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Abstract

This paper presents a study on the performance of

intrusion-tolerant protocols in wireless LANs. The proto-

cols are evaluated in several different environmental set-

tings, and also within the context of a car platooning ap-

plication for distributed cruise control. The experimental

evaluation reveals how performance is affected by the var-

ious environmental parameters such as the wireless stan-

dard, group size, and network topology. The distributed

cruise control application demonstrates the practicability

of such protocols, even when subjected to malicious faults.

1. Introduction

Intrusion tolerant protocols, which guarantee correct sys-

tem behavior even if some of its components fail in arbitrary

ways [11, 19], have been used in the past for several appli-

cations, including reliable communication, consensus and

voting, and state machine replication [17, 14, 5, 4]. A few

of these protocols have been implemented, however, their

evaluation has been limited to wired LANs and WANs. The

system models assumed by the protocols indicate that they

were not designed with wireless communication in mind

(e.g., they assume that nodes are fully-connected). There-

fore, very little is known about the behavior of the proto-

cols in wireless environments. Namely, it is unknown how

well they will adapt to the distinctive characteristics of wire-

less networks, such as potentially lower bandwidths, higher

failure rates and increased contention in the communication

medium. Additionally, the kinds of devices that are many

times utilized in these environments also have distinctive

characteristics, for instance limited power supply and lower

CPU capabilities, which most probably will impact on the

performance of the protocols.

In this paper, we aim at understanding how well existing

protocols can support the execution of intrusion-tolerant ap-
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plications in wireless LANs. To contextualize our research,

we have considered a particular application with demand-

ing requirements – a car platooning service for distributed

cruise control. In simple terms, the service is responsible

for exchanging information in order to automatically con-

trol a group of vehicles traveling close together to some

common destination (e.g., a set of trucks transporting a load

across country). This application is quite interesting be-

cause it has some requisites both in terms of time and se-

curity: for example, velocity should be adjusted within a

reasonable interval if a car wants to increase or decrease

speed; and, correct behavior needs to be preserved even if

external or internal attacks occur.

We developed an algorithm which implements the speed

agreement operations of the distributed cruise control ap-

plication. This algorithm is built using the services of an

existing stack of intrusion-tolerant protocols for group com-

munication – RITAS [16]. The services provided by RITAS

are particulary interesting because they tolerate arbitrary (or

Byzantine) failures, and they are built for an asynchronous

system model. This synchrony model avoids all time de-

pendencies, making the protocols immune to attacks in the

domain of time (e.g., attacks which artificially delay some

parts of the system). Moreover, it is well-suited for the

considered environment because under certain conditions

wireless networks are essentially untimely (e.g., noisy en-

vironments). RITAS offers several broadcast and consensus

protocols, and copes with the FLP impossibility result for

asynchronous systems by resorting to randomization [10].

Both the distributed control application and its support-

ing protocols are evaluated under several environmental set-

tings. With the intention of not losing sight of the broader

goal of the paper (i.e., to measure the feasibility of intrusion

tolerance in wireless networks), the experiments were made

using hardware with capabilities similar to what is expected

to be found in automobiles (low-end personal computers),

and with hardware that is typically utilized in wireless net-

works in general (PDA devices). For this purpose, a subset

of the RITAS protocols had to be ported from Linux to the

Windows Mobile platform. This task ended up being more



difficult than expected due to differences in the thread man-

agement of Windows Mobile, and because of the limited

support for some of the cryptographic operations.

To the best of our knowledge, there is no other study

on intrusion-tolerant agreement protocols in wireless net-

works. There has been an important track of research on

routing protocols for wireless ad-hoc networks that can be

considered to be intrusion-tolerant, since they aim to toler-

ate routing misbehavior of some of the nodes. Two surveys

are in [13, 1]. There is also one work on intrusion-tolerant

broadcast in that kind of networks [9]. More recently, there

has been research on crash fault-tolerant consensus proto-

cols for wireless networks, presenting conditions for solv-

ability, tradeoffs and efficient algorithms [6, 7, 20, 2, 12].

