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INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal‡

palcosta@fc.ul.pt, xbai@yahoo-inc.com, fvramos@ciencias.ulisboa.pt, miguel.p.correia@tecnico.ulisboa.pt

Abstract—Applications such as web search and social net-
working have been moving from centralized to decentralized
cloud architectures to improve their scalability. MapReduce, a
programming framework for processing large amounts of data
using thousands of machines in a single cloud, also needs to be
scaled out to multiple clouds to adapt to this evolution. The
challenge of building a multi-cloud distributed architecture is
substantial. Notwithstanding, the ability to deal with the new
types of faults introduced by such setting, such as the outage
of a whole datacenter or an arbitrary fault caused by a malicious
cloud insider, increases the endeavor considerably.

In this paper we propose Medusa, a platform that allows
MapReduce computations to scale out to multiple clouds and
tolerate several types of faults. Our solution fulfills four objectives.
First, it is transparent to the user, who writes her typical
MapReduce application without modification. Second, it does not
require any modification to the widely used Hadoop framework.
Third, the proposed system goes well beyond the fault-tolerance
offered by MapReduce to tolerate arbitrary faults, cloud outages,
and even malicious faults caused by corrupt cloud insiders. Fourth,
it achieves this increased level of fault tolerance at reasonable
cost. We performed an extensive experimental evaluation in the
ExoGENI testbed, demonstrating that our solution significantly
reduces execution time when compared to traditional methods
that achieve the same level of resilience.

I. INTRODUCTION

MapReduce [1] has been attracting a lot of interest as a
convenient tool for processing massive datasets using computer
clusters. MapReduce was developed and is widely used by
Google, whereas one of its open source implementations,
Apache Hadoop [2], is currently used by several other com-
panies, such as Yahoo and Facebook.

Originally this framework targeted a single datacenter, so
currently used implementations are not designed to work
across multiple datacenters1. However, the last few years have
witnessed the requirements for data- and compute-intensive
analysis to grow significantly, increasing the need to scale-
out computation across clouds. As an indication of that di-
rection, Baeza-Yates et al. [3] have assessed the feasibility of
building distributed Web search engines comprising geograph-
ically dispersed sites. The increasingly larger data sets used
in bioinformatics have also led to the execution of multi-cloud
computations for this type of applications [4]. In addition, for a
growing number of applications the data is gathered and stored
in different datacenters – i.e., it is inherently geo-distributed –
but the analyses required are global. A well-known example
includes the analysis of scientific data such as those originated
from the Large Hadron Collider (LHC). The tens of petabytes of

1We use the terms cloud, cluster and datacenter interchangeably.

data produced every year by this particle accelerator are stored
in more than 140 datacenters distributed across 34 countries [5].

Acknowledging this trend, the research community has re-
cently proposed MapReduce-based platforms that scale out
to multiple clouds. Wang et al. proposed G-Hadoop [6], a
new framework that enables large-scale distributed MapReduce
computations distributed across multiple clusters. The core of
this system is the replacement of Hadoop’s native file system,
HDFS, with Gfarm, a distributed file system that scales to multi-
ple clusters. Another instance of this trend is G-MR [7], another
Hadoop-based framework that processes geo-distributed data
across multiple datacenters. These examples are demonstrative
of the challenge to build multi-cloud distributed architectures.
Notwithstanding, the ability to deal with – and to tolerate – the
new types of faults that are introduced by this setting makes
building such system significantly harder.

Indeed, at scales of thousands of computers, switches,
routers, power units and other components, failures are fre-
quent. Therefore, both the original MapReduce and Hadoop
use two mechanisms to tolerate such faults: they monitor the
execution of tasks and reinitialize them in case of failure (thus
tolerating crash faults); and they add checksums to files that
contain data to detect file corruptions [2], [8]. Despite the
use of such fault tolerance mechanisms, these MapReduce
implementations do not consider three harder to tolerate failure
modes. First, some hardware faults may lead to the corruption
of the processing, leading to wrong outputs. For instance, data
may be corrupted while stored in DRAM or due to core chipset
errors, two issues recently found to be reasonably frequent [9],
[10]. This problem is, naturally, amplified when computations
are scaled out to multiple datacenters. Second, malicious at-
tacks perpetrated by corrupt cloud insiders (or by external
hackers that attack a specific cloud) can also cause corruption
of the processing. The original MapReduce fault tolerance
mechanisms cannot deal with such arbitrary [11] or malicious
faults [12]. Third, cloud outages may lead to the unavailability
of MapReduce instances and their data. Experience shows that
these events are also frequent, with cases of unavailability of
hours to days in services like Windows Azure, Google Drive or
Amazon EC2, to name just a few. Again, current MapReduce
systems cannot deal with cloud outage as they are restricted to
work in a single datacenter.

To deal with such faults, one needs to add redundancy to
the computation. As both malicious faults and cloud outage
can impair a complete cloud, handling them involves resorting
to more than one cloud. The terms cloud federation [13] and
cloud-of-clouds [14] have been used recently to denote such



virtual environments composed of multiple clouds. We explore
this idea to replicate MapReduce jobs in different clouds to
avoid their incorrectness or unavailability due to the three kinds
of faults explained before.

