
Byzantine Fault-Tolerant Transaction Processing for
Replicated Databases

Aldelir Fernando Luiz∗†, Lau Cheuk Lung‡, Miguel Correia§
∗Campus of Blumenau, Federal Institute Catarinense - Brazil

†Department of Automation and Systems, Federal University of Santa Catarina - Brazil
‡Department of Informatics and Statistics, Federal University of Santa Catarina - Brazil
§Instituto Superior Técnico, Technical University of Lisbon, INESC-ID - Portugal

aldelir@das.ufsc.br, lau.lung@inf.ufsc.br, miguel.p.correia@ist.utl.pt

Abstract—Transaction commit is a problem much investigated,
both in the databases and systems communities, from the the-
oretical and practical sides. We present a modular approach
to solve this problem in the context of database replication on
environments that are subject to Byzantine faults. Our protocol
builds on a total order multicast abstraction and is proven to
satisfy a set of safety and liveness properties. On the contrary of
previous solutions in the literature, it assures strong consistency
for transactions, tolerates Byzantine clients and does not need
centralized control or multi-version databases. We present an
evaluation of a prototype of the system.

I. INTRODUCTION

The notion of transaction was first introduced in database
systems, with the objective of supporting the consistent execu-
tion of concurrent operations over shared data [1]. However,
since then transactions have been applied much more broadly,
e.g., in distributed systems in many application scenarios,
in which they improve reliability and guarantee data consis-
tency. This paper is about transaction commit for replicated
databases. There is work in this area for some years, with
authors suggesting the utilization of abstractions commonly
used to specify reliable distributed systems (e.g., consensus,
total order multicast) to support crash fault-tolerant database
replication or, more generically, transaction processing [2], [3].

Protocols for database replication face many challenges. The
main ones are: (i) to ensure the consistency of the replicas
while allowing a high level of concurrency; (ii) to ensure the
execution of the transactions in the same or an equivalent
order/sequence in all replicas; and (iii) the transaction commit-
ment protocol itself, as the global atomicity has to be ensured.
Transaction commitment is a problem much studied in the
literature, often under the designation of non-blocking atomic
commit (NBAC) [4]. In systems with only crash faults, NBAC
is reducible to consensus, as it is essentially an agreement
between a set of processes on committing or aborting a
transaction [5].

There is much literature about crash fault-tolerant database
replication and transactions [6], [7], [3], [5]. On the contrary,
the lack of solutions to tolerate Byzantine or arbitrary faults [8]
has been pointed out in a 2007 work that shows the existence
of many bugs in database management systems (DBMS) [9].
These bugs are Byzantine faults that typically cannot be toler-
ated by crash fault-tolerant replication protocols. It is tempting

to use Byzantine fault-tolerant (BFT) state machine replication
protocols [10], [11] to implement BFT transactions by ordering
all operations, but this would create a considerable overhead
and would lead to deadlocks when there were conflicting
transactions. Optionally such protocols might be used to order
static transactions instead of ordering operations, but we want
to support dynamic transactions, i.e., transactions in which the
operations to be executed inside the transaction can be defined
during the execution (e.g., because they depend of the result
of previous operations of the transaction).

Furthermore, NBAC is concerned only with fault-tolerant
transaction committing, but to achieve a correct decision on
the commitment, it is imperative that transaction processing
(the execution of the operations) is done correctly. This is-
sue is directly related to the agreement involved in atomic
commitment, but it is neglected by the classical definition of
NBAC [4]. Therefore, we need to investigate the means to
preserve not only the consistency (the main requirement of
transactions), but also integrity of replicated data, despite of
replica faults.

This paper presents a solution to tolerate Byzantine faults
in databases replicated using the database state machine ap-
proach (DBSM) [3]. We use the same replication technique as
DBSM to propagate data modifications executed in the context
of a transaction, but we tolerate Byzantine faults both in the
clients and replicas, on the contrary of DBSM that tolerates
only crashes. This technique, known as deferred update, is
much used to implement efficient data replication protocols,
because it scales well. In our protocol we exploit the use
of a BFT total order multicast algorithm [12] together with
cryptographic mechanisms, in order to obtain consistency and
data integrity despite the existence of Byzantine faults.

The main contribution of this paper is a robust and safe pro-
tocol for both one-copy serializable transaction commitment
and processing despite Byzantine faults. Our protocol is based
on distributed system abstractions and tolerates Byzantine
faults in any client or server (up to a limit). To the best
of our knowledge, there are only three previous works that
support Byzantine fault-tolerant database replication: HRDB
is based on a hybrid fault model, in the sense that it uses
a centralized controller that can not fail in a Byzantine way
[13]; Bizantium is really Byzantine fault-tolerant, but provides

only snapshot isolation, a consistency criterion weaker than
one-copy serializability [14]; BFT Deferred Update is more
similar to ours, but does not tolerate Byzantine clients and
requires multi-version databases (instead of single-version like
ours) [15]. Our work is, therefore, a considerable advance in
relation to those previous works. A more detailed comparison
is provided in the following section.

II. RELATED WORK

Data replication in transaction processing systems has been
much studied considering only crash faults [7], [3]. Byzantine
faults have been mostly forgotten, even though a seminal paper
studied the problem more than two decades ago [16].