The paper has the following main contributions: it pro-

vides a general evaluation of intrusion-tolerant protocols

in wireless networks; it proposes an algorithm for the

speed agreement operations of a distributed cruise control,

presenting the respective implementation and performance

evaluation; it presents the first implementation and experi-

mental evaluation of intrusion-tolerant protocols using mo-

bile devices such as PDAs.

2. Distributed Cruise Control

Classical cruise control is a system designed to automat-

ically control the speed of a vehicle. The driver sets a speed,

and the system assumes automatic control of the throttle of

the vehicle. The same speed is maintained despite changes

in road conditions (e.g., inclinations).

Distributed cruise control is an extension of this func-

tionality for platoons. A platoon is a tightly spaced vehicle

group formation, and is aimed at improved highway effi-

ciency (e.g., lane throughput, fuel consumption, etc.) and

passenger comfort as much as possible. In the context of

this work, a platoon is defined as a group of vehicles on

a highway traveling at close distances from each other and

heading to some common destination. This is the case, for

instance, of platoons of heavy-duty freight trucks, which

travel together from the departure to the arrival point [22].

The main difference between classical cruise control and

distributed cruise control is that instead of having each ve-

hicle defining its speed individually, the platoon members

communicate in a wireless ad-hoc environment in order too

agree on a common speed. Once chosen, this baseline speed

is enforced by all vehicles, though not strictly. Vehicles are

allowed to deviate from this baseline speed in order to main-

tain safe distances from each other.

This paper presents an algorithm that solves the speed

agreement problem. It is designed as a service that can be

used by a sophisticated distributed cruise control applica-

tion to reach agreement on a baseline speed.

The speed agreement algorithm is arranged at the top of

a protocol stack as depicted in Figure 1. The protocols be-

ReliableBroadcastEchoBroadcastBinary ConsensusMult i�valued ConsensusVecto r ConsensusCar Platooning
Figure 1. Protocol stack

low the speed agreement are used as primitives by this al-

gorithm. At the bottom of the stack, there are the reliable

broadcast and echo broadcast protocols. Reliable broadcast

ensures that, upon a broadcast, all correct processes either

deliver the same message or no message at all [3]. Echo

broadcast is a weaker, but more efficient, version of reliable

broadcast [18]. In the case where the sender is corrupt, it

does not guarantee that all correct processes will deliver the

message. It only ensures that the subset of correct processes

that deliver, will do it for the same message.

Atop these broadcast primitives is binary consensus.

This protocol, being the simplest form of consensus, is

where randomization is applied to circumvent the FLP re-

sult. With it, processes can agree on a binary value. Two

distinct randomized binary consensus protocols were im-

plemented. The first, Bracha’s binary consensus, is a local

coin protocol that has a high time and communication com-

plexity but avoids the use of expensive cryptography [3].

The second, ABBA binary consensus, is a shared coin pro-

tocol that has a low time and communication complexity

but uses several asymmetric cryptographic primitives [4].

These protocols were subject to an experimental compari-

son in (wired) Ethernet LANs in a previous paper [15].

Above binary consensus is multi-valued consensus,

which allows processes to propose and decide on a value

with an arbitrary domain. Depending on the proposals, the

decision is either one of the proposed values or a default

value ⊥/∈ V .

At the top of the stack is vector consensus. This pro-

tocol allows processes to agree on a vector with a subset

of the proposed values. It ensures that every correct pro-

cess decides on the same vector V of size n; if a process pi

is correct, then the vector element V [i] is either the value

proposed by pi or the default value ⊥, and at least f + 1
elements of V were proposed by correct processes. The im-

plemented protocol is the one described in [8].

3. System model

This section defines the system model for the distributed

cruise control application. It applies to the speed agreement

protocol and to all the protocols below in the stack.



A platoon is formed by a group of n vehicles (also called

processes or nodes) P = {p1, p2, ...pn}, where n ≥ 4, and

each pair of vehicles (pi, pj) shares a secret key sij . It is

assumed that a platoon is formed at some departure point

and travels together to some arrival point. Split and merge

maneuvers are outside the scope of our problem and are not

considered for simplicity.

