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ABSTRACT
After more than a decade of research, web application secu-
rity continues to be a challenge and the backend database
the most appetizing target. The paper proposes preventing
injection attacks against the database management system
(DBMS) behind web applications by embedding protections
in the DBMS itself. The motivation is twofold. First, the ap-
proach of embedding protections in operating systems and
applications running on top of them has been effective to
protect these applications. Second, there is a semantic mis-
match between how SQL queries are believed to be executed
by the DBMS and how they are actually executed, leading
to subtle vulnerabilities in protection mechanisms. The ap-
proach – SEPTIC – was implemented in MySQL and evalu-
ated experimentally with web applications written in PHP
and Java/Spring. In the evaluation SEPTIC has shown nei-
ther false negatives nor false positives, on the contrary of
alternative approaches, causing also a low performance over-
head in the order of 2.2%.

Keywords
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1. INTRODUCTION
Web applications are an important component of today’s

economy, with major players such as Google, Facebook and
Yahoo. However, after more than a decade of research, web
application security continues to be a challenge. For exam-
ple, recently SQL injection (SQLI) attacks have allegedly
victimized 12 million Drupal sites [4], SQLI attacks were
considered an important threat against critical infrastruc-
tures [16], and stored cross-site scripting (XSS) was used to
inject malicious code in servers running Wordpress [29].

The mechanisms most commonly used to protect web ap-
plications from malicious inputs are web application fire-
walls (WAFs), sanitization/validation functions, and pre-
pared statements in the application source code. The first

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’16, March 09-11, 2016, New Orleans, LA, USA
c© 2016 ACM. ISBN 978-1-4503-3935-3/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2857705.2857723

two mechanisms, respectively, inspect web application in-
puts and block and sanitize those that are considered mali-
cious/dangerous, whereas the third bounds inputs to place-
holders in the query. Other anti-SQLI mechanisms have
been presented in the literature, but barely adopted. Some
of these mechanisms monitor SQL queries and block them if
they deviate from certain query models, but the queries are
inspected without full knowledge about how the server-side
scripting language and the DBMS process them [6, 7, 13,
34, 20]. In all these cases, administrators and programmers
make assumptions about how the server-side language and
the DBMS work and interact, which sometimes are simplis-
tic, others blatantly wrong. For example, programmers of-
ten assume that PHP function mysql_real_escape_string al-
ways effectively sanitizes inputs and prevents SQLI attacks,
which is not true, or they may ignore that data may be
unsanitized when inserted in the DBMS leading to second-
order SQLI vulnerabilities.

We argue that such simplistic or wrong assumptions are
caused by a semantic mismatch between how an SQL query
is expected to run and what actually occurs when it is exe-
cuted. This mismatch leads to unexpected vulnerabilities in
the sense that mechanisms such as those mentioned above
can become ineffective, resulting in false negatives (attacks
not detected). To avoid this problem, these attacks could be
handled after the server-side code processes the inputs and
the DBMS validates the queries, reducing the amount of as-
sumptions that are made. The mismatch and this solution
are not restricted to web applications.

Today operating systems are much more secure than years
ago due to the deployment of automatic protection mecha-
nisms in themselves, in core libraries (e.g., .NET and glibc),
and in compilers. For example, address space layout ran-
domization, data execution prevention, or canaries/stack
cookies are widely deployed in Windows and Linux [15, 19].
These mechanisms block a large range of attacks irrespec-
tively of the programmer following secure programming prac-
tices or not. Clearly, something similar would be desirable
for web applications. The DBMS is an interesting location
to add these protections as it is a common target for attacks.

We propose modifying –“hacking”– DBMSs to detect and
block attacks in runtime without programmer intervention.
We call this approach SElf-Protecting daTabases preventIng
attaCks (SEPTIC). In this paper, we focus on the two main
categories of attacks related with databases: SQL injection
attacks, which continue to be among those with highest risk
[37] and for which new variants continue to appear [27], and
stored injection attacks, which also involve SQL queries. For



SQLI, we propose detecting attacks essentially by comparing
queries with query models, taking to its full potential an idea
that has been previously used only outside of the DBMS [6,
7, 13, 34] and circumventing the semantic mismatch prob-
lem. For stored injection, we propose having plugins to deal
with specific attacks before data is inserted in the database.

We demonstrate the concept with a popular deployment
scenario: MySQL, probably the most popular open-source
DBMS [30], and PHP, the language more used in web appli-
cations (more than 77%) [17]. We also explore Java/Spring,
the second most employed programming language. We eval-
uate SEPTIC experimentally to assess its effectiveness to
block attacks, including a set of novel SQLI attacks pre-
sented recently [27]. SEPTIC is compared with a set of al-
ternative solutions, including the ModSecurity WAF and re-
cent anti-SQLI mechanisms proposed in the literature, with
SEPTIC showing neither false negatives nor false positives,
on the contrary of the others. We also evaluate the impact of
our approach on the performance of web applications using
BenchLab [8]. The overhead was very low, around 2.2%.

The main contribution of this paper is a mechanism that
comes out of the box with the DBMS to detect and block
injection attacks against the DBMS inside the DBMS itself.
Moreover, by being placed inside the DBMS, the mechanism
is able to mitigate the semantic mismatch problem and han-
dle sophisticated SQL injection and stored injection attacks.

2. DBMS INJECTION ATTACKS
We define semantic mismatch as the distance between

how programmers assume SQL queries are executed by the
DBMS and how queries are effectively executed. This mis-
match often leads to mistakes in the implementation of pro-
tections in the source code of web applications, letting these
applications vulnerable to SQL injection and other attacks
involving the DBMS. The semantic mismatch is subjective
in the sense that it depends on the programmer, but some
mistakes are usual. A common way to try to prevent SQLI
consists in sanitizing user inputs before they are used in SQL
queries. For instance, in PHP mysql_real_escape_string pre-
cedes special characters like the prime or the double prime
with a backslash, transforming these delimiters into normal
characters. However, sanitization functions do not behave as
envisioned when the special characters are represented dif-
ferently from expected. This problem has lead us to use the
term semantic mismatch to refer to the gap between how the
SQL queries that take these sanitized inputs are believed to
be executed by the programmer, and how they are actually
processed by the DBMS.

We identified several DBMS injection attacks in the liter-
ature, including a variety of cases related to semantic mis-
match [9, 11, 12, 22, 27, 31]. Table 1 organizes these at-
tacks in classes. The first three columns identify the classes,
whereas the fourth and fifth state what PHP sanitization
functions and the DBMS do to the example malicious in-
puts in the sixth column.

As mentioned in the introduction, we consider two main
classes of attacks: SQL injection and stored injection (first
column). These classes are divided in sub-classes for com-
mon designations of attacks targeted at DBMSs (A to C).
Obfuscation attacks (class A) are the most obvious cases of
semantic mismatch. Classes S.1 and S.2 classify attacks in
terms of the way they affect the syntactic structure of the
SQL query. Class S.1 is composed of attacks that modify

this structure. Class S.2 is composed of attacks that modify
the query but mimic its original structure.