For the case of crash faults, Agrawal et al. were the first
to exploit multicast primitives to support data replication in
transaction systems [7]. Their approach was to employ a total
order multicast primitive to simplify replication management,
to provide strong consistency, and to reduce the number of
deadlocks. More recently, Pedone et al. proposed the database
state machine approach (DBSM), in which they replaced the
atomic commit protocol by a total order multicast protocol,
providing a better support to consistency of the replicas under
heavy concurrency [3]. Unfortunately, none of these works can
be used directly to tolerate Byzantine faults on transaction
processing systems, because these systems assume that the
primary replica processes the statements correctly, so the
results of the operations it executes are simply propagated
to the other replicas. If the primary replica was Byzantine,
it might corrupt the state of the system arbitrarily.

In the field of Byzantine faults, the seminal work of Molina
et al. employed Byzantine agreement [8] and state machine
replication [17] with databases, in order to preserve integrity
and consistency of data despite Byzantine faults [16]. However,
their solution imposed a sequential execution of transactions,
thus limiting concurrency. A more recent paper studied a large
number of bugs in DBMSs, which have to be classified as
Byzantine faults because they corrupt data [9]. To tolerate
these faults, the authors proposed a middleware solution to
handle transaction execution and to determine the consistency
of the results by doing voting. Unfortunately, similarly to [16],
their solution does not allow the execution of transactions
concurrently.

Three more recent studies proposed new protocols for
combining concurrency and consistency aspects on transaction
processing with Byzantine faults: HRDB [13], Byzantium [14],
and BFT Deferred Update [15]. All these work are solutions
for database replication.

HRDB is a commit barrier scheduling protocol that al-
lows concurrency between transactions, ensuring one-copy
serializability consistency [13]. However, clients access the
system through a centralized coordinator that cannot fail in
a Byzantine way. The coordinator elects one replica to act as
the primary, leaving the rest as backups. This coordinator is
also responsible for detecting and solving conflicts between
transactions, in order to avoid the occurrence of deadlocks.
Even though the solution is interesting, in practice it is

difficult to justify the assumption of an honest coordinator on
a Byzantine environment.

On the other hand, Byzantium is a protocol that supports
the execution of concurrent transactions in Byzantine envi-
ronments, assuming a weak consistency criterion, snapshot
isolation [14]. However, although snapshot isolation is much
used, the literature shows that it is weaker than one-copy
serializability. There is also evidence that this semantics is
susceptible to anomalies that can affect data integrity [18],
which in a Byzantine environment might be exploited by the
adversary to cause data corruptions intentionally. Byzantium
uses as a building block a BFT state machine replication
library, PBFT [10].

Very recently a new protocol in the area appeared, BFT
deferred update [15]. It is closer to ours and to DBSM than
HRDB or Byzantium and it scales better because multiple
transactions can execute simultaneously at different replicas,
leaving ordering only to the transaction commitment process.
This work is very similar to our solution, in the sense that we
use the same update propagation technique. There are however
several differences: (1) our solution tolerates Byzantine clients,
while theirs does not; (2) we consider a single-version database
to support more DBMSs, while they require a multi-version
database, a feature not supported by some commercial DBMSs;
(3) we do both reads and writes in the primary’s copy of the
database, while they keep writes in a buffer and execute them
only when the transaction is committed.

III. THE PROTOCOL

The goal of this work is to propose and implement a Byzan-
tine fault-tolerant protocol for database replication that uses a
total order multicast primitive and the deferred update prop-
agation principle. This work can be viewed as an adaptation
of the DBSM [3] for Byzantine faults. DBSM, which tolerates
only crash faults, has the following interesting properties: (i) it
provides speculative execution of transactions by the replicas;
(ii) despite replication, there is no need for distributed locks
over data; and (iii) it ensures strong consistency in a fully
distributed way. Moreover, DBSM seems to be fast in the
crash-fault case [3].

Fig. 1. Protocol execution

Our protocol is designed to preserve the ACID proper-
ties (Atomicity, Consistency, Isolation, Durability) even if

up to f ≤ bn−13 c replicas deviate arbitrarily from their
specification (n is the number of replicas). Furthermore, the
protocol seeks good throughput and scalability by using an
optimistic/speculative approach in the transaction operations
execution, in accordance to the deferred update replication
technique [19], [20]. Therefore, during the course of a trans-
action, a client interacts only with a primary replica, and the
propagation of updates happens only when the transaction is
committed. Together with the updates, the primary propagates
also the Read-Set (RS) and the Write-Set (WS), which are the
sets of the identifiers that were respectively read and written
in the transaction.

Briefly, the protocol works as follows (see Figure 1). In
step 1, the client begins a transaction by using the total
order multicast primitive to send a message requesting this
beginning to all replicas. When replicas deliver this message,
they choose a primary for that transaction and reply the primary
id to the client (step 2). Then, the client sends the transaction
operations (reads and writes) directly to the primary replica,
which executes and replies to each operation (steps 3-6). When
the client requests the commitment of the transaction (step
7), it total order multicasts a request commit message to all
replicas. In step 8, the primary replica attaches RS and the WS
for that transaction to the request commit message (delivered
on previous step) and total order multicasts it on a commit
message to all replicas. Upon delivery of the commit message,
every replica (except the primary) executes the transaction
operations and tries to commit the transaction verifying if it is
serializable. If the transaction is serializable, it is committed,
otherwise, it is aborted. Finally, in step 9 every replica replies
the outcome of the transaction to the client. Needless to say,
the total order multicast primitive used in the protocol has to
be Byzantine fault-tolerant [10], [11].