Only vehicles belonging to the platoon can participate in

the execution of the protocols. Nevertheless, some members

of the platoon may be either ill-intentioned or corrupted by

external entities. A vehicle is said to be correct if it fol-

lows the protocols until arrival. Otherwise, it is said to be

corrupt. The only assumption on the behavior of corrupt

vehicles/processes is that they follow the principle of no

self-harm. This means that a vehicle cannot force its col-

lision with other vehicles or take any action representing

danger to its occupants, either by means of explicit car con-

trol (e.g., sudden breaking or acceleration) or transmission

of incorrect information. They can, however, force colli-

sions between other vehicles, or take any action they like to

disrupt the correct operation of the platoon. There is a limit

to the number corrupt vehicles that can exist in a platoon.

In a platoon with n vehicles, at most f = ⌊n−1

3
⌋ of them

can be corrupt.

Correct processes are assumed to be fully-connected by

authenticated reliable channels that provide authenticity,

reliability and integrity. Authenticity means that the re-

cipient of a message knows who was the sender, reliability

means that messages are eventually received, and integrity

means that messages are delivered without modifications.

There are no assumptions about time, meaning that there

are no bounds to the processing times or communication

delays. Hence, the system is completely asynchronous.

4. Speed Agreement Algorithm

This section presents the speed agreement algorithm for

intrusion-tolerant distributed cruise control. It allows vehi-

cles inside a platoon to agree on a common baseline speed

even if some of them attempt to thwart the correct platoon

operation. The chosen baseline speed can be obtained using

two different approaches, which are not necessarily mutu-

ally exclusive: a leader-based strategy, and a decentralized

strategy.

Leader-based strategy. One of the platoon members,

which is not necessarily the car at the head of the platoon, is

defined a priori to be the leader, and disseminates the target

speed to the rest of the platoon.

For this strategy, the challenge in terms of safety is to

ensure that the leader reliably disseminates the speed value.

The leader itself can be malicious, this means that mecha-

nisms must be in place that keep the leader from dissemi-

nating contradictory speed values to different members of

the platoon. It also must be ensured that all members of the

platoon eventually receive the target speed value and are not

left in the dark since this could seriously affect convergence

to a stable situation.

Therefore, one wants to guarantee that the information

disseminated by the leader is delivered by all vehicles, it is

not contradictory, and it is actually originated by the leader.

A reliable broadcast protocol solves this problem since it

ensures that every process receives the broadcasted value.

Decentralized strategy. Every member proposes a tar-

get speed, and an agreement protocol is executed to decide,

based on or among the proposed values, a value to be used

by all platoon members.

This second approach is potentially more immune to the

scenario where some vehicle cannot guarantee the chosen

speed. Since the decision is based upon the proposals from

all members, it can, for instance, be the slowest car (under

certain limits) to determine the target speed. It has to be

ensured that the vehicles actually decide on the same speed,

even if some of them try to disrupt this procedure by, for

instance, disseminating contradictory proposals.

There are two protocols that in essence solve this prob-

lem: multi-valued consensus and vector consensus. Multi-

valued consensus allows processes to decide on a value

among the proposed ones. Vector consensus allows pro-

cesses to agree on a vector composed by a subset of the

proposed values. The latter is preferable since it provides

more flexibility to the platooning application. It is prefer-

able for the application to have access to a common vector

composed by the proposals from the vehicles where it can

apply some deterministic function to obtain to target speed

(e.g., the lowest value, or the most common value), instead

of being tied down to the single value returned by a multi-

valued consensus protocol. For this reason, vector consen-

sus is used by this strategy.

The algorithm. The speed agreement algorithm will ap-

ply both strategies complementarily. There will be a pre-

defined leader – the car at the head of the platoon – that

will set the target speed. In case some vehicle is unable to

apply the stipulated speed, it can demand a decentralized

agreement by having the vehicles execute a vector consen-

sus. It is assumed that if, after a decentralized decision, a

vehicle is unable to enforce the target speed, some kind of

mechanism (e.g., manual intervention) ejects the car from

the platoon. This procedure is, however, outside the scope

of our application.

The speed agreement algorithm works by having the

leader to reliably broadcast the new target speed. Then, all

vehicles that can, assume the new target speed. If any vehi-

cle cannot do this, it reliably broadcasts a message stating

so. Upon receiving this message, all vehicles initiate a vec-

tor consensus. The new target speed is obtained by applying

a deterministic function on the decision vector. All vehicles

assume this new target speed, no exceptions.