Tolerating cloud faults through replication is commonly
considered expensive as one expects these faults to be rare. The
reality contradicts this expectation: cloud outages are becoming
increasingly common [15], [16]. More importantly, for very
critical applications such as bioinformatics or finance, any kind
of errors and unavailability are unacceptable. For example,
a malicious insider in a cloud that hosts an epidemiological
surveillance system that tampers with the diagnosis of patients
may lead to disastrous consequences. This particular problem is,
today, a significant concern. A recent report from the Cloud Se-
curity Alliance states malicious insiders as one of the top threats
in cloud computing [17], and alarming instances of this problem
have recently occurred in companies such as Google [18].
Moreover, temporary unavailability of the financial system in
one cloud (due to cloud outage) may dramatically influence
the overall investment decision and cause huge financial loss.
Motivated by these scenarios, we believe the replication cost
to be acceptable for such critical applications, in order to
guarantee that rare faults with devastating consequences do not
occur. Interestingly, cloud providers seem to share this concern:
Amazon S3 recently launched Cross-Region Replication to
automatically replicate data across regions [19].

A. Our proposal

We propose a novel approach that allows MapReduce to scale
out to multiple clouds to tolerate arbitrary and malicious faults,
as well as cloud outages, for critical applications. As per above,
the use of multiple clouds for MapReduce is not in itself new.
The novelty of this work arises from the use of a multi-cloud
environment to not only parallelize computation, but also to
transparently tolerate different types of faults at the minimum
cost. Our solution addresses several non-trivial challenges for
this purpose. First, it aims to be a transparent solution for the
user. The MapReduce API is not changed, and the user simply
writes her typical MapReduce application without modification.
Second, it does not require any modification to the Hadoop
framework. Third, it tolerates not only crash faults, as the
original MapReduce, but also arbitrary faults, cloud outages,
and malicious faults caused by corrupt cloud insiders. Fourth, it
achieves this level of fault tolerance at the minimum replication
cost and guaranteeing acceptable performance.

Our approach relies on a proxy, Medusa, that runs in the
client and that interacts with (unchanged) MapReduce runtimes
in different clouds to tolerate the three kinds of faults above.
The basic idea is to replicate each MapReduce job in more than
one cloud and to compare the outputs of the replicated jobs
to tolerate faults. The challenge is to perform this efficiently,
and doing so without changing the framework and keeping
the whole process transparent to the user. Achieving efficiency
requires (i) replicating each job the minimum number of times;
and (ii) assigning each replicated job to the cloud that ensures
the best performance. To this end, instead of replicating each
job at least 2f +1 times to ensure a majority of correct results
and tolerate f faults, as is common [20], [21], our approach is

crafted to run only f + 1 replicas for each job when there is
no fault, and 2f + 1 replicas when there are f faults.

Importantly, our approach can tolerate not only f but any
number of faulty replicas or clouds as long as no more than
f faulty replicas return the same wrong output. This includes
the possibility that up to f clouds maliciously collude and the
system remains able to reach a correct output. Moreover, we
introduce a novel scheduling algorithm that takes into account
the heterogeneity of the individual clouds to schedule the repli-
cated jobs among them in order to reduce data communication
and job completion time.

We performed an extensive experimental evaluation of our
approach in a real testbed (ExoGENI). The results demonstrate
that our solution significantly reduces the execution time when
compared to traditional methods that achieve the same level
of resilience. As an example, in certain scenarios we achieve a
gain of up to 3 in efficiency when compared with a conventional
round-robin approach that tolerates cloud faults.

In summary, our proposal is practical and transparent to
the user by only involving a new software module running
in the client (Medusa), not requiring any modification to the
MapReduce framework or to user applications. Simultaneously,
it tolerates arbitrary and malicious faults, and cloud outages,
efficiently.

B. Outline
The reminder of the paper is organized as follows. In the next

section we describe the system model and define the problem.
Then, in Section III we present the detailed design of Medusa,
the cloud fault-tolerant MapReduce system we propose. Section
IV reports on the experimental evaluation. In Section V we
discuss related work and, finally, we conclude this paper in
Section VI.

II. PROBLEM STATEMENT

To cope with the unprecedented data growth, applications
such as web search, social networking and bioinformatic appli-
cations can be distributed in geographically-distant datacenters
to leverage data locality and improve data processing effi-
ciency [3], [4]. In these cases, multiple MapReduce clusters
are set up in distributed datacenters. Each cluster collects and
processes the data that is close to its datacenter. The final data
processing results are obtained by aggregating their respective
outputs in an aggregation MapReduce job. In this work, we aim
at providing cloud fault tolerance while minimizing the overall
execution time for the MapReduce computations running in
such multi-cloud systems.

A. Hadoop MRv2
MapReduce is a programming model for processing large-

scale datasets with parallel and distributed algorithms in com-
puter clusters. We focus in this work on Hadoop, which is an
open source implementation of the original MapReduce. The
Apache Hadoop platform includes the Hadoop kernel, Hadoop
MapReduce, and Hadoop Distributed File System (HDFS).

Fig. 1 depicts the simplified execution process of MapReduce
2.02. Specifically, a client requests the execution of a job from

2Hadoop MapReduce has undergone a complete overhaul in Hadoop
0.23 and is now designated MRv2, or YARN.
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Fig. 1: Simplified MapReduce execution process.

the resource manager (previously called job tracker). The role
of the resource manager is to define which (map and reduce)
tasks will be executed in which server. The execution of a (map
or reduce) task in a server is managed by the node manager
(previously called task tracker).