A. System Model

Processes are divided into two sets, C = {c1, c2, ..., cm}
and R = {r1, r2, ..., rn}, that represents clients and replicas,
respectively. The C set has an arbitrary (but not infinite)
number of clients, and the R set has cardinality |R| ≥ 3f +1.
We assume that an unlimited number of clients and up to
f ≤ b |R|−13 c replicas may present Byzantine behavior. If
a process deviates from its specification it is said faulty,
otherwise it is said correct. A faulty process can deviate from
its specification arbitrarily, e.g., by stopping, by omitting to
send, receive or deliver messages, by replying incorrect results
to the clients and by colluding with other faulty processes with
some malicious purpose. Nevertheless, we assume that replicas
fail independently due to the use of diversity [9]. Every replica
has a complete copy of the database, and every database copy
is single-version.

The termination of transactions cannot be ensured in an
asynchronous environment, i.e., in a system in which the delay
of communication and processing is unbounded [21]. Thus, we
assume that system is eventually synchronous, i.e., that bounds
for those delays eventually hold [22]. This model is quite
realistic because periods of asynchrony tend to be followed

by stable periods in which delay bounds do exist. Processes
communicate by message passing, using point-to-point authen-
ticated reliable FIFO channels. We assume that adversaries do
not have power to subvert cryptographic mechanisms (e.g.,
signatures and message digests). We use a collision-resistant
message digest and message authentication codes to ensure
data integrity and authenticity.

We assume that the replicas are deterministic, in the sense
that they support a common subset of data read/write opera-
tions (e.g., ANSI SQL) for which the result of the execution of
an operation is the same in all replicas. We assume that clients
only submit operations within that subset (or that replicas
discard any operations outside that subset). A client submits
a transaction only if it does not have any pending transaction
and, in the context of a transaction an operation is send only
if there are no pending operations.

B. Protocol Overview

As in the classical transaction model [21], in our protocol
a transaction is a block of commands (or operations) which is
initiated by the client using the BEGIN statement, followed by
read and/or write statements, and terminated by the COMMIT
or ABORT statement. Our protocol satisfies the following two
properties:
• Consistency (safety): correct replicas have equivalent

logical state, and clients always get correct answers to
transactions that commit; in other words, the protocol
provides one-copy serializability (1-SR) consistency;

• Termination (liveness): a transaction that reaches the
preparing state eventually ends, even if there are conflict-
ing and/or pending transactions blocking the same data
items, i.e., a transaction in commit phase always ends.

As already pointed out, an obvious solution to make trans-
actions Byzantine fault-tolerant would be to use a BFT state
machine replication protocol. However, this approach is not
adequate because of the overhead of ordering all operations and
the possibility of causing a deadlock between two transactions.
However, considering that a transaction takes effect in the
system only when it is committed, we do not need to order
all operations, but only the transaction commitment. This
idea matches well the notion of deferred updates (or deferred
writes), in which statements are executed speculatively in
only one of the replicas, and propagated to the other replicas
only when the transaction is committed. Similarly to [3], to
ensure serializability we use a total order multicast to send
transaction commit messages along with transaction statements
propagation to the replicas. So, at the end of a transaction, the
commit will happen in every replica in the same order, ac-
cording to total order multicast properties [12], thus producing
serializable executions.

A total order multicast is a protocol that guarantees that
correct processes agree on the messages to be delivered and
on the order of delivery [12]. Formally, a total order multicast
algorithm ensures that: (i) if some process delivers a message
m, then all correct processes deliver m (atomicity); (ii) every
correct process delivers a message m in the same order (total

order); (iii) the correct processes deliver the message m only
if m was previously multicast by some process (integrity); (iv)
every correct process eventually delivers m (termination). Note
that the problem is specified in terms of delivery of messages
to the high level protocol, not of reception of messages at the
process.

Fig. 2. Finite state machine that models the transaction processing protocol

Our protocol can be modeled as a finite state machine
(see Figure 2). The state transitions to the intermediate states
happen according to the type of messages delivered by the
total order multicast protocol, and transitions to the final
states happen according to the final outcome of the transaction
certification test (details in Section III-D).

The normal case operation of the protocol is as follows. The
transaction starts when a client ci sends a BEGIN statement
and message using the total order multicast. This primitive en-
sures that every correct replica delivers this message/statement,
so the transaction moves to the active state. While in active
state, the client sends the operations that compose the transac-
tion to the primary replica only. After all operations are com-
pleted, the client requests the commitment of the transaction by
means of a total order multicast REQCOMMIT message. Upon
delivering REQCOMMIT, all correct replicas become aware
of the transaction operations and their results (the transaction
propagation to all replicas), and then every correct replica
changes the transaction to the ready state. At this point, only
the primary replica does something: it sends a COMMIT
message with the operations and their results (to confirm the
client’s request) through the total order multicast protocol.
Upon delivery of the COMMIT message, every correct replica
changes the state to preparing. Then, they start a commitment
process where the transaction is submitted to a certification
test, in order to verify if it is serializable. If so, the transaction
results received from the primary replica are compared to the
local results and, if they match, the transaction is committed in
the system (and database) and the state changed to committed.
Otherwise, the transaction is aborted. Notice again that the
BEGIN, REQCOMMIT, COMMIT and ABORT statements are
delivered by all replicas in the same order due to the total order
multicast, so all replicas follow the same sequence of states.