5. Experimental Evaluation

This section evaluates the performance of the protocol

stack of Figure 2 in 802.11 wireless LANs. First, the sup-

porting protocols – reliable and echo broadcast through vec-

tor consensus – are evaluated independently via a set of

micro-benchmarks. The experiments gauge the protocols

in a number of environmental settings that are modeled as

system parameters. This gives an insight into the impact

of the various wireless environments on the performance of

the protocols. Second, the speed agreement algorithm is

evaluated under various types of faults that are injected into

the stack to assess the resilience of the application in hostile

environments.

Testbeds. The experiments were carried out on two dif-

ferent testbeds, tb-emulab and tb-pda.

The first, tb-emulab, was formed by 11 nodes from the

Emulab network testbed [21]. Each node was a Pentium III

PC with 600 MHz of clock speed and 256 MB of RAM,

and contained a 802.11 a/b/g D-Link DWL-AG530 WLAN

interface card, which was able to operate as an access point

(AP). The operating system running on these nodes was

Redhat Linux 9 with kernel version 2.3.34. The nodes were

located on the same physical cluster and were, at most, a

few meters distant from each other.

The second testbed, tb-pda, was formed by 7 HP hw6915

PDAs. These PDAs were equipped with an Intel PXA270

416 MHz processor, 64 MB of SDRAM, and integrated

802.11b WLAN. The operating system was Windows Mo-

bile 5. The experiments were taken with the PDAs placed

on the same table a few centimeters apart from each other.

The access point used in this testbed was an Asus WL-

320gE 802.11 b/g.

Implementation. The broadcast and consensus protocols

were taken from the RITAS suite, which provides an imple-

mentation for Linux. These protocols were then ported to

the Windows Mobile platform. The car platooning appli-

cation was then developed for both platforms on top of the

existing protocols. The reliable channels were implemented

by the use of TCP for reliability, and the IPSec Authentica-

tion Header protocol for integrity.

Experimental Methodology. The performance metric

utilized in the experiments was the latency. This metric is

always relative to a particular process pi. In the case of

the consensus protocols, it is denoted as the interval of time

between the moment pi proposes a value to a consensus ex-

ecution, and the moment pi decides the consensus value. In

the case of the broadcast protocols (and the speed agreement

algorithm), it is the interval of time between the moment the

sender (or leader) process, say pi, initiates the execution of

the protocol, and the moment pi delivers the broadcasted

value (or accepts a speed value).

The environmental system parameters are configurable

parameters of the system that define specific execution en-

vironments. These are the group size, the wireless standard

and network bandwidth, and the network topology. The

group size defines the number of processes n in the sys-

tem, and in our case it can take three values: 4, 7, and 10.

The wireless standard and network bandwidth defines the

amendment to the 802.11 WLAN standard used, and intrin-

sically defines the amount of bandwidth available in the net-

work. Three WLAN standard are used: 802.11a, 802.11b,

and 802.11g. The 802.11a and 802.11g standards provide

54 Mb/s bandwidth, and 802.11b provides 11 Mb/s. The

network topology defines the way the network nodes com-

municate with each other. There are two types of network

topology: ad-hoc and infrastructure. In the ad-hoc network

topology the nodes communicate directly with each other

with no access points. In the infrastructure network topol-

ogy, all nodes communicate through an access point (AP).

This kind of topology can also make sense in the context

of car platooning since the vehicles may also communicate

through a roadside infrastructural network.

The experiments were carried out the following way. A

signaling machine, which does not participate in the exe-

cution of the protocols, is selected to conduct the experi-

ment. It repeats the following procedure m times: it broad-

casts a 1-byte UDP message to the n processes involved

in the experiment. When a process receives one of these

messages, it executes whatever protocol is relevant for the

current experiment (the information about which protocol

to execute is carried within the 1-byte UDP message). Pro-

cesses record the latency value as described above, and send

a 1-byte UDP message to the signaling machine indicating

the termination of the execution of the protocol. The sig-

naling machine, upon receiving n such messages, waits five

seconds, and recommences the procedure. The average la-

tency is obtained by taking the mean value of the sample of

measured values.