The Hadoop Distributed File System (HDFS) is the main
distributed storage used by MapReduce applications. The input
files for a MapReduce job typically reside in HDFS and are
divided into logical blocks called splits. Each split is executed
by a map task that produces an intermediate output in the form
of key-value pairs. The content of the intermediate outputs is
sorted by key and then consumed by the reduce tasks. The
reduce tasks produce the final output.

Hadoop tolerates faults by (i) monitoring and restarting tasks
when servers, node managers or the tasks themselves crash
through the resource manager; and (ii) adding checksums to the
files in HDFS to detect data corruption in disks. However, these
mechanisms only work in a single cloud. Additional techniques
are needed to tolerate faults for MapReduce jobs running in
multi-cloud systems.

B. System model

In a multi-cloud system, the MapReduce job runs in a
federation of clouds. Each cloud has an HDFS instance to store
the initial inputs and final outputs of the jobs running in that
cloud. The entire data to be processed by the job is distributed
across the clouds in the system, i.e., each cloud has a subset of
the data stored in its HDFS. The data can be either collected by
the cloud itself or assigned by some external processes, but we
ignore this detail as it is application dependent and is orthogonal
to the MapReduce execution.

The MapReduce job is composed of a set of distributed
processes (Fig. 2). The client submits the job through the
process proxy, Medusa, that controls the execution of the job
in all the clouds. Each cloud first runs its own MapReduce
instance to process the data it has: the resource manager
controls the execution of the part of job assigned to that cloud;
and the node manager in each server runs the map and reduce
tasks assigned to that server. Finally, the proxy is in charge
of assigning the outputs from these clouds to an aggregation
MapReduce job in one of the clouds to obtain the final output
for this job.

The messages between the proxy and the clouds are mediated
by a message queuing service (MQ), which uses reliable
channels so that no messages are lost, duplicated or corrupted.
In practice, this is provided by establishing TCP/IP connections.
A message is only lost if the cloud is unreachable.
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Fig. 2: MapReduce in a multi-cloud system.

The system is asynchronous, i.e., we make no assumptions
about bounds on processing and communication delays in each
stage of job execution (Section III-A). We assume the use of
authenticated reliable channels for communication.

We assume the existence of one correct dataset in each
cloud at the beginning of job execution. We further assume
the existence of a collision-resistant hash function, i.e., a hash
function for which it is impossible to let two different inputs
produce the same output (e.g., SHA-256). We use the digests
produced by this function to verify the integrity of the data
replicated between clouds, and to validate the correctness of
the job outputs.

The proxy is the key component in the multi-cloud system for
tolerating cloud faults. We focus, in this work, on the design of
the proxy as well as on a scheduling mechanism that guarantees
good system performance.

C. Fault model

We say that a process is correct if it follows the algorithm,
otherwise we say that it is faulty. We assume that the client is
correct, because it is the party interested in getting a correct
job output. We also assume that the proxy is correct, similarly
to the Hadoop assumption that the resource manager does not
fail. The proxy is responsible for scheduling jobs among clouds
to tolerate cloud faults and cloud outages.

Resource managers and node managers can fail arbitrarily:
they can return wrong results (e.g., processing corruption) or
even stop (e.g., cloud outage). Malicious processes can also
produce wrong results. There is no limit on the number of
faulty components of these kinds. However, we assume that no
more than f resource managers – i.e., f clouds – return to the
proxy identical wrong outputs of the execution of a job. This
assumption allows the proxy to know that a result is correct by
getting f +1 identical results. The minimum number of clouds
necessary to ensure termination is 2f + 1, as there may be f
faulty clouds.

D. Problem formulation

We aim at tolerating (i) arbitrary and malicious faults, and (ii)
cloud outages, when running MapReduce jobs in multi-cloud
systems. To tolerate f faults, a basic approach is to create 2f+1



replicas of each job (i.e., the job running in each cloud and the
aggregation job), spread them in 2f + 1 different clouds, and
compare the 2f+1 outputs of each job. If at least f+1 outputs
are identical, their corresponding MapReduce jobs are correct
and the identical output is the correct output of this job.

This basic approach has two major problems. First, it is ex-
pensive in terms of computation, communication, and storage.
Even if there is no fault, each job is executed 2f + 1 times.
This requires replicating the data initially hosted by each cloud
to f+1 other clouds, which can be expensive in geographically
distributed clouds. The same data also have to be stored in the
HDFS of 2f + 1 clouds. In fact, if there is no fault, executing
each job f +1 times is enough (there is no need for additional
computations). Second, the basic approach does not take into
account the difference among clouds for data replication and
data processing. Intuitively, the data initially hosted by a cloud
should be replicated to other clouds with which the original
cloud has a high pair-wise bandwidth and, simultaneously, has
high computational power. This would ensure the efficiency of
the entire job execution in the multi-cloud system.

Therefore, our objective in this work is to design a MapRe-
duce proxy that ensures the MapReduce job running in multiple
distributed clouds to tolerate cloud faults while (i) minimizing
the amount of data replication and processing; and (ii) ensuring
efficient completion of the entire MapReduce job.