C. Begin, Execute, Request Commitment of Transactions

As stated in Section III-A, we assume that every message is
signed and authenticated, so every correct replica receives and
delivers only messages that come from authenticated clients.
To prevent unauthorized entities from accessing objects of the
database, this access is controlled using access control lists
(ACL). The client sends the operations to the primary replica
using a point-to-point reliable FIFO channel, so the operations
are executed by the primary replica in the order they were sent
by the client. To simplify understanding the protocol, we split

the code executed by replicas in two parts, presented in Figures
3 and 4. In Figure 3, lines 12-17 correspond to the beginning
of the transaction, lines 18-31 the speculative execution of
the operations (done by primary replica), and lines 32-41 the
request to commit the transaction. Due to space constraints,
the client-side algorithm was omitted.

Variables:
1:

∏c = ∅ {set of committed transactions}
2:

∏a = ∅ {set of active transactions}
3: ti =⊥ {transaction identifier}
4: t

ops
i

= ∅ {list of transaction operations}
5: tans

i = ∅ {list of result for transaction operations}
6: tli =⊥ {primary replica of a transaction}
7: ttsbi =⊥ {timestamp of beginning}
8: ttsci =⊥ {timestamp of request commit}
9: can commit = false {flag for commit}

10: has exec = false {flag for re-execution}
11: has redo = false {flag for redo}

upon: TO-deliver(ci, 〈BEGIN〉) {beginning of transaction}
12: i ← last transaction id() + 1

13: ttsbi ← delivery order()

14: tli ← i mod |R|
15: state(ti) ← active

16:
∏a ←

∏a ∪{〈ti, t
tsb
i ,⊥, tli, t

ops
i

, tans
i 〉}

17: send(rk, 〈ACTIV E, ti, t
l
i〉) to ci

upon: receive(ci, 〈ri, tj , op
order, op〉) from ci {speculative execution of operations}

18: if ∃tj ∈
∏a ∧ state(tj) = active then

19: 〈ti, t
l
i, t

ops
i

, tans
i 〉 ← get context(

∏a, tj)

20: if rk = tli then
21: if oporder = (max(t

ops
i

) + 1) then
22: result ← execute(op)
23: t

ops
i
← t

ops
i
∪ {op}

24: tans
i ← tans

i ∪ {result}
25: send(rk, 〈result〉) to ci
26: else if oporder = max(t

ops
i

) then
27: result ← tans

i [order]
28: send(rk, 〈result〉) to ci
29: end if
30: end if
31: end if

upon: TO-deliver(ci, 〈REQCOMMIT, tj, t
ops
j

,H(tans
j)〉) {process request commitment}

32: if ∃tj ∈
∏a ∧ state(tj) = active then

33: 〈ti, t
tsb
i ,⊥, tli, t

ops
i

, tans
i 〉 ← get context(

∏a, tj)

34: state(ti) ← ready

35: ttsci ← delivery order()

36: commit data ← commit data ∪ {〈tj , t
tsc
i , t

ops
j

,H(tans
j)〉}

37: if rk = tli then
38: 〈RS,WS〉 ← get readwrite Sets(ti)

39: TO-multicast(rk, 〈COMMIT, ti, t
tsc
i , RS,WS, t

ops
i

,H(tans
i))〉)

40: end if
41: end if

Fig. 3. Transaction begin, execution and request commit protocol executed
by replica rk

The transaction starts when every correct replica delivers
the BEGIN message sent by the client (lines 12-17). Upon this
delivery, replicas assign an id and a timestamp to the new trans-
action (lines 12-13). Function last transaction id() returns
the id of the last transaction and function delivery order()
returns the sequence number of the last message delivered by
the total order multicast primitive. Line 14 defines the primary
replica for that transaction. Then, replicas set their state to
active and include data about the transaction in the set of active
transactions

∏a (lines 15-16). Finally, the replicas send the
client acknowledgements that the transaction started, together
with its id and the primary replica identifier tli. A client accepts
that information when it receives f+1 acknowledgements from
different replicas.

Once a transaction tj is started, the client can execute read
and write operations. They are executed in a speculatively way
by the primary replica rk (lines 18-31). Remember that in
this phase the client interacts only with the primary replica.
When the primary replica receives an operation, it checks
whether transaction tj is valid – a transaction is valid if it

was previously started by every correct replica – and if the
transaction state is active, because this is the only state in
which a transaction can receive statements (cf. Section III-B).
If some of these conditions are false, the operation is simply
discarded. If these conditions are true, the primary replica gets
data about transaction tj from

∏a (function get context()
does this for transaction id) and checks if it is in fact the
primary replica for that transaction in line 20 (a malicious
client can send operations to a replica that is not the primary).
Then, the primary checks whether the operation identifier is
an unit greater than the last executed operation and, if so, it
executes the operation, saves the statement and its results in
retention buffers for future use, and sends the reply to the client
(lines 21-25). Otherwise, if the number of the operation is the
same as the last executed, the replica treats it as a resend to
the last executed statement, so it sends the last result to the
client (lines 26-28).