5.1. Micro-benchmarks

The micro-benchmarks are a set of experiments that aim

to access the impact of the several environmental settings

on the performance of the protocols. This section presents

four micro-benchmarks that evaluate specific settings. The

first analyzes the impact of the wireless standard with dif-

ferent group sizes. The second, the effects of the computa-

tional capability of the processes. The third, the impact of

the network topology. Finally, the fourth focuses on the bi-

nary consensus protocols. These protocols are interesting to

look in more detail since they are the only ones that employ

randomization, and do so using different strategies. In all

the experiments, the message payload size of the broadcast

and consensus protocols was set to 100 bytes. The only ex-

ception is binary consensus where 1-byte payloads are used

(since the protocol only deals with binary values it does not



Latency (ms)

Wireless Group Reliable Binary Multi-val. Vector

Standard Size Broadcast Consensus Consensus Consensus

802.11b

n = 4 20.2 42.6 178.4 259.9

n = 7 72.4 292.7 1581.7 2078.3

n = 10 219.2 832.8 4678.9 6234.1

802.11g

n = 4 8.3 18.2 79.9 109.3

n = 7 24.7 92.6 564.6 879.9

n = 10 62.5 326.3 1608.1 2504.6

802.11a

n = 4 7.7 17.1 73.1 94.8

n = 7 23.4 73.3 438.8 720.4

n = 10 50.6 310.8 1340.5 1828.5

Table 1. Latency measurements for differ-

ent wireless standards and group sizes in

testbed tb-emulab in infrastructure mode.

make sense to have larger payloads). Except where is pre-

sented an explicit comparison between the two binary con-

sensus protocols, the evaluated protocol is always Bracha’s

binary consensus [3].

Wireless Standard and Group Size. This micro-

benchmark evaluates the performance impact of both the

wireless standard and the group size. The used testbed was

tb-emulab. The network topology was set to infrastruc-

ture with one of the nodes acting exclusively as an access

point. All possible wireless standard and group size set-

tings were tested. The tested protocols were reliable broad-

cast, Bracha’s binary consensus, multi-valued consensus,

and vector consensus.

Table 1 shows the obtained measurements. The relative

cost of the protocols can be easily observed. It is com-

pletely congruent with their interdependencies within the

stack. The greatest gap is from the binary consensus to the

multi-valued consensus and is justified by the large mes-

sages the multi-valued consensus has to reliably broadcast

to justify the proposed values [8]. The gaps from the reli-

able broadcast to the binary consensus, and from the multi-

valued consensus to the vector consensus are smaller and

directly related with the overhead incurred from the respec-

tive upper-layer protocols.

The performance impact of the wireless standard is

mainly a consequence of the available bandwidth. The ex-

periments with 802.11b (11 Mb/s) were significantly slower

than the ones with 802.11g and 802.11a (54Mb/s). A re-

liable broadcast with four processes takes 8.3 ms on a

802.11g network, while on a 802.11b network this more

than doubled to 20.2 ms. This pattern is roughly ob-

served for all the experiments, while the difference becomes

slightly more accentuated with larger group sizes.

Another interesting result is that the values obtained in

the 802.11a experiments were consistently lower than the

ones obtained in 802.11g, despite both standards being ca-

pable of achieving the same bandwidth. This difference is

modest for the cheaper protocols and smaller group sizes.

For instance, a reliable broadcast with four processes costs

Latency (ms)

Group Reliable Binary Multi-valued Vector

Size Testbed Broadcast Consensus Consensus Consensus

n = 4
tb-emu. 12 35 160 210

tb-pda 26 211 320 374

n = 7
tb-emu. 36 154 972 1474

tb-pda 52 1626 2555 3221

Table 2. Average latency in 802.11b ad-hoc

network for both testbeds.

8.3 ms in 802.11g, and 7.7 ms in 802.11a, an almost neg-

ligible difference. However, as the protocols become more

expensive and the group size increases (i.e., the network be-

comes more stressed), this difference becomes substantial.