III. MEDUSA: A CLOUD FAULT-TOLERANT MR
As mentioned in Section II-B, a full job execution in a multi-

cloud system is comprised of two phases. The first phase runs a
vanilla MapReduce job in each cloud that holds a subset of data
initially owned by that cloud. The second phase runs a global
MapReduce job that aggregates the outputs from all clouds to
generate the final results. To tolerate arbitrary, malicious faults,
and cloud outage, the MapReduce jobs in each phase need to
be replicated to other clouds for ensuring the existence of f+1
identical outputs and thus the correctness of the results.

We propose in this paper a MapReduce proxy that works
as a middleware in a multi-cloud system (i.e., a federation of
clouds). We refer to this proxy as Medusa3.

As explained, we assume that no more than f replicas of
a job return to the proxy identical wrong outputs from their
executions. This assumption allows the proxy to know that a
result is correct by getting f+1 identical results from different
clouds / resource managers. Given the expected low probability
of arbitrary and malicious faults, it is too expensive to always
execute 2f+1 replicas of a job as is done in typical approaches.
Therefore, instead of replicating each job 2f+1 times, Medusa
first replicates each job f+1 times in f+1 different clouds (i.e.,
once in the cloud where the data initially are and f times in
other clouds that do not have the corresponding data initially).
If the executions of these replicas do not produce identical
outputs, one more replicated job is launched in a different cloud
until the proxy gets f + 1 identical outputs. This deferred job
execution avoids the redundant data transmission, storage and
processing when no fault happens. As per the point above, each

3Medusa is the mythological figure that has living snakes in place of hair.
Metaphorically, the connections of our proxy to the clouds are the snakes, and
these follow orders given by Medusa’s brain (our proxy).
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subset of data initially available in one cloud is replicated (at
least) f + 1 times, instead of 2f + 1 times.

We detail in Section III-A how Medusa works and explain
in Section III-B how the replicated jobs are scheduled among
the clouds in the system to ensure efficient completion of the
entire job.

A. Medusa proxy in a nutshell
Each of the two phases of a full job execution is composed

of three stages: replicating the data from the local cloud that
initially holds them to other clouds; running the replicated jobs
in all the clouds having the same data; and agreeing on the
outputs of the replicated jobs. In each stage, all processes wait
until every other process finishes, to move to the next stage.
Fig. 3 and Fig. 4 depicts the two-phase execution by means of
an example, where the full job is running in 3 clouds and is
set to tolerate 1 fault (f = 1).

The proxy interacts with the clouds with the help of a
message queuing service (MQ). In Fig. 3 and Fig. 4, MQ is
tightly coupled with the proxy, but in practice it can be running
in a different host.

In the first phase (Fig. 3), the client submits a job (Step 1)
with input data A.txt and B.txt (representing the two subsets
of the entire data to be processed). As mentioned earlier, we
assume that the cloud collected or generated the data itself as
we anticipate this to be the most common scenario. Hence, the
input data is already stored in cloud 1 and cloud 2, respectively.
After receiving the request from the client, Medusa runs a
scheduling algorithm (Section III-B) to select the best cloud(s)



to run the replicated jobs (Step 2). Medusa selects the clouds
that offer the best performance in terms of data transmission
and data processing to ensure low job makespan (i.e., the time
it takes for the whole job to finish). In this example, Medusa
chooses to copy A.txt to cloud 2 and B.txt to cloud 3. Note that
to guarantee data integrity, a digest of each data is computed
using a collision-resistant hash function (e.g., SHA-256) and is
sent with the original data for validation at reception.

If the data transmission is successful and the communication
is not tampered, the execution of the job will start (Step 4).
After the executions of the f +1 job replicas finish, digests of
their outputs are computed using the same collision-resistant
hash function, and the correctness of these outputs are verified
(Step 5). If all the digests are identical, the vanilla MapReduce
job finishes successfully. Otherwise, the data is copied to a
different cloud, selected by Medusa’s scheduling algorithm, and
the job is executed again to obtain f+1 identical outputs. Once
a majority of correct MapReduce jobs have finished, the second
phase can start.

In the second phase (Fig. 4), Medusa chooses the f + 1
clouds that minimize the data transmission time to gather the
outputs of the first phase and to run the global MapReduce jobs
to produce the final output. In this example, only OutA.txt is
replicated to cloud 3 (Step 7). Then, after verifying the integrity
of the data, the f+1 replicated jobs are launched (Step 8). Once
the f + 1 replicated jobs finish, the digests of their outputs
are computed and compared (Step 9). As in the first phase,
if the digests are identical, the job finishes successfully, and
the correct result is returned to the client. Otherwise, another
replica of the global MapReduce job is launched until f + 1
equal results from different clouds are obtained.

B. The Medusa scheduler

When a client submits a job, Medusa needs to instantiate
f + 1 replicas of the job. These replicas will be launched in
different clouds to tolerate cloud faults as explained in the
previous section. Whenever there is a disagreement on the
output of a job, Medusa needs to launch an extra execution
of that job.

Deciding in which cloud a replicated job should be executed
is crucial for the performance of the system. Specifically, the
client is interested in minimizing the time it takes for the
submitted job to complete: the makespan of the job. Intuitively,
if a job, as well as the data it needs to process, is replicated to a
particular cloud with high computational power and to which it
is connected by high-bandwidth links, it should take relatively
shorter time for the job to complete, when compared to the
available alternatives. In contrary, if the data has to be copied
to a cloud using low bandwidth links, or to a cloud that is
already overloaded, it may take a very long time for the job to
complete. Therefore, to ensure a small makespan of the entire
job, it is important for Medusa to choose the appropriate clouds
to replicate each job.