The code in lines 32-41 deals with the delivery of a
REQCOMMIT message, which is sent by the client to re-
quest the commitment of the transaction. Upon delivery of
REQCOMMIT, every replica verifies if transaction tj is valid
and if its state is active. Then, correct replicas retrieve data
about the transaction from

∏a and set the transaction state
to ready (lines 33-34). From this point, transaction tj is no
longer able to receive and execute new statements, but just
waits for its commitment. In the next step, replicas mark the
order in which REQCOMMIT message was delivered as the
timestamp for the request commit. These timestamps are used
to verify which transactions precede tj . Then, the replicas save
data in set commit data, used later to verify if data provided
by the primary replica is correct. The steps of lines 38-39 are
done just by the primary replica, the only one that has the
results of the operations. It gets the data items affected by
read and write operations (the read and write sets), and sends
this information to all replicas in a COMMIT message. This is
when the transaction is propagated to the group of replicas. The
transaction commit protocol is presented in the next section.

D. Transaction Commit Protocol

This part of the protocol is in Figure 4. Its purpose is to
finish the transaction – committing or aborting it – while
ensuring one-copy serializability consistency [21]. When a
client wishes to commit its transaction, it atomically multicasts
a signed REQCOMMIT message to all replicas. When replicas
deliver this message, just the primary extracts the identifiers
of data records that were affected by that transaction (RS and
WS) and atomically multicasts a signed COMMIT message to
all replicas, in order to confirm the commit request from the
client. The protocol uses signatures as a mean to guarantee that
clients issue commit requests only to their own transactions.

The COMMIT message contains: the identifier of the trans-
action that is being committed (tj); a list of statements
executed in the transaction (topsj); a cumulative hash (mes-
sage digest) based on the results received for each statement
executed by the primary replica (H(tansj)); the identifiers for
each data item affected by read and write operations of the

upon: TO-deliver(rk, 〈COMMIT, tj, t
tsc
j , RS,WS, t

ops
j

,H(tans
j)〉)

1: if ∃tj ∈
∏a ∧ state(tj) = ready then

2: if 〈tj , t
tsc
j , t

ops
j

,H(tans
j)〉 ∈ commit data then

3: 〈ti, i, t
r
i , tli, t

ops
i

, tans
i 〉 ← get context(

∏a, tj)

4: state(ti) ← preparing
5: can certify ← true

6: if tli = rk then
7: if has redo = true then
8: undo transaction(ti)
9: has exec ← true

10: else
11: has exec ← false
12: end if
13: else
14: has exec ← true
15: end if
16: if has exec = true then
17: t

ops
i
←⊥

18: request locks(〈RS,WS, t
ops
j
〉, delivery order())

19: for all tk ∈
∏a : {RS(tk) ∩WS 6= ∅ ∨WS(tk) ∩WS 6= ∅} do

20: if state(tk) = active then
21: abort transaction(tk)
22: else if state(tk) = ready then
23: [undo transaction(tk) ; has redo(tk) ← true]
24: end if
25:

∏a ←
∏a \{tk}

26: end for
27: if acquire locks() = true then
28: for all opj ∈ t

ops
j

do
29: result ← execute(opj)

30: [t
ops
i
← t

ops
i
∪ {opj} ; tans

i ← tans
i ∪ {result}]

31: t
ops
j
← t

ops
j
\ {opj}

32: end for
33: else
34: can certify ← false
35: end if
36: end if
37: if

(¬(∃Tj ∈
∏c : {Tj 9 ti ∧ (WS(Tj) ∩RS 6= ∅)}) ∧ (can certify = true)

then
38: can commit ← true
39: else
40: can commit ← false
41: end if
42: if can commit = true ∧

matches(〈H(t
ops
i

), H(tans
i)〉, 〈H(t

ops
j

), H(tans
j)〉) then

43: [outcome ← COMMITED ; Ti ← ti ;
∏c ←

∏c ∪{Ti} ;
∏a ←∏a \{ti}]

44: [state(ti) ← commited ; commit transaction(Tk)]
45: else
46:

∏a ←
∏a \{ti}

47: [outcome ← ABORTED ; abort transaction(ti)]
48: end if
49: send(rk, 〈outcome, ti〉) to ci
50: else
51:

∏a ←
∏a \{ti}

52: [state(tj) ← aborted ; abort transaction(tj)]

53: send(rk, 〈ABORTED, ti〉) to ci
54: end if
55: end if

Fig. 4. Transaction commit protocol

transaction (RS and WS); and the timestamp that was marked
at delivery of REQCOMMIT message (ttscj), which is impor-
tant to identify concurrent/conflicting transactions. Upon the
delivery of COMMIT, every replica checks if the transaction
is valid and whether it is in the ready state, the only state
in which commit is allowed. The condition of line 2 verifies
if the transaction that the client requested the commitment is
the same that was performed by the primary replica for that
transaction. This step allows to identity spurious transactions
that were created by Byzantine clients or by a Byzantine
primary replica. From this point, the transaction goes to the
preparing state, where it acquires priority on grant locks over
the other active transactions. The flag of line 5 is explained
later. Lines 6-12 are executed only by the primary replica. In
this case, the primary replica firstly checks if transaction must
be executed again (condition from line 7), despite its operations
already performed in speculative way. This can happen if a
transaction in ready state locks some data item that conflicts
with other transaction that are in preparing state (line 23).
Thus, the primary replica undoes the entire transaction (line
8) and marks it for re-execution (line 9). This means that the

transaction will be executed again by the primary replica before
trying to commit it.