For vector consensus with ten processes, the cost is 2504.6

ms in 802.11g, and 1828.5 ms in 802.11a, which is a con-

siderable difference.

Computational Capability. The second set of experi-

ments measure how the computational capability of the in-

dividual nodes affects the performance of the protocols.

Both testbeds were configured with the same system param-

eters: the wireless standard was set to 802.11b, the group

size to 4 and 7 processes, and the network topology to ad-

hoc mode. The computational capability in this contexts

refers not just to the processing power of the CPU, but the

whole local environment where the protocols are executed

(e.g., hardware, drivers, operating system).

The obtained measurements are presented in Table 2.

From the results it is clear that the computational character-

istics of the individual nodes greatly affect the performance

of the protocols. There is always a significant gap between

the two testbeds for all the experiments. The average la-

tency roughly doubles from tb-emulab to tb-pda, except for

binary consensus where the difference is much greater.

In both testbeds it is observed that, at some point, a larger

gap exists from one protocol to another. In tb-pda this hap-

pens from reliable broadcast to binary consensus, and in tb-

emulab from binary consensus to multi-valued consensus.

Being the system parameters equal for both testbeds, one

must assume that it is the limited computational capability

of the nodes in tb-pda that is responsible for the gap ob-

served from reliable broadcast to binary consensus.

For testbed tb-emulab, the gap from binary consensus to

multi-valued consensus is congruent with the messages the

latter protocol has to exchange. It is interesting to note that

the average latency measured in tb-pda gets progressively

closer to that measured in pda-emulab as the cost of the pro-

tocols increases. What happens is that another degradation

factor comes into play: the network bandwidth. So, as the

communication cost of the protocols increases, the perfor-

mance bottleneck shifts from the computational capability

of the nodes to the network bandwidth. This is why the gap

between the two testbeds tends to decrease as more stress is

put on the network.



Latency (ms)

Group Reliable Binary Multi-valued Vector

Size Testbed Broadcast Consensus Consensus Consensus

n = 4
ad-hoc 26 211 320 374

infra. 43 631 952 1190

n = 7
ad-hoc 52 1616 2555 3221

infra. 138 7620 10062 12929

Table 3. Average latency for tb-pda with 4 and

7 processes.

Network Topology. This section looks at how the net-

work topology of wireless networks impacts the perfor-

mance of the protocols. For this experiment, measurements

were taken in testbed tb-pda with 802.11b networks for both

ad-hoc and infrastructure. The group size was set to 4 and

7 processes.

The measurements are presented in Table 3. The obser-

vation is that the operation in infrastructure mode does have

a significant impact on performance. It introduces an addi-

tional delay into the communication between the processes

since all data must be relayed through the AP.

The performance penalty in infrastructure mode remains

essentially the same across all protocols despite their rela-

tive cost. Around 3 times with four processes, and 4 times

with seven processes. For instance, in testbed tb-pda, a

multi-valued consensus with four processes took 320 ms on

average in ad-hoc mode, and 952 ms in infrastructure mode.

With seven processes, it took 2555 ms in ad-hoc mode, and

10062 ms in infrastructure mode. So, a larger group also

emphasizes a bit the degradation brought up by the pres-

ence of the AP.

These results demonstrate the high sensitivity these pro-

tocols have to the network latency, even more than the band-

width, because of the large number of communication steps

involved.

Binary Consensus Comparison. This section performs a

more in-depth analysis of a key protocol in the stack: binary

consensus. It compares the two different implementations

of the protocol and presents some considerations about the

performability of the two strategies employed by the pro-

tocols – one depends on the heavy use of public-key cryp-

tography, and the other on abundant message exchanges.

Testbed tb-emulab was used, and the following system pa-

rameters were tested: the group size for 4, 7, and 10 pro-

cesses; the wireless standard for 802.11b, and 802.11g; and

the network topology for ad-hoc, and infrastructure.

Given the features of the protocols it was expected for

the Bracha protocol to outperform the ABBA protocol given

more favorable network conditions, and to exist a certain

point, as network conditions degrade, where the ABBA

strategy would pay off to the point of being faster than the

Bracha protocol. Table 4 presents the measurements ob-

served for the various environmental settings tested.