To this end, we propose a scheduler to distributes the
replicated jobs across different clouds based on the predicted
data transmission time and data processing time in each cloud.
The prediction takes into account the historical performance
as well as the current status of each cloud, allowing us to

incorporate the heterogeneity of the clouds into the scheduling
decision.

The overall makespan is determined by the longest time to
complete the vanilla MapReduce jobs running in all the clouds
and the time to complete the global MapReduce job. Each job
is replicated and executed between f+1 times and 2f+1 times,
depending on the number of faults f . The Medusa scheduler
follows a greedy approach and selects, for each job, the clouds
that minimize the time to complete the executions of all its
replicas. Specifically, the Medusa scheduler estimates, for each
job, the time to replicate and process the corresponding data in
each cloud that does not initially holds the data, and selects the
f +1 clouds in increasing order of the estimated time. In case
of a fault, the Medusa scheduler makes another estimation and
chooses the cloud with the shortest estimated time to run the
extra replica. Note that the scheduler will deal in accordance
with the type of fault. When the system is set (by the client)
to assume any fault can be malicious, it will not consider the
cloud where the fault occurred as an option to run the extra
replica. That cloud cannot be trusted again since the malicious
insider may corrupt the results once more. When the system is
set to only tolerate arbitrary faults and cloud outage, any alive
cloud can be an option to launch the extra replica.

Formally, the estimated time t1(i) for completing a (repli-
cated) vanilla MapReduce job (i.e., phase 1) in cloud i can be
written as

t1(i) = ttrans(j, i) + t1,proc(i), (1)

where ttrans(j, i) is the estimated time to transfer the data to
be processed by the job from cloud j to cloud i, and t1,proc(i)
is the estimated time to execute the vanilla MapReduce job in
cloud i.

The estimated time t2(i) for completing a (replicated) global
MapReduce job (i.e., phase 2) in cloud i can be written as

t2(i) = maxj∈C∧j 6=i{ttrans(j, i)}+ t2,proc(i). (2)

This equation requires further explanation. For the global
MapReduce job, all the outputs produced by the vanilla MapRe-
duce jobs need to be copied to cloud i except the ones that
already exist in cloud i. As the data transmission can take
place in parallel, the time for transmitting the outputs of the
vanilla MapReduce jobs is bounded by the maximum time
for transmitting the outputs from any cloud j to cloud i
(ttrans(j, i)). t2,proc(i) is the estimated time to execute the
global MapReduce job in cloud i.

Therefore, for each job the Medusa scheduler selects the
cloud i that has the shortest estimated time t1(i) or t2(i) to run
a replica among the clouds that have not been selected until the
correct output is obtained. We explain in the following how the
data transmission time ttrans(j, i) and the data processing time
t1,proc(i) and t2,proc(i) are estimated, respectively.

a) Estimating data transmission time: The data transmis-
sion time between two clouds depends on (i) the network
distance between them, (ii) the network throughput between
them, and (iii) the size of the data to transfer. Hence, we
estimate the time to transfer data of size S between cloud j
and cloud i as

ttrans(j, i) = l(j, i)/2 + S/T (j, i), (3)



where l(j, i) is the round-trip time between cloud j and i, and
T (j, i) is the estimated throughput between them.

The value of l(j, i) depends on the geographical distance
between clouds j and i, the speed of transmission in the
different propagation media connecting them, among other
variables, and is usually stable. Since this value is small
(typically in the milliseconds range), accurate estimation of the
data transmission time depends largely on the estimation of
the network throughput T (j, i) between cloud j and cloud i.
Nevertheless, we decide to include both variables in Equation 3
for the sake of model completeness.

Considering that the throughput varies depending on the
traffic load of other connections, Medusa keeps track of the
throughput for each pair of clouds in the system. The measures
are taken sequentially and periodically by running the network
tool Iperf, a tool that measures maximum TCP bandwidth.
Specifically, a script is running in each cloud to measure its
throughput to other clouds. Before scheduling a job, Medusa
will access this information to estimate the throughput from
one cloud to the others. The throughput between two clouds
is estimated as the average throughput between them over a
window of size k, where k is the number of the most recent
throughput measurements.

b) Estimating data processing time: The time for com-
pleting a given MapReduce job mainly depends on (i) the
capacity of the cloud running this job and (ii) the configuration
of the job. Obviously, if a cloud has high computational power
and large amounts of free resources, the job running on it
will finish within a short time. In addition, a high level of
parallelization (i.e., large number of map and reduce tasks) for
the same job in the same cloud implies shorter data processing
times. Considering this, the Medusa scheduler relies on a linear
regression model to predict the data processing time for a
MapReduce job to complete in a cloud.

Specifically, the Medusa scheduler trains one linear regres-
sion model for each cloud in the system to predict its time to
complete a MapReduce job, in the form

ŷ = β1x1 + . . .+ βnxn + β0, (4)

where ŷ is the data processing time to predict (i.e., t1,proc(i)
or t2,proc(i) in cloud i) and x1, ..., xn are the n features we
use to make the prediction. We estimate the parameters β0, ...,
βn using the least squares approach [22].