Lines 16-36 deal with the execution of the transaction
operations (reads/writes in topsj) by the replicas other than
the primary. The primary replica executed them before spec-
ulatively, so it executes these statements again only if the
condition of line 7 is true. Then, the replicas initialize their
list of received statements for local execution and, in line 18,
they request the appropriated locks for each transaction data
item, as well as for each statement in the received list (topsj).
The lock grant is done purposely over RS and WS together
in order to verify if the statements affect no more data items
that those that are in RS and WS (a Byzantine entity could
send invalid data items or statements). Thus, the locks will be
granted only if the statements and the RS and WS are tuned.
Note that transactions are allowed to lock their data items in the
order in which they are delivered. Afterwards (lines 19-26), the
replicas check if there exists some active transaction running
locally that holds the locks for some data items that will be
affected by the transaction that is being committed, because if
so, the former is preventing the latter from getting the locks.
If

∏a is not empty in line 19, the local running transaction
is: (i) simply aborted, if its state is active; or (ii) undone and
flagged for running again, if its state is ready (note that, at this
point it is not possible to abort the transaction due to the client
having requested its commitment). After that, if the transaction
operations, RS and WS are tuned, the locks are granted and
it starts the execution for statement list delivered along with
COMMIT message (lines 27-32). On the contrary, if the locks
are not granted for some reason, the flag for certification will
be turned off (line 34) and the transaction will be aborted.

If locks are successfully granted, the statements are exe-
cuted, and the replicas have to certify the transaction prior to
its commitment. This procedure is done through a certification
test that will checks if the transaction is consistent and can
be serialized with other committed transactions (i.e., if it is
serializable, line 37). This test is based on Kung-Robinson’s
certification [19], that simply verifies if there are some conflict
between the transaction that is being committed (ti) and
concurrent transactions that were already committed (tj). A
transaction tj is said to be concurrent with (i.e., does not
proceed) transaction ti if it was committed on the interval
between the timestamps of delivery of REQCOMMIT and
COMMIT messages of transaction ti. Any transaction tj that
does not verify this condition is said to precede ti, and is not
considered by the certification test. To help understanding the
certification test, Figure 5 presents a conflict situation. It shows
two transactions, T1 and T2. In this case, the request commit
for T2 is delivered before the request commit for T1, due to
REQCOMMIT message for T2 be delivered at timestamp 6,
while REQCOMMIT message for T1 is delivered at timestamp
8. As long as T2 delivers its COMMIT at timestamp 11, it
is possible to verify that no other transaction was committed
between timestamps 6 and 11, only a request to commit T1 was
delivered. Thus, T2 can be committed safely because there are
no conflict or concurrent transactions that will be considered

by the certification test. As opposed to T2, T1 needs to be
certified against T2, due to T2 having been committed after its
request commit, but before its commit (between timestamps 8
and 19). This means that T2 is concurrent with T1, so, it will be
considered by the certification test on T1 commitment. In this
case, if T1 has been read some data written by T2, T1 will abort
because it will hurt the serializability (a phenomena called
dirty-read); otherwise T1 will be committed. Once transactions
are delivered by correct replicas in the same order, only
read/write conflicts must be avoided, and write/write conflicts
are solved directly by the order of applying updates.

Fig. 5. Sample of concurrent transactions

Finally, if the transaction passes the certification test, it
remains to verify if the results obtained for each statement
on the local execution are the same as those received from the
primary replica (already sent in a speculative way to the client).
This comparison is done through function matches (line 42),
which takes as arguments the hashes that are calculated over
both list of statements and list of results received from primary
and the same hashes calculated over lists gotten from local
execution. If these hashes match, the transaction is committed
and terminated (lines 43-44), otherwise it is aborted (lines 46-
47). Once the transaction is committed, it is included in the
set of committed transactions (

∏c), withdrawn from the set of
active transactions (

∏a), and made persistent in the database
(line 44, commit transaction function). If the transaction
is aborted, it is removed from the set of active transactions
(
∏a) and its statements are undone in the database (line 47,
abort transaction function). At the end, replicas send a reply
to the client (line 49) and, after receiving at least f+1 identical
replies from replicas, the client can determine the transaction’s
outcome.

IV. IMPLEMENTATION AND EVALUATION

This section presents an analytical and an experimental
evaluation of our protocol, which is compared with some of
the other solutions in the literature. Our protocol is simply
designated by OP (from “our protocol”).

A. Analytical Analysis

A first evaluation is a comparison of some of the character-
istics of our protocol with the main related work: HRDB [13],
Byzantium [14] and BFT-Deferred Update (BFT-DU) [15]. The
results reported on Table I come from the transaction commit
protocol of the respective protocols, which is the heaviest part
of the transaction processing. The communication related to
the beginning of the transactions and the operations is not
considered.

