
Randomization Can Be a Healer: Consensus
with Dynamic Omission Failures

Henrique Moniz, Nuno Ferreira Neves, Miguel Correia, and Paulo Veŕıssimo

University of Lisboa, Faculdade de Ciências, LASIGE?

Abstract. Wireless ad-hoc networks are being increasingly used in di-
verse contexts, ranging from casual meetings to disaster recovery oper-
ations. A promising approach is to model these networks as distributed
systems prone to dynamic communication failures. This captures transi-
tory disconnections in communication due to phenomena like interference
and collisions, and permits an efficient use of the wireless broadcasting
medium. This model, however, is bound by the impossibility result of
Santoro and Widmayer, which states that, even with strong synchrony
assumptions, there is no deterministic solution to any non-trivial form
of agreement if n − 1 or more messages can be lost per communication
round in a system with n processes. In this paper we propose a novel way
to circumvent this impossibility result by employing randomization. We
present a consensus protocol that ensures safety in the presence of an un-
restricted number of omission faults, and guarantees progress in rounds
where such faults are bounded by f ≤ dn

2
e(n− k) + k− 2, where k is the

number of processes required to decide, eventually assuring termination
with probability 1.

1 Introduction

Wireless ad-hoc networks are being increasingly used in diverse contexts, ranging
from casual meetings to disaster recovery operations. The ability of distributed
processes to execute coordinated activities despite failures is important to dis-
tributed systems, including those based in wireless ad-hoc networks. Such co-
ordination requires agreement among the processes, a problem that has taken
many incarnations in the literature: consensus, Byzantine generals, and inter-
active consistency are just a few examples [12, 17, 23]. The prevalent aspect of
these formulations is that at some point in their execution the processes involved
have to agree on a common item of information.

In the traditional models for distributed systems, faults are static and com-
ponent-bound, i.e., a fault is associated to a particular component that is forever
considered faulty. The faulty component can be a process or a communication
link (e.g., [23, 24]). These models are referred to as component failure models.
For systems based on these models to operate correctly, a certain number of
components must not exhibit failures during their entire operation time.
? This work was partially supported by the FCT through the Multiannual and the

CMU-Portugal Programs.

This approach, however, is not well adapted to wireless ad-hoc networks.
First, in these environments, faults have a more dynamic and transient nature.
The nodes are usually subject to momentary disconnection due to node mobil-
ity and other environmental phenomena such as electromagnetic interference,
fading, collisions, etc. These events may result in message loss or corruption,
but should not be sufficient to permanently assume a process or link as faulty,
specially because they can possibly affect many processes during the lifetime of
the system. Due to the emergence of wireless networks, there is an increasing
need for models that accurately capture the reality of these environments.

Second, the openness of wireless ad-hoc networks provides a natural broad-
casting medium, where the cost of transmitting a message to multiple processes
can be just the same of transmitting it to a single process, as long as they are
within communication range. To take advantage of this feature, it becomes neces-
sary to depart from the common modeling assumption of reliable point-to-point
channels, usually employed by the component failure models. Developing a sys-
tem based on this assumption forces the implementation of end-to-end message
delivery mechanisms (similar to TCP), which significantly increase the medium
access contention, impairing the overall performance. The unreliability inherent
to radio communications has to be dealt with in some other way. Models that
assume unreliable communication links are more adjusted to wireless network-
ing. Tolerance to message loss becomes integrated within the semantics of the
algorithms, instead of being abstracted by typically inefficient implementations.

More adapted to the wireless ad-hoc environments is the communication
failure model [27, 28]. This model differs from the component failure models in
the sense that it focuses on the effects of faults rather than their source. On
message-passing systems, any failure, regardless of its nature, will ultimately
manifest itself as transmission faults. For example, a process crash will manifest
into a series of transmission omission faults with the crashed process as sender,
and a process that is attacked and falls under the control of a maliciously ad-
versary may manifest into a series of transmission corruption faults where the
contents of the messages are modified relative to the original protocol. Such an
approach implicitly allows every component of the system to eventually fail. The
only restriction is placed on the number of faults that simultaneously manifest
in the system.

Research in this model, however, has been limited mainly due to two funda-
mental reasons. When the model was introduced by Santoro and Widmayer in
1989, a stringent impossibility result came along with it [27]. This result applies
to the k-agreement problem among n processes, in which k out of n processes
must agree on a binary value v ∈ {0, 1}. The Santoro-Widmayer impossibility re-
sult applies to non-trivial agreement, i.e., for k > dn/2e. It states that there is no
finite time deterministic algorithm that allows n processes to reach k-agreement
if more than n − 2 transmission failures occur in a communication step. This
is a very discouraging result since the crashing of a single process necessarily
results in n− 1 transmission failures, rendering this form of agreement impossi-
ble. Moreover, this result is produced under strong time assumptions where both

the processes’ relative processing times and communication delays are bound by
known constants (i.e., a synchronous system).