The Medusa scheduler relies on three types of features to
make the prediction: (i) job configuration; (ii) cloud capacity;
and (iii) cloud overhead. We describe the representative features
for each type in the following.
• Job configuration features. We consider the size of the

input data, the number of map tasks and the number of
reduce tasks as features in this type. Clearly, large input
data and a small number of map and reduce tasks imply
long job completion times. The values of these features
are always known to the Medusa scheduler.

• Cloud capacity features. We consider the clock speed
(MHz) and the number of cores of the CPU and the total
memory capacity (MBs) as features in this type. These are
variables that define the capacity of cloud, but they do not
tell the load of the cloud in a specific time.

• Cloud overhead features. In addition to the computational
capacity, the overhead in the cloud also has an impact on
the completion time of the job to schedule. For instance,
if a cloud is overloaded and there are already a number
of jobs queued to be launched, the scheduled job will not
finish in a short time even if very small. In contrast, if
a cloud has more free resources the scheduled job can
finish early even if its capacity is relatively low. We use
the number of MapReduce jobs that are currently running
in the cloud, the percentage of completion of the running
MapReduce jobs, the number of MapReduce jobs that
are queued to run, and the size of the input data of the
running jobs as features in this type. These are part of the
filesystem information that MRv2 can provide.

For each vanilla MapReduce job to schedule, the Medusa
scheduler estimates the data processing time t1,proc(i) in cloud
i using this linear regression model. For the global MapReduce
job, since the data to be processed is typically orders of
magnitude smaller than the original data (thanks to the vanilla
MapReduce jobs), it can be efficiently executed in any cloud.
We thus ignore the time for running the global MapReduce job
(i.e., t2,proc(i)) when making the estimation of job completion
time (i.e., t2(i)) for cloud i. This helps to improve the efficiency
of the Medusa scheduler.

IV. EVALUATION

This section evaluates the performance of our system. Section
IV-A describes the experimental setup as well as the imple-
mentation and configuration of Medusa. Section IV-B reports
on its performance, considering both the presence and absence
of faults during job execution.

A. Experimental setup

a) Applications: We evaluate the performance of Medusa
using the WordCount, WebdataScan, and Monsterquery bench-
marks from Hadoop’s Gridmix benchmark [23], as examples
of applications commonly used in real-world scenarios.

Running WordCount in a multi-cloud system can be con-
sidered as building the inverted indexes of a multi-site web
search engine for each search site (i.e., cloud). Specifically,
in a multi-cloud web search engine each site is in charge
of collecting and indexing a subset of the entire document
collection. To build the search index (that supports the term
frequency-inverse document frequency style ranking functions,
TF-IDF), each search site runs a local MapReduce job to parse
the documents it has and to count the occurrences of each term
in a document (i.e., TF) and the number of documents in that
search site containing each term (i.e., partial IDF). This can
be achieved by running WordCount as a vanilla MapReduce
job in each cloud. To ensure the same search results can be
retrieved as in a single-cloud search engine, the local outputs
from previous executions need to be aggregated to obtain the
number of documents in the search engine that contain each
term (i.e., global IDF). To this end, we implemented a Word-
CountAggregator. This corresponds to the global MapReduce
job described in Section III. WebdataScan is a benchmarking
application that extracts samples from a large data set, which is
a common form of processing in many systems. Monsterquery



is another benchmarking application that queries part of the
data from a large data set. The MapReduce framework divides
a query into steps and the dataset into chunks, and then runs
those step/chunk pairs in separate physical hosts. The mappers
perform the data collection phase and the reducers take care of
data processing.

For evaluating these applications we used up to 6GB of data
generated by Gridmix, equally partitioned and stored in all
clouds. For a small subset of the experiments we tested larger
files. The results obtained using these larger datasets confirm
the general trend we report next.

b) Implementation and configuration: We evaluated the
system in the ExoGENI testbed [24], a distributed networked
infrastructure-as-a-service spread across the USA that allows
setting up virtual topologies across sites and servers in each
site.

We set up four clouds located in different sites for each exper-
iment. For the WordCount benchmark, we used clouds located
in the East and West coasts of the USA: California, Chicago,
and West-Virginia. In the WebdataScan and Monsterquery
benchmarks the clouds were geographically closer: Pittsburgh,
Massachusetts, and Texas. For the sake of heterogeneity we set
for each experiment two clouds in the same state, with the other
two in different states (e.g., in the WordCount experiment we set
two clouds in Chicago). The hardware used in all applications
was diversified in terms of CPU characteristics and RAM
size. We have set one specific cloud in each experiment with
better resources than the remaining ones in order to maximize
heterogeneity and to demonstrate the benefits of the Medusa
scheduler. In the WordCount experiments the best cloud was in
Chicago, whereas in the WebdataScan case it was in Pittsburgh.

Each cloud is composed of 4 hosts with a MRv2 runtime:
one resource manager (master) and 3 node managers (slaves).
The MRv2 framework is not modified, which leads to each
Resource Manager being a single point of failure in its cloud.
However, Medusa has the capability to detect if the MRv2 in a
cloud is running. If not, that cloud is considered faulty (a type
of fault our system tolerates). Medusa is installed in the client
machine because we assume that the client is always correct. If
a client was faulty, the job output and the proxy results would
be compromised.