The results confirm the expectations. The table shows

Latency (ms)

Group Algorithm 802.11g 802.11b

Size ad-hoc infra. ad-hoc infra.

n = 4
Bracha 11 18 35 43

ABBA 147 148 146 160

n = 7
Bracha 43 94 154 293

ABBA 210 211 211 270

n = 10
Bracha 95 326 415 833

ABBA 290 311 301 717

Table 4. Average latency for binary consen-

sus protocols in tb-emulab.

the measurements for the best network configuration

(802.11g and ad-hoc), where the Bracha protocol is clearly

faster than ABBA, even for a group size of ten processes

– 95 ms against 290 ms, respectively. In remaining sce-

narios where the network conditions are not so good – ei-

ther there is an AP or the standard is 802.11b, or both –

there is a point from which ABBA outperforms Bracha.

For the 802.11b/adhoc and 802.11g/infrastructure scenar-

ios, this happens when the group size is ten, and for the

802.11b/infrastructure, which is the worst network configu-

ration, this happens at n = 7. The conclusion is that Bracha

is much faster with few processes and “good” network con-

ditions, but it quickly degrades with the network capacity up

to a point where the ABBA protocol, being more resilient

to the network limitations, becomes faster.

5.2. Speed Agreement Algorithm

This section evaluates the speed agreement algorithm

from Section 4. The application is evaluated in both

testbeds and several scenarios are considered where the ap-

plication is subject to various types of faults and different

behaviors from the vehicles.

For testbed tb-emulab, two configurations are used, both

with four nodes: one with a 802.11g ad-hoc network, and

another with a 802.11g ad-hoc network. For tb-pda, the

same number of nodes is used, but only on a 802.11b ad-

hoc network. On both testbeds, the chosen binary consensus

protocol is the Bracha’s protocol. The application is evalu-

ated under three types of faultloads, and two distinct vehicle

behaviors.

The three faultloads are normal, silent, and Byzantine. In

the normal faultload, the vehicles follow the protocol cor-

rectly until termination. In the silent faultload, one of the

vehicles does not communicate with the others. Finally, in

the Byzantine faultload, f of the vehicles try their best to

disrupt the execution of the platooning application. This is

done at the binary consensus and multi-valued consensus

protocols. At the binary consensus, they always propose

zero, trying to force the processes to decide on this value.

This has the effect of the multi-valued consensus to return a

default value ⊥, which in turn forces the vector consensus

to execute another round. At the multi-valued consensus



layer, they always propose the default value, trying to force

the processes to decide on the default value. The goal is also

to force the vector consensus into another round.

The vehicle behavior is related to the way vehicles react

to the speed agreement algorithm, and it can be either coop-

erative or contentious. In the cooperative behavior, all the

vehicles accept the proposal of the leader. In the contentious

behavior, one of the vehicles disagrees with the value pro-

posed by the leader and forces a decentralized agreement.

Table 5 presents the results for all the possible combina-

tions between faultload and vehicle behavior. The first ob-

servation is that the contentious behavior imposes a signif-

icant performance penalty. For instance, in testbed tb-pda

(802.11b), an execution with cooperative behavior takes an

average of 41.30 ms, and 715.45 ms with contentious be-

havior. This result is explained because the contentious

behavior forces extra reliable broadcast and vector consen-

sus executions. Even with this performance penalty, it is

very interesting to note that the protocol can be executed

quite fast in typical 802.11g network with moderately aged

hardware. The executions with cooperative behavior in tb-

emulab took around 3-4 ms in average, and around 60 ms

with contentious behavior. These are promising results, spe-

cially considering that none of the protocols were optimized

for wireless networks.

The observations about the wireless standard and the

testbed impact are just confirmations of the results ob-

tained in the previous sections. The testbed tb-emulab is

faster than tb-pda under the same environmental conditions

(802.11b and ad-hoc), and the 802.11g results are much bet-

ter than the 802.11b.