Class A, obfuscation, contains five subclasses. Consider
the code excerpt in Fig. 1 that shows a login script that
checks if the credentials the user provides (username, pass-
word) exist in the database.1 The user inputs are sanitized
by the mysql_real_escape_string function (lines 1-2) before
they are inserted in the query (line 3) and submitted to the
DBMS (line 4). If an attacker injects the admin’- - string
as username (line 1), the $user variable receives this string
sanitized, with the prime character preceded by a backslash.
The user admin\’- - does not exist in the database so this
SQLI attack is not successful.

1 $user = mysql_real_escape_string($_POST[’username ’]);
2 $pass = mysql_real_escape_string($_POST[’password ’]);
3 $query = "SELECT * FROM users WHERE username=’$user’

AND password=’$pass’";
4 $result = mysql_query($query);

Figure 1: Script vulnerable to SQLI with encoded charac-
ters.

On the contrary, this sanitization is ineffective if the input
uses URL encoding [5], leading to an attack of class A.1.
Suppose the attacker inserts the username URL-encoded:
%61%64%6D%69%6E%27%2D%2D%20. mysql_real_escape_string func-
tion does not sanitize the input because it does not recognize
%27 as a prime. However, MySQL receives that string as part
of a query and decodes it, so the query executed is SELECT *

FROM users WHERE username=’admin’- - ’ AND password=’foo’.
The attack is therefore effective because this query is equiva-
lent to SELECT * FROM users WHERE username=’admin’ (no pass-
word has to be provided). This is also an attack of class S.1
as the structure of the query is modified (the part that checks
the password disappears). The other subclasses of class A
involve similar techniques. In class A.2 the attacker encodes
some characters in Unicode, e.g., the prime as U+02BC. In A.3
decoding involves calling dynamically a function (e.g., the
prime is encoded as char(39)). Class A.4 attacks use spaces
and equivalent strings to manipulate queries (e.g., conceal-
ing a space with a comment like /**/) [9]. A.5 attacks abuse
the fact that numeric fields do not require values to be en-
closed with primes, so a tautology similar to the example we
gave for A.1 can be caused without these characters, fooling
sanitization functions like mysql_real_escape_string.

Stored procedures that take user inputs may be exploited
similarly to queries constructed in the application code (class
B). These inputs may modify or mimic the syntactic struc-
ture of the query, leading to attacks of classes S.1 or S.2.
Blind SQLI attacks (class C) aim to extract information
from the database by observing how the application responds
to different inputs, so they also fall in classes S.1 or S.2.

Class D attacks – stored injection – are characterized by
being executed in two steps: the first involves doing an SQL
query that inserts attacker data in the database (INSERT, UP-
DATE); the second uses this data to complete the attack. The
specific attack depends on the data inserted in the database
and how it is used in the second step. In a second order
SQLI attack (class D.1) the data inserted is a string spe-
cially crafted to be inserted in a second SQL query exe-
cuted in the second step. This second query is the attack

1All examples included in the paper were tested with Apache
2.2.15, PHP 5.5.9 and MySQL 5.7.4



Class Class name PHP sanit. func. DBMS Example malicious input
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n A Obfuscation
A.1 - Encoded characters do nothing decodes and executes %27, 0x027

A.2 - Unicode characters do nothing translates and executes U+0027, U+02BC

A.3 - Dynamic SQL do nothing completes and executes char(39)

A.4 - Space character evasion do nothing removes and executes char(39)/**/OR/**/1=1- -

A.5 - Numeric fields do nothing interprets and executes 0 OR 1=1- -

B Stored procedures sanitize executes admin’ OR 1=1

C Blind SQLI sanitize executes admin’ OR 1=1
s
t
e
d
.

in
j. D Stored injection code

D.1 - Second order SQLI – executes any of the above
D.2 - Stored XSS – – <script>alert(’XSS’)</script>
D.3 - Stored RCI, RFI, LFI – – malicious.php

D.4 - Stored OSCI – – ; cat /etc/passwd

S.1 Syntax structure sanitize executes admin’ OR 1=1

S.2 Syntax mimicry sanitize executes admin’ AND 1=1- -

RCI: Remote Code Injection; RFI:Remote File Inclusion; LFI: Local File Inclusion; OSCI: OS Command Injection

Table 1: Classes of attacks against DBMSs.

itself, which may fall in classes S.1 or S.2. This is another
case of semantic mismatch as the sanitization created by
functions like mysql_real_escape_string is removed by the
DBMS when the string is inserted in the database (first step
of the attack). A stored XSS (class D.2) involves inserting a
browser script (typically JavaScript) in the database in the
first step, then returning it to one or more users in the sec-
ond step. In class D.3 the data inserted in the database can
be a malicious PHP script or an URL of a website contain-
ing such a script, resulting on local or remote file inclusion,
or on remote code injection. In class D.4 attacks the data
that is inserted is an operating system command, which is
executed in the second step.

3. THE SEPTIC APPROACH
This section presents the SEPTIC approach. The idea

consists in having a module inside the DBMS that processes
every query it receives in order to detect attacks against the
DBMS. We designate both the approach and this module by
SEPTIC. This approach circumvents the semantic mismatch
problem as detection is executed near the end of the data
flow entering the DBMS, just before it executes the query.

3.1 SEPTIC overview
This section presents an overview of the approach. Fig. 2(a)

represents the architecture of a web application, including
the DBMS and SEPTIC. This module is placed inside the
DBMS, after the parsing and validation of the queries. There
may be also hooks inside the server-side language engine
(Section 3.3).

In runtime SEPTIC works basically the following way:

1. Server-side application code: requests the execution of
a query Q;

2. Server-side language engine: receives Q and sends it
to the DBMS; it may add an identifier (ID) to Q;

3. DBMS: receives, parses, validates, and executes Q; be-
tween validation and execution, SEPTIC detects and
possibly blocks an incoming attack.

Fig. 2(b) provides more details on the operation of SEP-
TIC. The figure should be read starting from the gray arrow
at the top/left. Dashed arrows and dashed processes repre-
sent alternative paths.

When a web application is started, SEPTIC has to un-
dergo some training before it enters in normal execution.
Training is typically done by putting SEPTIC in training

mode and running the application for some time without at-
tacks (Section 3.5). Training results in a set of query models
(QM) stored in SEPTIC.

In normal execution, for every query SEPTIC receives, it
extracts the query ID and the query structure (QS). If no ID
is provided, SEPTIC generates one (Section 3.3). SEPTIC
detects attacks first by comparing the query structure (QS)
with the query model(s) stored for that ID. If there is no
match, an SQLI attack was detected. Otherwise, SEPTIC
uses a set of plugins to discover stored injection attacks. If
no attack is detected the query is executed.