Medusa is implemented in Python 2.7. Medusa is the key
component to schedule the jobs and tolerate cloud faults. It sub-
mits and coordinates the execution of jobs, makes scheduling
decisions, and verifies the integrity of the replicated data and job
outputs (checking if f + 1 replicas are identical and launching
new replicas accordingly). These operations require the proxy
to communicate with the Resource Manager in each cloud. The
proxy is logically located outside the system (in the sense that
the clouds are oblivious to it). In our experiments, it runs in the
same machine as the client, an Amazon AWS host located in
Oregon. The message queuing service used is RabbitMQ [25].
The RabbitMQ server runs in the same machine as the proxy.

Each experiment is configured to first execute the Word-
Count, WebdataScan, or Monsterquery job and then aggregate
the results to obtain the final output. Each experiment is
repeated 40 times. The Medusa scheduler relies on a history of
30 executions to train the linear regression model and estimate

the throughput between clouds. We use Hadoop’s DistCp3 tool4

to copy data between the HDFS of two clouds. We inject
random workloads by running random numbers of extra jobs
in each cloud, to simulate background overhead added by other
users.

c) Baseline: We compare the performance of the Medusa
scheduler in terms of job makespan – the time it takes to com-
plete the entire job – and system workload against a baseline
that also tolerates cloud faults but uses a simple strategy to
schedule the replicated jobs – a Round-robin scheduler. This
scheduler selects the clouds to run the replicas of a job in a
circular order, assuming the clouds are numbered sequentially.

B. Experimental performance

a) Performance without faults: We first evaluate the per-
formance of Medusa when no fault occurs during the entire job
execution. We consider f = 1 in our experiments, so each job
will be executed twice, i.e., f + 1 times. This choice of f = 1
is based on the observation that the faults we consider in this
paper, despite potentially having devastating consequences, are
assumed not to be frequent.

Job efficiency. Fig. 5 compares the job makespan of the
Medusa scheduler against the baseline with different job sizes.
We observe that Medusa outperforms Round-robin in all cases.
In particular, notice that for the WordCount experiment (Fig. 5a)
the Medusa scheduler is up to 3 times faster to complete
the job when compared with Round-robin for the larger input
sizes. Moreover, from the bars depicting the first and third
quartiles of the makespan in both figures, we conclude that
the Medusa scheduler offers more stable performance as the
variance of the Round-robin scheduler is much more evident
(in fact, the variance of the others is so low that the bars are
barely perceptible).

The performance gain of Medusa in the other two exper-
iments exists but is not so pronounced because the through-
put between clouds is similar. However, in terms of stability
Medusa still offers an advantage: the variation in performance
of the Round-robin is perceptible in all plots, contrary to our
scheme.

Discussion. We now focus on trying to understand the results
a bit further. For this purpose we measured the load distribution
among clouds with the WordCount application to understand
the improved makespan of the Medusa scheduler in more detail.
Fig. 6 illustrates the usage of each cloud for executing an
entire job when different schedulers are used. The Round-robin
scheduler distributes the workload evenly across the clouds,
ignoring cloud and network performance. In contrast, with the
Medusa scheduler the jobs are launched more often in the
Chicago clouds, followed by West-Virginia, and only rarely
in California. The reason is twofold. First, as can be seen in
Fig. 7, which shows the throughput measured between each
pair of clouds in the system, the Chicago clouds have better
network connections between them when compared to the other
clouds. Thus, the transfer time to these clouds is, on average,
smaller, and this advantage results in the Chicago clouds being

4Distributed Copy, or DistCp, is a tool that uses MapReduce for large
inter/intra-cluster data copying.
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Fig. 5: Job makespan of WordCount, WebdataScan, and MonsterQuery executions (no faults).

chosen more frequently to run replicated jobs. We observe,
however – and that is the second reason –, that although West-
Virginia has slightly lower network throughput when compared
to California, more jobs are still scheduled to that cloud. This is
because the Medusa scheduler considers both network transfer
time and available computational capacity of the cloud when
making its decision. So, in this case, as the relative difference
of network throughput is not very high, the cloud with higher
computational power (West-Virginia in this case) is capable of
offering a lower makespan of the entire job.

Why does Medusa outperforms Round-robin so considerably
in the WordCount experiment, in particular, when compared
with the other two? Recall from Section IV-A that we ran the
two sets of experiments in different sets of clouds. Contrary to
Fig. 7, the throughput measured between each pair of clouds
in the WebdataScan and Monsterquery (Figure 8) experiments
was very stable. The average throughput was around 1 Gbps.

As is clear, this scenario is more homogeneous in terms
of network throughput between clouds, so a Round-robin
scheduler performs reasonably well in this setting. The reason
why Medusa shows a very significant improvement for the
WordCount experiment and less so for the others is therefore
related to the heterogeneity of the scenario.

In summary, as we have shown, the combination of the
cloud characteristics and network throughput both influence the
scheduling decision explaining the best performance of Medusa
over a traditional scheduler.

b) Performance with faults: In this section, we evaluate
the performance of the Medusa scheduler when there are faults.
We consider f = 1 in this experiment, as before.

We first evaluate the performance of the Medusa scheduler
when a malicious fault occurs. To this end, we inject a fault
that corrupts the digest of a job output at the end of the
vanilla WordCount execution, forcing the scheduler to launch
an extra replica of this job in a different cloud. Fig. 9 shows
the performance of the Medusa scheduler when one such fault
occurs (Medusa w/ malicious faults). In this case, the job
makespan doubles when compared to the case with no faults
(Medusa w/o fault) as one extra job has to be executed in a
different cloud. This is due to the fact that the scheduler can
not consider as options the cloud where the job has just run. As
explained in Section III-B, that cloud cannot be trusted again.