TABLE I
COST AND PROPERTIES OF TRANSACTION COMMIT PROTOCOLS (TOMCast IS THE NUMBER OF COMMUNICATION STEPS OF A TOTAL ORDER MULTICAST)

Protocol Features and Properties
Name # Replicas # Communication steps Message complexity Consistency Centralized Byzantine

OP 3f + 1 2(TOMCast) + 1 O(n2) Serializable (Strong) No Servers and Clients
HRDB 2f + 1 + controller 4 O(n) Serializable (Strong) Yes Servers and Clients

Byzantium 3f + 1 (TOMCast) + 1 O(n2) Snapshot (Weaker) No Servers and Clients
BFT-DU 3f + 1 (TOMCast) + 1 O(n2) Serializable (Strong) No Only Servers

Table I shows that in terms of replicas needed, HRDB is the
best solution for f > 1, due to it centralized control. HRDB is
also the best in number of communication steps and message
complexity. Byzantium and BFT-DU have the same number of
steps, because they resort to a single total order multicast on
their transaction commit protocol. Our protocol (OP) uses more
steps because we have two total order multicasts. However,
considering that these protocols are not appropriate for large
scale environments, the relative cost of message transmissions
and number of communication steps is fair. The message
complexity is equal for OP, Byzantium and BFT-DU. The
costs for HRDB are better, which was expected once this
protocol has a centralized control (a weakness, in our opinion),
so it is the coordinator who decides the order to execute the
transaction statements and no agreement is needed.

The good results on number messages of Byzantium and
BFT-DU come from the fact that they invokes only once the
total order multicast protocol, but in Byzantium, its weaker
consistency model (snapshot isolation) requires only to check
write conflicts on data items, because concurrent transactions
can only commit if they do not update the same data items
(the first-committer-wins rule). Although this is favorable to
Byzantium, the snapshot isolation model may be problematic
in some cases, as already pointed out. In the case of BFT-
DU, just one invoke on total order multicast is enough to
achieve commitment, because in this protocol the clients
are reliable (i.e., they are assumed not to suffer Byzantine
faults). So, the transaction commitment becomes simpler. Even
though it needs a higher number of communication steps than
other protocols, ours is the only one that ensures the strong
consistency of data on fully Byzantine environments, tolerating
both Byzantine servers and clients.

B. Experimental Results
We implemented a prototype of our protocol in the context

of a replicated SQL database. The prototype was developed in
order to run with unmodified versions of several commercial
and open source DBMSs as replicas. The implementation was
done in Java due to its underlying security features (sandbox,
memory safety, etc.) and the simple connection with DBMSs
(JDBC). Our experiments involved executing OP and a single
DBMS as a baseline. We did not compare with the other
protocols as we did not have access to their implementa-
tions. Our experiments were conducted using the workload
of the industry standard on-line transaction processing TPC-
C benchmark (http://www.tpc.org/tpcc), which represents a
generic wholesale supplier workload. TPC-C was used not only
to measure the overhead of our protocol, but also to assess

its scalability, as this benchmark produces a high concurrency
workload. TPC-C defines five transaction types: New Order
(NO), Payment (P), Delivery (D), Order Status (OS) and Stock
Level (SL). It is noteworthy that only update transactions may
cause conflicts, i.e., only D, P and NO. These three transaction
types compose 92% of the TPC-C workload, i.e., 92% are read-
write transactions and 8% are read-only transactions.

The experiments were done in a LAN environment with Dell
Optiplex 755 machines, with the following configuration: one
Intel Core 2 Duo 2.33GHz processor, 2GB of RAM and one
NIC/Ethernet Gigabit Interface Intel 82566DM-2. As operating
system we adopted Debian GNU/Linux 6.0 with kernel 2.6.32-
5-686 #1 SMP. The database system used in experiments was
MySQL 5.5.8. In Figure 6(a) the single database results were
taken from MySQL. The JVM we used was Sun 1.6.0 24. Our
experiments were done with four replicas (n = 3f + 1 = 4),
thus at most one faulty replica (f = 1). The servers run in
four machines, but that was not always the case for the clients
that shared other ten machines (i.e. five clients per machine).

The experiments compared the performance of TPC-C with:
a single non-replicated database accessed through standard
JDBC interface (Single DB); a replicated database using
our protocol (OP); a single non-replicated database accessed
through our own JDBC interface (used in our protocol), using
neither replication nor total order multicast (Proxy).

Figure 6 shows the experimental results. The values were
taken from the average of 25 executions of each experiment. As
we can see in Figure 6(a), our replication protocol apparently
scales fairly despite the weight of the commit protocol and
the total order multicasts. This is probably due to the fact
that the protocol rotates the primary for each transaction
started and it is the primary that first, speculatively, executes
transaction operations, so the rotation provides a form of load
balancing. The throughput for a single database and the proxy
configuration are shown for reference, only with one replica
because they do not support replication. The overhead of
our protocol comes mostly from the commit protocol. When
a transaction is requested to commit, every replica starts a
distributed certification process due to the propagation tech-
nique that was adopted: deferred updates. With this technique,
only when the client requests the transaction commitment the
statements executed are propagated to the other replicas, so
that their states can converge. This adds several communication
steps, including two total order multicasts, and processing in
the end of each transaction.

Figure 6(b) shows a second aspect of the performance of the
protocol: it aborts more transactions than the non-replicated

(a) Scalability of TPC-C transactions. (b) Abort rate (%) of TPC-C transactions.