The action taken when an attack is detected depends on
the mode SEPTIC is running. In prevention mode, SEPTIC
aborts the attacks, i.e., it drops the queries and the DBMS
stops the query processing. In detection mode, queries are
executed, not dropped. In both modes of operation, SEP-
TIC logs information about the attacks detected.

In summary, SEPTIC runs in three modes, one for train-
ing (training mode) and two for normal operation (preven-
tion mode and detection mode).

The following sections present the approach in detail.

3.2 Query structures and query models
As explained in the previous section, in prevention and

detection modes SEPTIC finds out if a query is an attack
by comparing the query structure with the query model(s)
associated to the query’s ID.

We consider that SEPTIC receives the parse tree of every
query represented as a list of stacks data structure. Each
stack of the list represents a clause of the query (e.g., SE-

LECT, FROM, WHERE), and each of its nodes contains data about
the query element, such as category (e.g., field, function,
operator), data type (e.g., integer, string), and data.

The query structure (QS) of a query is constructed by
creating a single stack with the content of all the stacks
in the list of stacks of a query. Fig. 3 depicts a generic
query structure, showing from bottom to top the clauses
and their elements. Each node (a row) represents an element
of the query. Each node is composed by the element type
(category) and the element data: 〈elem type, elem data〉.
The single exception is the alternative format 〈data type,

data〉 that represents an input inserted in the query and
its (primitive) data type (data type). A part of the query
is considered to be an input if its type is primitive (e.g., a
string or an integer) or if it is compared to something in a
predicate. For the clauses with conditional expressions (e.g.,
WHERE) the elements are inserted in QS by doing post-order
traversal of the parse tree of the query (i.e., the left child is
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Figure 2: Architecture and data flows of a web application and SEPTIC (optional components in gray).

elem_type elem_data

... ...

elem_type elem_data

clause_name elem_data

(...) (...)

elem_type elem_data

... ...

elem_type elem_data

clause_name elem_data

elem_type elem_data_R

elem_type elem_data_ri

elem_type elem_data_le

WHERE empty

(...) (...)

elem_type elem_data

... ...

elem_type elem_data

clause_name elem_data

Figure 3: A generic query structure.

visited and inserted in the stack first, then the right child,
and so on until the root).

As mentioned in the previous section, in training mode
SEPTIC creates query models. Specifically, it creates a
query model (QM) whenever the DBMS processes a query,
but stores it only if that model is not yet stored for that
query ID. The query model is created based on the query
structure of the query. The process consists simply in sub-
stituting data by a special value ⊥ in all 〈data type, data〉
nodes to denote that these fields shall not be compared dur-
ing attack detection (Section 3.4). All the other nodes are
identical in QM and QS.

Take as example the query SELECT name FROM users WHERE

user=’alice’ AND pass=’foo’. Fig. 4 represents its (a) parse
tree, (b) structure (QS), and (c) model (QM). In Fig. 4(b)
and (c) the gray items at the bottom have data about the
SELECT and FROM clauses, whereas the rest are about the WHERE

clause. In Fig. 4(b) the inputs are represented in bold and
in Fig. 4(c) they have the special value ⊥ as explained. In
the left-hand column, each item of the query takes a cat-
egory (field, data type, condition operator, etc.), whereas
the right-hand column has the query’s keywords, variables
and primitive data type. Primitive data types (real, integer,
decimal and string) also take a category, such as string item

(e.g., in the third row).

3.3 Query identifiers
Each query received by the DBMS has to be verified against

one or more query models. Query identifiers (IDs) are used

to match queries to their models. More specifically, each
query is assigned an ID and for each ID the training mode
creates a set of one or more models. The SEPTIC module
matches a query to a set of models. From the point of view
of the module, IDs are opaque, i.e., their structure is not
relevant.

SEPTIC can use three kinds of IDs, depending on where
they are generated: in the server-side language engine (SSLE),
in the DBMS, and outside both the SSLE and the DBMS.
We explain them below.

3.3.1 SSLE-generated IDs
The SSLE is arguably the best place to generate the IDs,

because this can let the application administrator oblivious
to the existence of IDs. Fig. 2(b) shows how this would work
generically (SSLE in the left-hand side).

Ideally, every query issued by an application should have
a unique ID (Section 3.4) and the SSLE can provide this in
many cases. For instance, in the example of Fig. 1 there
should be a unique ID for the query constructed in line 3
and issued in line 4. In training mode a model with this
ID would be constructed and in prevention/detection modes
any query issued there would have the same ID. This would
allow comparing the queries against the model without con-
fusion with queries issued elsewhere in the application source
code. The SSLE can create this ID when it sees a call to
function mysql_query. The ID may contain data such as file
/ line number in which the query is issued. However, this is
not enough because many applications have a single function
that calls the DBMS with different queries. This function
is called from several places in the application, but the file
and line number that calls the DBMS is always the same.

We consider the ID format to be a sequence of file:line
pairs separated by the character |, one pair per each function
entered while the query is being composed. Specifically, the
first pair corresponds to the line where the DBMS is called
and the rest to lines where the query is passed as argument
to some function. file contains the complete path to allow
distinguishing even queries from different applications using
the same DBMS.

Assume that the code sample of Fig. 1 is in file login.php.
The query is created in the same function that calls the func-
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Figure 4: Representation of a query as parse tree, structure (QS) and model (QM).

tion mysql_query, so the ID is simply login.php:4, meaning
that the DBMS is called in line 4 of file login.php. Consider
a second example in which line 4 is substituted by $result

= my_db_query($query), that function my_db_query is defined
in file my_db.php, and that that function calls the DBMS
using mysql_query in line 10 of that file. In this example,
the ID is my db.php:10 | login.php:4. This ID format is not
guaranteed to generate unique IDs in all situations, but we
observed no cases in which it did not. In these examples we
show the filename without the full pathname for readability.

3.3.2 DBMS-generated IDs
Whenever the SEPTIC module in the DBMS receives a

query without ID (e.g., because the SSLE does not generate
IDs), it generates an ID automatically (Fig 2(b), gray boxes
inside SEPTIC). The DBMS is unaware of what kind of
client calls it (e.g., if it is an SSLE), much less about the web
application source code. Therefore this ID has a different
format. Similarly to SSLE-generated IDs, the application
administrator can be oblivious to DBMS-generated IDs.

The ID format is the SQL command (typically SELECT) fol-
lowed by the number of nodes of the query structure. For the
example of Fig. 1 that has the query structure of Fig. 4(b)
the ID would be select 9.

3.3.3 IDs generated outside the DBMS and the SSLE
In the previous two kinds of IDs the web application ad-

ministrator is left aside from the process of assigning IDs to
queries. If for some reason these kinds of IDs are not desir-
able, the administrator can define his own IDs. These IDs
can have any format, e.g., a sequential number or the same
format used in SSLE-generated IDs. They can be added to
the queries in a few ways: (1) they may be appended to the
query when it is defined or when the DBMS is called; or (2)
a wrapper may be inserted between the applications code
and the DBMS.

