Acknowledgements. We thank Paulo Sousa, Piotr Zielin-
ski and Rodrigo Rodrigues for their suggestions to improve the
paper. This work was supported by LaSIGE, CNPq (Brazil-
ian National Research Council) through process 550114/2005-
0, the EU through project IST-4-027513-STP (CRUTIAL) and
CAPES/GRICES (project TISD).

References

[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and
J. Wylie. Fault-scalable Byzantine fault-tolerant services.
In Proceedings of the 20th ACM Symposium on Operating
Systems Principles - SOSP 2005, Oct. 2005.

[2] D. E. Bakken and R. D. Schlichting. Supporting fault-
tolerant parallel programming in Linda.IEEE Trans. on Par-
allel and Distributed Systems, 6(3):287–302, Mar. 1995.

[3] A. N. Bessani, M. Correia, J. S. Fraga, and L. C. Lung.
Decoupled quorum-based Byzantine-resilient coordination
in open distributed systems. Technical Report DI-FCUL
TR 07–9, Departament of Informatics, University of Lisbon,
May 2007.

[4] A. N. Bessani, J. S. Fraga, and L. C. Lung. BTS: A Byzan-
tine fault-tolerant tuple space. InProc. 21st ACM Symp. on
Applied Computing - SAC 2006, Apr. 2006.

[5] G. Cabri, L. Leonardi, and F. Zambonelli. Mobile agents
coordination models for Internet applications.IEEE Com-
puter, 33(2):82–89, Feb. 2000.

[6] M. Castro and B. Liskov. Practical Byzantine fault-tolerance
and proactive recovery.ACM Trans. on Computer Systems,
20(4):398–461, Nov. 2002.

[7] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. HQ-Replication: A hybrid quorum protocol for
byzantine fault tolerance. InProc. of 7th Symp. on Operating
Systems Design and Implementations - OSDI 2006, 2006.

[8] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus
in the presence of partial synchrony.Journal of the ACM,
35(2):288–322, Apr. 1988.

[9] R. Ekwall and A. Schiper. Replication: Understanding the
advantage of atomic broadcast over quorum systems.Jour-
nal of Universal Computer Science, 11(5):703–711, 2005.

[10] F. Favarim, J. S. Fraga, L. C. Lung, and M. Correia. GridTS:
A new approach for fault-tolerant scheduling in grid com-
puting. InProc. of 6th IEEE Symposium on Network Com-
puting and Applications - NCA 2007, July 2007.

[11] D. Gelernter. Generative communication in Linda.ACM
Trans. on Programming Languages and Systems, 7(1):80–
112, Jan. 1985.

[12] M. Herlihy. Wait-free synchronization.ACM Trans. on
Programming Languages and Systems, 13(1):124–149, Jan.
1991.

[13] M. Herlihy and J. M. Wing. Linearizability: A correctness
condition for concurrent objects.ACM Trans. on Program-
ming Languages and Systems, 12(3):463–492, July 1990.

[14] B. Liskov and R. Rodrigues. Tolerating Byzantine faulty
clients in a quorum system. InProc. of 26th IEEE Int. Conf.
on Distributed Computing Systems - ICDCS 2006, 2006.

[15] D. Malkhi and M. Reiter. Byzantine quorum systems.Dis-
tributed Computing, 11(4):203–213, Oct. 1998.

[16] D. Malkhi and M. Reiter. Secure and scalable replication in
Phalanx. InProc. of the 17th IEEE Symposium on Reliable
Distributed Systems - SRDS’98, Oct. 1998.

[17] J.-P. Martin and L. Alvisi. Fast Byzantine consensus.IEEE
Trans. on Dependable and Secure Computing, 3(3):202–
215, July 2006.

[18] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine
storage. InProc. of the 16th Int. Symposium on Distributed
Computing - DISC 2002, Oct. 2002.

[19] A. Murphy, G. Picco, and G.-C. Roman. LIME: A coordina-
tion model and middleware supporting mobility of hosts and
agents.ACM Trans. on Software Engineering and Method-
ology, 15(3):279–328, July 2006.

[20] R. R. Obelheiro, A. N. Bessani, L. C. Lung, and M. Cor-
reia. How practical are intrusion-tolerant distributed sys-
tems? Technical Report DI-FCUL TR 06–15, Departament
of Informatics, University of Lisbon, Sept. 2006.

[21] F. B. Schneider. Implementing fault-tolerant serviceusing
the state machine aproach: A tutorial.ACM Computing Sur-
veys, 22(4):299–319, Dec. 1990.

[22] E. J. Segall. Resilient distributed objects: Basic results and
applications to shared spaces. InProc. of the 7th IEEE
Symp. on Parallel and Distributed Processing - SPDP’95,
Oct. 1995.

[23] P. Verissimo, N. F. Neves, and M. Correia. Intrusion-tolerant
architectures: Concepts and design. InArchitecting Depend-
able Systems, volume 2677 ofLNCS. 2003.

[24] A. Xu and B. Liskov. A design for a fault-tolerant, dis-
tributed implementation of Linda. InProc. of the 19th Symp.
on Fault-Tolerant Computing - FTCS’89, June 1989.

[25] P. Zielinski. Paxos at war. Technical Report UCAM-CL-TR-
593, Computer Laboratory, University of Cambridge, June
2004.