Fig. 6. Measurements on standard TPC-C workload with no batches

database. This higher abort rate is a known side effect of the
use of speculative execution. It is important to notice that the
aborts are also due to the workload of TPC-C. Specifically, we
used a setup that induces some conflicts: 8 warehouses and 10
districts per warehouse.

We believe that these preliminary experiments show that our
protocol has a performance that is competitive with a non-
replicated database, while providing stronger guarantees. They
also show that there are several tradeoffs that lead to better or
worse results in terms of some of the metrics considered, so it
is up to the system designer to decide which is more adequate
for a specific application.

V. CONCLUSION

The paper presents a Byzantine fault-tolerant transaction
processing and commit protocol based on the deferred update
technique, where an arbitrary (but finite) number of clients and
a limited number of servers can fail in Byzantine way. The
design of our protocol is based on the total order multicast
abstraction, a widely used building block for the design of
reliable distributed systems. The deferred update technique is a
largely used database replication strategy, because it is consid-
ered to be more scalable than other replication strategies. Also,
our protocol ensures strong consistency through serializability,
and it is the first that tolerates Byzantine clients and servers
in a fully distributed way in this consistency model.

Acknowledgments: This work was partially supported by
CNPq (Brazilian National Research Council) through processes
482175/2010-9 and 560258/2010-0 and FCT through the PID-
DAC Program funds (INESC-ID multiannual funding) and project
PTDC/EIA-IA/100581/2008 (REGENESYS)

REFERENCES

[1] B. W. Lampson, “Atomic transactions,” in Distributed Systems - Archi-
tecture and Implementation, An Advanced Course. Springer-Verlag,
1981, pp. 246–265.

[2] A. Schiper and M. Raynal, “From group communication to transactions
in distributed systems,” Communications of the ACM, vol. 39, pp. 84–87,
April 1996.

[3] F. Pedone, R. Guerraoui, and A. Schiper, “The database state machine
approach,” Distributed and Parallel Databases, vol. 14, no. 1, pp. 71–98,
2003.

[4] O. Babaoğlu and S. Toueg, “Non-blocking atomic commitment,” in
Distributed systems, 2nd ed. ACM Press/Addison-Wesley, 1993, pp.
147–168.

[5] R. Guerraoui and A. Schiper, “The generic consensus service,” IEEE
Transactions on Software Engineering, vol. 27, pp. 29–41, January 2001.

[6] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of replication
and a solution,” in SIGMOD ’96: Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1996, pp. 173–182.

[7] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi, “Exploiting atomic
broadcast in replicated databases (extended abstract),” in Euro-Par’97:
Proceedings of the 3rd International Euro-Par Conference on Parallel
Processing, 1997, pp. 496–503.

[8] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM Transactions on Programing Languages and Systems, vol. 4,
no. 3, pp. 382–401, Jul. 1982.

[9] I. Gashi, P. T. Popov, and L. Strigini, “Fault tolerance via diversity
for off-the-shelf products: A study with SQL database servers,” IEEE
Transactions on Dependable and Secure Computing, vol. 4, no. 4, pp.
280–294, 2007.

[10] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in OSDI
’99: Proceedings of the 3rd Symposium on Operating Systems Design
and Implementation, Feb. 1999, pp. 173–186.

[11] P. Zielinski, “Paxos at war,” University of Cambridge Computer Labo-
ratory, Cambridge, UK, Tech. Rep. UCAM-CL-TR-593, Jun. 2004.

[12] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and multicast
algorithms: Taxonomy and survey,” ACM Computing Surveys, vol. 36,
no. 4, pp. 372–421, Dec. 2004.

[13] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden, “Tolerating
byzantine faults in transaction processing systems using commit barrier
scheduling,” in SOSP’07: Proceedings of 21st ACM Symposium on
Operating Systems Principles, Oct. 2007.

[14] R. Garcia, R. Rodrigues, and N. Preguiça, “Efficient middleware for
byzantine fault-tolerant database replication,” in Proceedings of the 6th
European conference on Computer Systems - EuroSys’11. ACM, 2011.

[15] F. Pedone, N. Schiper, and J. Armendáriz-Iñigo, “Byzantine fault-tolerant
deferred update replication,” in Proceedings of the 5th Latin-American
Symposium on Dependable Computing - LADC’11. SBC, 2011.

[16] H. G. Molina, F. Pittelli, and S. Davidson, “Applications of byzantine
agreement in database systems,” ACM Transactions on Database Sys-
tems, vol. 11, no. 1, pp. 27–47, 1986.

[17] F. B. Schneider, “Implementing fault-tolerant service using the state
machine approach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299–319, Dec. 1990.

[18] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil,
“A critique of ansi SQL isolation levels,” in SIGMOD’95: Proceedings
of the 1995 ACM SIGMOD International Conference on Management of
Data, 1995, pp. 1–10.

[19] H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” ACM Transactions on Database Systems, vol. 6, pp. 213–226,
June 1981.

[20] B. W. Lampson, “Lazy and speculative execution in computer systems,”
in OPODIS’06: Proceedings of the 10th International Conference on
Principles of Distributed Systems, ser. Lecture Notes in Computer
Science, A. A. Shvartsman, Ed., vol. 4305. Springer-Verlag, 2006,
pp. 1–2.

[21] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[22] C. Dwork, N. A. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of ACM, vol. 35, no. 2, pp. 288–322, Apr.
1988.