3.4 Attack detection
This section explains how SEPTIC detects attacks by di-

viding the categories of Table 1 in two groups that are de-
tected differently: SQL injection and stored injection. The
former contains the classes A to C and D.1, whereas the lat-
ter contains class D (except D.1). Class D.1 is also a form
of stored injection, but it more convenient to detect these
attacks using the approach to discover SQLI.

3.4.1 SQLI detection
SEPTIC detects SQLI attacks by verifying if queries fall

in classes S.1 and S.2. We say that attack classes S.1 and S.2

are primordial for SQL injection because any SQLI attack
falls in one of these two categories. The rationale is that if
an SQLI attack neither modifies the query structure (class
S.1) nor modifies the query mimicking the structure (class
S.2), then it must leave the query unmodified, but then it is
not an SQL injection attack.

SEPTIC detects SQLI attacks by comparing each query
with the query models for the query’s ID structurally (for
class S.1) and syntactically (for class S.2). An attack is
flagged if there are differences between the query and all the
models for its ID.

Given a query Q with a certain ID and its query structure
QS, detection involves iterating all the models QMi stored
for ID. For every QMi there are two steps: (1) Structural
verification – if the number of items in QS is different from
the number of items in QMi, then Q does not match the
model QMi and detection for QMi ends. (2) Syntactical
verification – if the data type of any of the items of QS is
different from the type of any of the items of QMi (except
primitive types), then Q does not match the model QMi and
detection for QMi ends. Items are compared starting at the
top and going down the QS and QM stacks as represented
in Figures 4(b)–(c). Primitive data types (real, integer, dec-
imal and string) are an exception because DBMSs implicitly
make type-casting between them (e.g., integer to string), so
these types are considered equivalent. This process is iter-
ated for all query models QMi stored for ID. If Q matches
one of the models, there is no attack; otherwise there is an
attack. The action taken depends on the mode in which
SEPTIC is running: in prevention mode the query process-
ing is aborted; in detection mode the query is executed.

As mentioned in Section 3.3, IDs should be unique, so
that a single query model QM would be stored for each ID
during training. From that point of view DBMS-generated
IDs are the worst option as they do not ensure uniqueness,
except in applications with a very small number of queries.
SSLE-generated IDs tend to be unique and IDs generated
outside the DBMS and the SSLE may be created unique.

3.4.2 Stored injection detection
Stored injection attacks have two steps. In the first, ma-

licious data is inserted in the database; in the second that
data is taken from the database and used. For example, for
stored XSS (D.2) the data includes a script to be executed
at the victims’ browsers; in the first step it is stored in the
database; in the second step that script is taken from the
database and sent to a browser. These attacks cannot be
detected as SQLI because they do not work by modifying



queries. Therefore, we employ a different solution based on
the idea of detecting the presence of malicious data.

SEPTIC detects the presence of malicious data in queries
that insert data in the database (first step of the attacks).
To do this detection, SEPTIC contains a set of plugins, typ-
ically one for each type of attack. The plugins analyze
the queries searching for code that might be executed by
browsers (JavaScript, VB Script), by an operating system
(shell script, OS commands, binary files) or by server-side
scripts (php). Since running the plugins may introduce some
overhead, the mechanism is applied in two steps: (1) Filter-
ing – searches for suspicious strings such as: <, >, href, and
javacsript attributes (D.2); protocol keywords (e.g., http)
and extensions of executable or script files (e.g., exe, php)
(D.3); special characters (e.g., ; and |) (D.4). If none is
found, detection ends. (2) Testing – consists in passing the
input to the proper plugin for inspection. For example, if the
filtering phase finds the href string, the data is provided to a
plugin that detects stored XSS attacks. This plugin inserts
the input in a simple HTML page with the three main tags
(<html>, <head>, <body>), and then calls an HTML parser
to determine if other tags appear in the page indicating the
presence of a script.

3.5 Training
As explained in Section 3.1, whenever an application is

put to run, SEPTIC has to be subjected to training. This
is necessary for SEPTIC to create the models of the queries
for SQLI detection (Section 3.4.1). There are two methods
to do training: training phase and incremental.

The first method – training phase – involves putting SEP-
TIC in training mode and executing all queries of the web
application with correct inputs (i.e., inputs that are not at-
tacks). For every query a model is created and stored, unless
the same model is already stored for the same ID. If there
is already a model (or more) associated to that ID and the
model created is different, then ID becomes associated to
two (or more) models. After this is done, SEPTIC can be
put in prevention or detection mode and no further inter-
vention from the administrator is needed. The execution
of all queries can be achieved in two fashions: (1) using
the unit tests of the application; or (2) with the assistance
of an external module, called septic training. This mod-
ule is a web client that works as a crawler. For each web
page, it searches for HTML forms and extracts information
about the submission method, action, variables and values.
Then, it issues HTTP requests for all forms, causing the SQL
queries to be sent to the DBMS. These queries can contain
user inputs generated by the training module, can be static,
or can depend on the results of other queries.

In the second training method – incremental – SEPTIC
runs in prevention or detection mode all the time, with-
out the need to switch modes and run an explicit training
phase. This is very convenient and efficient as long as no at-
tacks happen before the models are created. In both modes,
for every query SEPTIC obtains the query structure (QS),
gets the set of QMs associated to the query ID, and com-
pares QS with every QM in the set, as explained in Section
3.4.1. From the point of view of training, the relevant case
is when there is no QM associated with the ID. In this sit-
uation, SEPTIC behaves as if it was in the training phase
and creates and stores the query model. The administra-
tor is notified and should confirm that the model was built

with a correct query, as it did not appear previously. This
verification, however, is not critical for two reasons: (1) it
is highly unlikely that the first query with a certain ID in a
web application is malicious (attackers take time to find the
application and to learn how it works); (2) in the unlikely
case of the model being built with a malicious query, this
will become conspicuous as correct queries will start being
detected as attacks, which will call attention.

In case there are modifications to the application code we
envisage two cases. If the changes are not significant, SEP-
TIC can continue in detection or prevention mode, building
new QMs incrementally (incremental method). If the ap-
plication code suffers many changes, SEPTIC can be put in
training mode (training phase method) and all QMs of the
application are rebuilt. In this case, the existent QMs are
substituted for the new ones. However, in both cases the
administrator can opt for either training method. An inter-
esting case is if a query changes from line x to line y in the
new version of application with SSLE-generated IDs. This
is not problematic if the training phase method is used, as
all QMs are rebuilt. In the incremental method two unlikely
scenarios may happen: (1) the QM of the query of line y is
created and associated to a IDy not in use or to an existent
IDy; (2) the IDx (query from line x) receives a new QM,
if the line x has now a different query. In both cases the
old QMs stored for IDx and IDy are checked for the queries
that come with those IDs with the new version of the appli-
cation. Even if SEPTIC checks that they do not match the
old QMs, they match the new QMs, so SEPTIC does not
flag an attack (no false positives). False negatives (attacks
not detected) are possible as a wrong QM will be associated
to an ID, but this is unlikely to happen for two reasons: the
two scenarios above are unlikely as a query would have to
move to the same line of another; an attack against one of
the queries would have to match the QM of the other query.