We also evaluate the performance of the Medusa scheduler by
assuming that the fault is arbitrary but not malicious (Medusa
w/ arbitrary faults). In this scenario, we also inject a fault that
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Fig. 6: Percentage of cloud usage.

tampers the digest of one job output at the end of the vanilla
WordCount execution. The difference, in this case, is that the
Medusa scheduler has the possibility to launch the extra replica
of this job in the same cloud where the fault occurred (as we
assume it is not malicious). As we observe from Fig.9, only
tolerating arbitrary faults allows reducing the job makespan.
This is mainly because the extra replica of the faulty job will
with high probability be scheduled to the same cloud, so there
is no need to copy the input of this job to another cloud.

Finally, we evaluate the performance of the Medusa sched-
uler when one cloud outage happens (Medusa w/ cloud outage).
To this end, we simulate a cloud outage by crashing the resource
manager of a random cloud. This forces the scheduler to launch
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an extra replica of this job to a different cloud. As shown in
Fig. 9, tolerating a cloud outage requires higher job makespan
than tolerating arbitrary or malicious faults. This is due to the
scheduler taking some time to detect that the cloud has failed,
looking for a copy of the data in another cloud, making the
necessary data transfers and running the job.

Interestingly, when the input data is large, the Medusa
scheduler in the presence of faults performs better than Round-
robin with no faults occurring. We find it therefore unnecessary
to report the performance of the Round-robin scheduler when
a fault occurs.

To summarize, our experimental evaluation shows that the
Medusa scheduler is more efficient than the conventional round-
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robin alternative, and achieves a significant gain in realistic
scenarios of high cloud heterogeneity.

V. RELATED WORK

There has been much research on MapReduce since this
framework was originally proposed in 2004 [26]. Just to
give a few examples, there has been significant work on
running MapReduce efficiently in different environments:
multi-core/multiprocessor systems [27], heterogeneous environ-
ments [28], mixed CPU-GPU environments [29], high-latency
eventually-consistent environments [30], among others. As the
related work on this subject is vast, we invite the reader for the
survey by Lee et al. [31].

With the requirements for compute-intensive analysis grow-
ing significantly, the need to scale-out MapReduce computation
across clouds has lately given rise to interesting research on the
subject. G-Hadoop [6] and G-MR [7] are two frameworks re-
cently proposed to enable large-scale MapReduce computations
to be distributed across clusters. Our work shares the goal of
scaling out to multiple clouds but has several differentiating
points. First, and most important, neither G-Hadoop nor G-
MR deal with the types of faults our system tolerates: arbitrary
and malicious faults, and cloud outages. They deal solely with
crash faults, similar to the original MapReduce. In addition,
they either require significant changes to Hadoop (G-Hadoop)
or are a completely new Hadoop-based platform (G-MR). In
contrast, our proposal uses Hadoop and does not require any
changes to this widely used platform.

These works show the importance of MapReduce and
Hadoop. Yet, neither advances the original platform from the
fault tolerance point of view, as we propose in this paper.
We leverage the vast literature on dependability in distributed
systems that appeared since the algorithms to tolerate Byzantine
or arbitrary faults were introduced, 30 years ago [32]. State
machine replication, for instance, is a generic solution to build
systems that are crash or Byzantine fault-tolerant [20]. The
practicality of implementing efficient Byzantine fault-tolerant
replication was demonstrated in [33], and from then onwards
other efficient algorithms have been proposed [21], [34], [35].

We have proposed in previous work a Byzantine fault-tolerant
MapReduce [36]. Contrary to the system we propose in the
current paper, the target of [36] was a single datacenter. Hence,
the system did not tolerate cloud outages or malicious faults
caused by malicious insiders. Notably, our previous solution
required changes to Hadoop, contrary to the proposal we make
here. ClusterBFT is also a system for Byzantine fault-tolerant
data-flow processing in clouds [37]. Contrary to our work, it
was not designed for MapReduce.

VI. CONCLUDING REMARKS

In this paper we proposed a platform, Medusa, for scaling out
MapReduce to multiple clouds and, simultaneously, tolerating
several kind of faults introduced by such multi-cloud environ-
ment.

Our proposal fulfilled the objectives we set forth. First,
Medusa scales MapReduce computations to multiple clouds.
Second, it extends the fault-tolerance offered by MapReduce to
tolerate arbitrary and malicious faults, as well as cloud outages.



Third, it does so transparently to the user. The Hadoop API is
not touched and the existing Hadoop MapReduce programs run
without modification. Forth, Medusa is a proxy in the client, and
thus the system does not require any modification to the Hadoop
framework. The clouds just need to run “vanilla” Hadoop (e.g.,
Amazon Elastic MapReduce [38]). Finally, as demonstrated by
our extensive experimental evaluation in the ExoGENI testbed,
it achieves this increased level of fault tolerance at a reasonable
cost when compared with common alternatives. It does so
by minimizing replication and by running a novel scheduling
algorithm that judiciously chooses the best clouds to perform
the necessary replicated jobs.

We made our code available as open source5. We invite
the community to use it and improve upon our code. As
future work, we plan to investigate techniques to improve the
performance of our system by replicating at a more fine-grained
level than at a job level.
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