The measurements about the faultload yield some in-

teresting results. The silent faultload made the executions

faster than the normal faultload. When one of the vehi-

cles ceases communication, it alleviates the transmission

medium, leaving more bandwidth available, and making

the executions faster. Another interesting result is that the

Byzantine failures did not have a noticeable impact on the

performance of the algorithm. The resilience of the pro-

tocols extended to their performance, and confirms that

the randomization techniques employed are not affected by

Byzantine faults in terms of liveness, unlike most other ap-

proaches.

Feasibility of the Speed Agreement Algorithm. De-

spite the fact that many parameters would have to be taken

into account to build a more complete control-based solu-

tion for a platooning application, we can reason about the

possible impact of the communication delays affecting the

behavior of the platoon. In particular, it is important to un-

derstand if the typical magnitude of protocol execution de-

lays are adequate for this application.

To do that, let us consider a simple case, in which the

platoon is stable and, at some point, the leader vehicle slows

Latency (ms)

Testbed/Standard Faultload Vehicle behavior

Cooperative (ms) Contentious (ms)

tb-pda/802.11b

normal 41.30 715.45

silent 29.24 501.11

Byzantine 42.07 714.98

tb-emulab/802.11g

normal 4.21 64.31

silent 3.81 57.09

Byzantine 4.64 64.47

tb-emulab/802.11b

normal 32.71 579.54

silent 24.80 407.72

Byzantine 31.99 581.21

Table 5. Average latency for the speed agree-

ment protocol (ad-hoc mode).

down, reducing its speed by 40 Km/h (we can assume this

is done instantaneously). At this point, a new agreement

would be started to propagate the new speed to all other ve-

hicles. Clearly, there is a time bound after which the agree-

ment result is useless, because the follower car would have

approached too much and some safety mechanism would

have been triggered to prevent a possible collision. There-

fore, to ensure a smooth adaptation, the agreement protocol

must terminate reasonably fast. But how fast?

For the mentioned speed reduction, the follower car will

approach the leader at about 40 Km/h, that is, 11 m/s.

Therefore, if some control algorithm to be executed by the

vehicles is configured to stabilize with an inter-vehicle dis-

tance of about 15 meters, this would mean that a one second

delay would be allowed for the agreement protocol execu-

tion, while keeping a safety distance margin of about 4 me-

ters. This provides a rough idea of the values that would

be in place when considering this platooning application,

showing that our results are in the general case well within

these margins. Consequently, it seems possible to consider

intrusion-tolerant solutions in this context.

6. Conclusions

This paper presents a performance evaluation of random-

ized intrusion-tolerant agreement protocols in 802.11 wire-

less networks, and the application and evaluation of these

protocols in a car platooning application scenario subject to

various types of faultloads. This section summarizes some

important results obtained in these evaluations.

The measurements taken in 802.11a/g networks (54

Mb/s) were considerably better than the ones taken in

802.11b (11 Mb/s), showing how the available bandwidth

can affect the performance of the protocols.

The execution of the protocols is slightly but consistently

faster in 802.11a against 802.11g. Despite both being capa-

ble of achieving the same maximum data rate, the typical

data rate is higher in 802.11a networks.

The computational capability of the individual processes

can represent a significant performance bottleneck. Never-

theless, as the cost of the protocols increase and more stress

is put on the network, this bottleneck tends to shift from the



computational capability to the network bandwidth.

The introduction of an access point, and the consequen-

tial relay of all communication through it, imposes a gen-

eral performance penalty on the protocols. The protocols

are highly sensitivity to the network delays.

Bracha’s binary consensus is faster than ABBA binary

consensus when the network conditions are better (i.e.,

higher bandwidth, lower latency). Nevertheless, there is a

point, as network conditions degrade, at which ABBA out-

performs Bracha’s.

The car platooning application in particular shows that

these protocols can be applied in practical settings. Given

relatively old hardware (Pentium III PCs) and a typical

802.11g ad-hoc network, the speed agreement algorithm

can be executed between four vehicles in a matter of a few

milliseconds (3-4 ms) in normal conditions, and around 60

milliseconds if some car forces a decentralized agreement.

Other interesting results to retain from the car platooning

application pertain to the protocol behavior with faults. If

some car does not communicate, the protocols actually ex-

ecute faster. Additionally, the performance is unaffected

even if some vehicle attempts to actively disrupt the exe-

cution of the protocols.
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