4. IMPLEMENTATION IN MYSQL AND
LANGUAGE RUNTIMES

This section explains how SEPTIC was implemented in
MySQL and the creation of identifiers implemented in two
contexts: for PHP applications by modifying the PHP run-
time (Zend engine); and for web applications implemented
in the Spring framework in Java, using aspect oriented pro-
gramming and a pair of alternatives. The first solution
involves a few modifications to the engine’s source code,
whereas the second does not. Table 2 summarizes the changes
made to those software packages.

The implementation of query identifiers has to be com-
patible with all the components we have been discussing:
application source code, SSLE, and DBMS. Specifically, it
is important that having SEPTIC in the DBMS or generat-
ing IDs in the SSLE does not require modifications to the
other components. The solution is to place the identifiers
inside DMBS comments. SEPTIC assumes that the first
comment in a query is the ID. We place the comment at the
beginning of the query, before the query proper.

4.1 Protecting MySQL
We implemented SEPTIC – i.e., the center and right-hand

side of Fig. 2(b) – in MySQL 5.7.4. We modified a single file
of the package (sql_parser.cc) and added a new header file
(SEPTIC detector) and a configuration file (SEPTIC setup),



Software sfm sfc loc sa

MySQL 5.7.4
- sql_parser.cc 1 – 14 –
- SEPTIC detector – 1 1570 plugins
- SEPTIC setup – 1 15 –
- septic training – 1 380 –

Zend engine / PHP 5.5.9
- mysql extension 1 – 6 –
- mysqli extension 2 – 21 –
- SEPTIC identifier – 1 249 –

Spring 4.0.5 / Java
- JdbcTemplate.java 1 – 16 –
- SEPTIC identifier – 1 – –

sfm: source file modified loc: lines of code
sfc: source file created sa: software added

Table 2: Summary of modifications to software packages.

plus the plugins, which are external to the DBMS (e.g., for
stored XSS the plugin is essentially the jsoup library [18]).
The septic training module is not only external but also runs
separately from the DBMS.

The lines added to the sql_parser.cc file were inserted in
function mysql_parse, and just before the call to the func-
tion mysql_execute_command that executes the query. These
lines call the SEPTIC detector with an input corresponding
to the query parsed and validated by MySQL. The mod-
ule performs the previously described operations: builds the
query structure (QS); compares QS with its query model
(QM); logs que query and the ID if an attack is detected;
and optionally drops the query.

SEPTIC is configured using a few switches. The first al-
lows putting SEPTIC in training mode, detection mode (logs
attacks), or prevention mode (logs and blocks attacks). The
other two allow enabling and disabling respectively the de-
tection of SQLI and stored injection attacks. The values
for these switches are defined in a configuration file (SEP-
TIC setup) that is read by MySQL whenever it is started
or restarted. A typical routine consists in setting the first
switch to training mode and the other two to on, starting
the DBMS and the web server, running the septic training
module, modifying the first switch to prevention or detec-
tion mode, and restarting the DBMS and the application
server.

4.2 Inserting identifiers in Zend
In Section 3.3 we discussed three kinds of IDs. We imple-

mented the first kind – SSLE-generated IDs – for the PHP
language, with the Zend engine as SSLE. As explained in
that section, those IDs can be formed of pairs file:line sepa-
rated by |, so the comments we consider in this section have
the format /* file:line | file:line | ... | file:line */.

Table 2 shows the two Zend engine extensions to which
we added a few lines of code to create and insert query IDs.
Extensions are used in Zend to group related functions. The
table shows also the new header file that we developed for
the same purpose (SEPTIC identifier).

The identifiers have to be inserted when the DBMS is
called, so we modified in Zend the 11 functions used for
this purpose (e.g., mysql_query, mysqli::real_query). Specif-
ically, the ID is inserted in these functions just before the line
that passes the query to the DBMS. This involved modifying
three files: php_mysql.c, mysqli_api.c and mysqli_nonapi.c.

When a PHP program is executed, Zend keeps in a stack
data about every function call. This stack contains data
about the functions called, such as function name, full path-
name of the file and line of code where the function was
called. This stack allows backtracking the query until a
function that does not contain it as argument. This pro-

vides the places where the query has been composed and/or
passed and allows obtaining query IDs in the format above.

4.3 Inserting identifiers in Spring / Java
We implemented the third kind of IDs explained in Sec-

tion 3.3 – IDs generated outside the DBMS and the SSLE –
in Spring / Java. Spring is a framework aimed at simplify-
ing the implementation of enterprise applications in the Java
programming language [1]. It allows building Java web ap-
plications using the Model-View-Controller (MVC) model.
In Spring applications connect to the DBMS via a JDBC
driver.

We used three different forms to insert the IDs to show
that there are different ways of doing it. The first form con-
sists in inserting the ID directly in the query in the source
code of the application. Before the query is issued a com-
ment with the ID is inserted. This is a very simple solution
that has the inconvenient of requiring modifications to the
source code. The second form uses a wrapper to catch the
query request before it is sent to JDBC and MySQL, and
insert the ID in a comment prefixing the query (e.g., the file
and line data). Using a wrapper avoids the need to modify
the source code of the application, except for the substitu-
tion of the calls to JDBC by calls to the wrapper.

The third form is the most interesting as it does not in-
volve modifications to the application source code. We used
Spring AOP, an implementation of Aspect-Oriented Pro-
gramming for Spring, essentially to create a wrapper with-
out modifying the applications’ source code [32]. Spring
AOP allows the programmer to create aspects for the appli-
cation. These aspects allow intercepting method calls from
the application, to insert code that is executed before the
methods. These operations are performed without the pro-
grammer making changes to the application source code.
On the contrary, the programmer develops new files with
the aspects and their point cuts, where the point cuts are
the application methods that will be intercepted. We used
aspects for intercepting in runtime calls to JDBC, inserting
the query ID in the query and proceeding with the query
request to MySQL.

5. EXPERIMENTAL EVALUATION
The objective of the experimental evaluation was to an-

swer the following questions: (1) Is SEPTIC able to detect
and block attacks against code samples? (2) Is it more ef-
ficient than other tools in the literature? (3) Does it solve
the semantic mismatch problem better than other tools? (4)
How does it perform in terms of false positives and false
negatives? (5) Is SEPTIC able to detect and block attacks
against real (open source) software? (6) Is the performance
overhead acceptable? The evaluation was carried out with
the implementation of SEPTIC in MySQL and PHP/Zend.

5.1 Attack detection
This section presents the evaluation of SEPTIC in terms

of its ability to detect attacks – questions (1) to (5).

5.1.1 Detection with code samples
To answer questions (1) to (4), we evaluated SEPTIC

with: (1) a set of (small) code samples that perform at-
tacks of all classes in Table 1 (17 for the semantic mismatch
problem, 7 for other SQLI attacks, 5 for stored injection);
(2) 23 code samples from the sqlmap project [33], unrelated



Case Attack/code

1 SELECT balance FROM acct WHERE password=’’ OR 1=1 - - ’ Yes
2 SELECT balance FROM acct WHERE pin= exit() Yes
3 ...WHERE flag=1000>GLOBAL Yes
4 SELECT * FROM properties WHERE filename=’f.e’ No
5 ...pin=exit() Yes
6 ...pin=aaaa() Yes
7 SELECT * FROM t WHERE flag=TRUE No
8 ...pin=aaaa() Yes
9 SELECT * FROM t WHERE password=password Yes

10 CREATE TABLE t (name CHAR(40)) No
11 SELECT * FROM t WHERE name=’x’ No

Table 3: Code (attacks) and non-code (non-attacks) cases
defined by Ray and Ligatti [27]. Although these authors
consider case 10 code/attack we disagree because the input is
an integer, which is the type expected by the char function.

web
application

browser
inputs

SEPTIC

DBMS
WAF

anti-SQLI
tool

Figure 5: Placement of the protections considered in the ex-
perimental evaluation: SEPTIC, anti-SQLI tools, and WAF.

with semantic mismatch; (3) 11 samples with the code and
non-code injection cases defined in [27] (Table 3).

We compare SEPTIC with a WAF and four anti-SQLI
tools. Fig. 5 shows the place where the WAF and the anti-
SQLI tools act and intercept, respectively, the user inputs
sent in HTTP requests and the query sent by the web appli-
cation. SEPTIC acts inside the DBMS. The WAF, ModSe-
curity 2.7.3.3 [35], was configured with the OWASP Core
Rule Set 2.2.9. ModSecurity is the most adopted WAF
worldwide, with a stable rule set developed by experienced
security administrators. In fact, it has been argued that
its ability to detect attacks is hard to exceed [23]. It de-
tects SQLI and other types of attacks by inspecting HTTP
requests. The anti-SQLI tools used were: CANDID [3], AM-
NESIA [13], DIGLOSSIA [31] and SQLrand [6]. The evalua-
tion of these tools was made manually by analyzing the data
in [27] and the papers that describe them. More information
about them can be found in Section 6.

In the experiments, first with SEPTIC turned off we in-
jected malicious user inputs created manually in the code
samples to confirm the presence of the vulnerabilities. We
also used the sqlmap tool to exploit the vulnerabilities from
the first two groups of code samples. sqlmap is a tool widely
used to perform SQLI attacks, both by security profession-
als and hackers. Second, with SEPTIC turned on and in
training mode we injected benign inputs in the code sam-
ples for the mechanism to learn the queries and to get their
models. Then, we run the same attacks from the first phase
in detection mode and analyzed the results to determine if
they were detected.

Table 4 shows the results of the evaluation. There were
63 tests executed (third column), 4 of which not attacks
(the 4 non-attack cases in Table 3). SEPTIC (last column)
correctly detected all 59 attacks (row 34) and correctly did
not flag as attacks the 4 non-attack cases defined by Ray and
Ligatti (row 11). SEPTIC had neither false negatives nor
positives (rows 35–36) and correctly handled the semantic
mismatch problem by detecting all attacks from classes A
(rows 17–21), B (7), C (8–9), and D.2–D.4 (26–30).

The other tools can also detect the syntax structure 1st
order (row 3), blind SQLI syntax structure (8), and sqlmap
(12) attacks, all from class S.1, but not stored procedure (7)
and stored injection attacks (26–30). The anti-SQLI tools,

from the semantic mismatch attacks detected only the attack
from class A.5 (row 21). ModSecurity detected this attack
plus 1st order SQLI attacks with encoding and space evasion
(A.1 and A.4, rows 17 and 19). Furthermore, ModSecurity
cannot detect 2nd order SQLI attacks, because in the sec-
ond step of these attacks the malicious input comes from the
DBMS, not from outside. All tools other than SEPTIC had
a few false positives (except DIGLOSSIA) and many false
negatives (around 50% of the attacks). This is essentially
justified by the non-detection of semantic mismatch attacks
and the Ray and Ligatti code cases (row 10) where the in-
jected code does not contain malicious characters recognized
by the tools.

Globally ModSecurity and DIGLOSSIA had a similar per-
formance (35 attacks detected). The latter was the best of
the four anti-SQLI tools and the only one that detected the
syntax mimicry 1st order attack (row 5). ModSecurity does
not detect 2nd order attacks, because it just analyses queries
reached by user inputs (rows 18 and 20). On the contrary,
SQLrand and AMNESIA detect this type of attack. CAN-
DID does not detect either of them. The false positive re-
ported for ModSecurity was case 11 from [27], as the input
contained the prime character that is considered malicious
by this WAF.

The answer to the first four questions is positive. We con-
clude that the proposed approach to detected and block in-
jection attacks inside the DBMS is effective because it uses
the information given by the DBMS – that processes the
queries – without the need of assumptions about how the
queries are executed, which is the root of the semantic mis-
match problem.

5.1.2 Detection with real software
We used SEPTIC with real web applications to verify if it

detects attacks against them – question (5). We evaluated
it with five open source PHP web applications: ZeroCMS, a
content management system [39]; WebChess, an application
to play chess online [36]; measureit, an energy metering ap-
plication that stores and visualizes voltage and temperature
data [21]; PHP Address Book, a web-based address/phone
book [25]; and refbase, a web reference database [28].

Table 5 shows the detection results. The ZeroCMS ver-
sion used contains three SQLI vulnerabilities that appeared
in the Common Vulnerabilities and Exposures (CVE) [10]
and the Open Source Vulnerability Database (OSVDB) [24]:
CVE-2014-4194, CVE-2014-4034 and OSVDB ID 108025.
Using sqlmap, we performed SQLI attacks to exploit these
vulnerabilities and to verify if SEPTIC detected them. SEP-
TIC successfully detected the attacks and blocked them, pro-
tecting the vulnerable web application. Also, we performed
attacks against a patched version of ZeroCMS and verified
that the attacks were no longer successful or detected by
SEPTIC.

With WebChess and measureit, we performed attacks man-
ually and with sqlmap. SEPTIC blocked 13 different attacks
against WebChess and one stored XSS against measureit. To
confirm the detection, we repeated the attacks with SEPTIC
in detection mode (instead of prevention mode), allowing at-
tack detection but without blocking them, and we verified
their impact. Also, we confirmed the vulnerabilities explored
by these attacks by inspecting the source code with the as-
sistance of identifiers registered in the log file. We recall
that our approach detects in runtime attacks and registers



1 Type of attack N. Tests SQLrand AMNESIA CANDID DIGLOSSIA ModSecurity SEPTIC

2 SQLI without sanitization and semantic mismatch (S.1, S.2, B, C, D.1)

3 Syntax structure 1st order 1 Yes Yes Yes Yes Yes Yes

4 Syntax structure 2nd order 1 Yes Yes No No No Yes

5 Syntax mimicry 1st order 1 No No No Yes Yes Yes

6 Syntax mimicry 2nd order 1 No No No No No Yes

7 Stored procedure 1 No No No No No Yes

8 Blind SQLI syntax structure 1 Yes Yes Yes Yes Yes Yes

9 Blind SQLI syntax mimicry 1 No No No Yes Yes Yes

10 Ray & Ligatti code 7 2 3 3 7 2 7

11 Ray & Ligatti non-code 4 (non-attacks) 2 1 2 0 1 0

12 sqlmap project 23 23 23 23 23 23 23

13 Flagged as attack – 30 30 30 34 30 37

14 False positives – 2 1 2 0 1 0

15 False negatives – 9 8 9 3 8 0

16 SQLI with sanitization and semantic mismatch (S.1, S.2, A.1–A.5, D.1)

17 Syntax structure 1st order 4 0 0 0 0 2 4

18 Syntax structure 2nd order 4 0 0 0 0 0 4

19 Syntax mimicry 1st order 4 0 0 0 0 2 4

20 Syntax mimicry 2nd order 4 0 0 0 0 0 4

21 Numeric fields 1 1 1 1 1 1 1

22 Flagged as attack – 1 1 1 1 5 17

23 False positives – 0 0 0 0 0 0

24 False negatives – 16 16 16 16 12 0

25 Stored injection (D.2–D.4)

26 Stored XSS 1 No No No No No Yes

27 RFI 1 No No No No No Yes

28 LFI 1 No No No No No Yes

29 RCI 1 No No No No No Yes

30 OSCI 1 No No No No No Yes

31 Flagged as attack – 0 0 0 0 0 5

32 False positives – 0 0 0 0 0 0

33 False negatives – 5 5 5 5 5 0

34 Flagged as attack – 31 31 31 35 35 59

35 False positives – 2 1 2 0 1 0

36 False negatives – 30 29 30 24 25 0

Table 4: Detection of attacks with code samples.

Application SQLI Stored inj. Registered

measureit – 1 –
PHP Address Book – – –
refbase – – –
WebChess 13 – –
ZeroCMS 3 – CVE-2014-4194

CVE-2014-4034
OSVDB ID 108025

Total 16 1 3

Table 5: Detection of attacks in real applications.

the source code location of the vulnerabilities explored by
attacks when they are detected. SEPTIC does not registered
any attack against the PHP Address Book and refbase appli-
cations, meaning that these applications are secure against
attacks injection. So these results allow us to answer affir-
matively to question (5).

5.2 Performance overhead
To answer question (6), the performance overhead of SEP-

TIC was evaluated using BenchLab v2.2 [8] with the PHP
Address Book, refbase and ZeroCMS applications. Bench-
Lab is a testbed for web application benchmarking. It gen-
erates realistic workloads, then replays their traces using real
web browsers, while measuring the application performance.

We have set up a network composed of six identical ma-
chines: Intel Pentium 4 CPU 2.8 GHz (1-core and 1-thread)
with 2 GB of RAM, running Linux Ubuntu 14.04. Two ma-
chines played the role of servers: one run the MySQL DBMS
with SEPTIC; the other an Apache web server with Zend
to run the web applications, and Apache Tomcat to run
the BenchLab server. The other four machines were used
as client machines, running BenchLab clients and Firefox
web browsers to replay workloads previously stored by the
BenchLab server, i.e., to issue a sequence of requests to the
web application being benchmarked. The BenchLab server
has te role of managing the experiments.

We evaluated SEPTIC with its four combinations of pro-
tections turned on and off (SQLI and stored injection on/off)
and compared them with the original MySQL without SEP-
TIC installed (base). For that purpose, we created sev-

eral scenarios, varying the number of client machines and
browsers. The ZeroCMS trace was composed of 26 requests
to the web application with queries of several types (SELECT,
UPDATE, INSERT and DELETE). The traces for the other appli-
cations were similar but for PHP Address Book the trace
had 12 requests, while for refbase it had 14 requests. All
traces involved downloading images, cascading style sheets
documents, and other web objects. Each browser executes
the traces in a loop many times.

Table 6 summarizes the performance measurements. The
main metric assessed was the latency, i.e., the time elapsed
between the browser starts sending a request and finishes
receiving the corresponding reply. For each configuration
the table shows the average latency and the average latency
overhead (i.e., the average latency divided by the latency
obtained with MySQL without SEPTIC with the same con-
figuration, multiplied by 100 to become percentage). These
values are presented as a pair (latency (ms), overhead (%))
and are shown in the 2nd to 6th columns of the table. The
1st column characterizes the scenario tested, varying the
number of client machines (PCs) and browsers (brws). The
latency obtained with MySQL without SEPTIC is shown in
the 2nd column and the SEPTIC combinations in the next
four. The last two columns show the number of times that
each configuration was tested with a trace (num exps) and
the total number of requests done in these executions (total
reqs). Each configuration was tested with 5500 trace execu-
tions, in a total of 87,200 requests (last row of the table).

The first set of experiments evaluated the overhead of
SEPTIC with the refbase application (rows 3–6). We run a
single Firefox browser in each client machine but varied the
number of these machines from 1 to 4. For each additional
machine we increase the number of experiments (num exps)
by 50. Fig. 6 represents graphically these results, showing
the latency measurements (a) and the latency overhead of
the different SEPTIC configurations (b). The most interest-
ing conclusion taken from the figure is that the overhead of
running SEPTIC is very low, always below 2%. Another in-



N. PCs
Base

SEPTIC: SQL injection – stored injection Num Total
& brws off–off on–off off–on on–on exps reqs

refbase varying the number of PCs, one browser per PC

1 PC 430, – 431, 0.23 432, 0.47 433, 0.70 434, 0.93 70 980
2 PCs 430, – 433, 0.70 433, 0.70 433, 0.70 436, 1.40 120 1680
3 PCs 435, – 437, 0.46 440, 1.15 441, 1.38 442, 1.61 170 2380
4 PCs 435, – 438, 0.69 439, 0.92 442, 1.61 443, 1.84 220 3080

refbase with four PCs and varying the number of browsers

8 brws 504, – 506, 0.40 510, 1.19 513, 1.79 516, 2.38 420 5880
12 brws 530, – 532, 0.38 535, 0.94 539, 1.70 544, 2.64 620 8680
16 brws 540, – 541, 0.19 545, 0.93 550, 1.85 553, 2.41 820 11480
20 brws 570, – 573, 0.53 575, 0.88 581, 1.93 584, 2.46 1020 14280

PHP Address Book with four PCs

20 brws 79, – 79.26, 0.33 79.50, 0.63 80.60, 2.03 81, 2.53 1020 12240

ZeroCMS with four PCs

20 brws 239, – 240, 0.42 241, 0.84 243, 1.67 245, 2.51 1020 26520

Avg. overhead / Total 0.41% 0.82% 1.65% 2.24% 5500 87200

Table 6: Performance overhead of SEPTIC measured with
Benchlab for three web applications: PHP Address Book,
refbase and ZeroCMS. Latencies in ms, overheads in %.
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Figure 6: Latency and overhead with refbase varying the
number of PCs, each one with a single browser.

teresting conclusion is that SQLI detection has less overhead
than stored injection detection, as the values for configura-
tion NY are just slightly higher than those for YN. Finally,
the overhead tends to increase with the number of PCs and
browsers generating traffic as the load increases.

The second set of experiments were again with refbase,
this time with the number of client machines (PCs) set to
4 and varying the number of browsers (Table 6, rows 8–11).
Fig. 7 shows how the overhead varies when going from 1 to 4
PCs with one browser each (a) then from 8 browsers (2 per
PC) to 20 browsers (5 per PC). The figure allows extract-
ing some of the same conclusions as the first set of experi-
ments. However, they also show that increasing the number
of browsers initially increases the overhead (Fig. 7(a)), then
stabilizes (b), as neither the CPU at the PCs nor the band-
width of the network were the performance bottleneck.

The third and fourth sets of experiments used the PHP
Address Book and ZeroCMS web applications and 20 browsers
in 4 PCs (Table 6, rows 13 and 15). Fig. 8 shows the over-
head of these two applications and refbase with the same
number of browsers and PCs. The overhead of all appli-
cations is similar for each SEPTIC configuration. This is
interesting because the applications and their traces have
quite different characteristics, which suggests that the over-
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Figure 7: Overhead with refbase with 4 PCs and varying the
number browsers.
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Figure 8: Overhead of SEPTIC with PHP Address Book,
refbase and ZeroCMS applications using 20 browsers.

head imposed by SEPTIC is independent of the server-side
language and web application.

The average of the overheads varied between 0.82% and
2.24% (last row of the table). This seems to be a reasonable
overhead, suggesting that SEPTIC is usable in real settings,
answering positively question (6).

6. RELATED WORK
There is a vast corpus of research in web application se-

curity, so we survey only related runtime protection mecha-
nisms, which is the category in which SEPTIC fits.

All the works we describe have a point in common that
makes them quite different from our work: their focus is on
how to do detection or protection. On the contrary, our work
is more concerned with an architectural problem: how to do
detection/protection inside the DBMS, so that it runs out
of the box when the DBMS is started. None of the related
works does detection inside the DBMS.

AMNESIA [13] and CANDID [3] are two of the first works
about detecting SQLI by comparing the structure of an SQL
query before and after the inclusion of inputs and before
the DBMS processes the queries. Both use query models
to represent the queries and do detection. AMNESIA cre-
ates models by analyzing the source code of the applica-
tion and extracting the query structure. Then, AMNESIA
instruments the source code with calls to a wrapper that
compares queries with models and blocks attacks. CAN-
DID also analyses the source code of the application to find
database queries, then simulates their execution with benign
strings to create the models. On the contrary, SEPTIC does
not involve source code analysis or instrumentation. With
SEPTIC we aim to make the DBMS protect itself, so both
model creation and attack detection are performed inside
the DBMS. Moreover, SEPTIC aims to handle the semantic
mismatch problem, so it analyses queries just before they
are executed, whereas AMNESIA and CANDID do it much
earlier. These two tools also cannot detect attacks that do
not change the structure of the query (syntax mimicry).

Buehrer et al. [7] present a similar scheme that manages to
detect mimicry attacks by enriching the models (parse trees)
with comment tokens. However, their scheme cannot deal
with most attacks related with the semantic mismatch prob-
lem. SqlCheck [34] is another scheme that compares parse
trees to detect attacks. SqlCheck detects some of the attacks
related with semantic mismatch, but not those involving en-
coding and evasion. Again, both these mechanisms involve
modifying the application code, unlike SEPTIC.

DIGLOSSIA [31] is a technique to detect SQLI attacks
that was implemented as an extension of the PHP inter-
preter. The technique first obtains the query models by
mapping all query statements’ characters to shadow char-
acters except user inputs, and computes shadow values for



all string user inputs. Second, for a query execution it com-
putes the query and verifies if the root nodes from the two
parsed trees are equal. Like SEPTIC, DIGLOSSIA detects
syntax structure and mimicry attacks but, unlike SEPTIC,
it neither detects second-order SQLI once it only computes
queries with user inputs, nor encoding and evasion space
characters attacks as these attacks do not alter the parse tree
root nodes before the malicious user inputs are processed by
the DBMS. Although better than AMNESIA and CANDID,
it does not deal with all semantic mismatch problems.

Recently, Masri et al. [20] and Ahuja et al. [2] presented
two works about prevention of SQLI attacks. The first
presents a tool called SQLPIL that simply transforms SQL
queries created as strings into prepared statements, prevent-
ing SQLI in the source-code. The second, presents three new
approaches to detect and prevent SQLI attacks based on
rewriting queries, encoding queries and adding assertions to
the code. However, these approaches are not even evaluated
experimentally. Again, both works involve instrumenting
and modifying the application code, unlike SEPTIC that
works inside the DBMS.

Dynamic taint analysis tracks the flow of user inputs in the
application and verifies it they reach dangerous instructions.
Xu et al. [38] show how this technique can be used to de-
tect SQLI and reflected XSS. They annotate the arguments
from source functions and sensitive sinks as untrusted and
instrument the source code to track the user inputs to ver-
ify if they reach the untrusted arguments of sensitive sinks
(e.g., functions that send queries to the database). A differ-
ent but related idea is implemented by CSSE that protects
PHP applications from SQLI, XSS and OSCI by modify-
ing the platform to distinguish between what is part of the
program and what is external (input), defining checks to
be performed to the latter [26] (e.g., if the query structure
becomes different due to inputs). WASP does something
similar to block SQLI attacks [14]. SEPTIC does not track
inputs in the application, but runs in the DBMS.

7. CONCLUSION
The paper explores a new form of protection from attacks

against web application databases. It presents the idea of
“hacking” the DBMSs to let it protected from SQLI and
stored injection attacks. Moreover, by putting protection
inside the DBMS, we show that it is possible to detect and
block sophisticated attacks, including those related with the
semantic mismatch problem. The mechanism was exper-
imented both with synthetic code with vulnerabilities in-
serted on purpose and with open source PHP web appli-
cations. This evaluation suggests that the mechanism can
detect and block the attacks it is programmed to handle,
performing better that all other tools in the literature and
the WAF most used in practice. The performance overhead
evaluation shows an impact of around 2.2%, suggesting that
our approach can be used in real systems.
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