The second reason has probably to do with some lack of practical interest
of this model prior to the emergence of wireless ad-hoc communication. For dis-
tributed systems based on wired networks, it was safe and convenient to assume
end-to-end reliable delivery mechanisms, since the implementation of such mech-
anisms did not represent a significant performance overhead. Interestingly, these
models are also bound by an impossibility result: the FLP result [13]. It states
that consensus is impossible to solve deterministically in asynchronous systems
(i.e., where there are no assumptions about the processes’ relative processing
times and communication delays) if just a single process can fail.

Thus, on one hand we have asynchronous systems, bound by the FLP impos-
sibility result, where agreement is impossible even if communication is reliable.
On the other hand, we have systems that are synchronous but the communication
is unreliable so they are bound by the Santoro-Widmayer impossibility result,
also making agreement impossible. While several solutions have been proposed
over the years to circumvent the FLP result (e.g., partial synchrony models [10],
failure detection [7], wormholes [21]), the result of Santoro and Widmayer, for
the reasons stated above, has not received comparable attention. Nevertheless,
getting past the current upper bound of n−2 transmission failures is paramount
to the embracing of the communication failure model for emergent networking
environments.

This paper proposes a protocol that circumvents the Santoro-Widmayer im-
possibility result in both a practical and efficient way. We achieve this by em-
ploying randomization, which has never been applied before in the context of the
communication failure model. The Santoro-Widmayer impossibility result rules
out deterministic solutions to agreement in this model. Randomization takes a
probabilistic approach to the problem, and has been used in the past to solve
consensus in FLP-bound systems (starting with [3, 25]). It overcomes previous
limitations by supplying processes with access to random information (e.g., a
coin flip) and combining this with a refinement of the problem statement where
a decision is ensured with a probability of 1.

The paper describes a randomized binary k-consensus algorithm that toler-
ates omission faults. The algorithm allows at least k processes to decide on a
common binary value in a system with n processes such that k > n

2 . The safety
properties of consensus (i.e., validity and agreement) are ensured even with an
unrestricted number of faults, while the liveness property (i.e., termination) is
ensured if the number of faults per round does not exceed dn2 e(n − k) + k − 2.
This algorithm is adequate for wireless ad-hoc networks because it allows one to
take advantage of the broadcasting medium in an efficient way and, at the same
time, ensures safety under severe communication problems that lead to many
message losses. The termination is achieved with probability 1 when communi-
cation becomes stable, i.e., when the threshold above is satisfied. Furthermore,
the algorithm is efficient in the sense that it is fast-learning [16], i.e., it termi-
nates in 2 communication steps under favorable conditions (i.e., with no message

losses, benign patterns of message losses, and/or all processes having the same
initial value).

The remainder of the paper is organized as follows: Section 2 discusses the
related work. Section 3 formalizes the k-consensus problem, and the next sec-
tion presents the system model. Section 5 describes the algorithm, and the cor-
rectness proofs are provided in the following section. Section 7 discusses some
performance aspects of the algorithm, and finally, Section 8 concludes the paper.

2 Related Work

The problem of reaching agreement with unreliable communication links goes
back as far as 1975 when Akkoyunlu et al. pointed out that an agreement be-
tween two processes connected by unreliable communication paths leads to an
infinite exchange of messages [2]. In 1978 Gray identified essentially the same
problem by formulating the generals paradox [14]. He showed that there is no
fixed length protocol that allows agreement between two processes connected
through an unreliable communication link. This problem is often referred to
as the coordinated attack problem from the formalization of Lynch [18]. Vargh-
ese and Lynch later proposed a randomized solution to the coordinated attack
problem where the protocol runs for a fixed number of rounds and agreement is
reached with a probability proportional to the number of rounds [30].

The previous result was generalized to an arbitrary number of processes
by Santoro and Widmayer [27, 28]. Their contribution provides an important
impossibility result. It states that there is no fixed-time solution to the problem
of k-agreement (i.e., k > dn2 e processes decide the same value 0 or 1) in a
system with n processes if more than n − 2 links are allowed to lose messages.
Their problem statement represents a weaker form of agreement than ours. The
definition of k-agreement allows processes to decide different values as long as
k decide the same value, while in our definition (i.e., k-consensus) no process is
allowed to decide a different value.

The work of Chockler et al. presents algorithms that solve consensus in sys-
tems where nodes fail only by crashing and messages can be lost due to colli-
sions [9]. Their solution assumes that processes have access to a collision detector
that determines when message collisions occur, which allows nodes to take recov-
ery measures when messages are lost. Message omissions other than those due
to collisions, however, are not covered by their model. By contrast, our model
assumes message omissions regardless of their nature.

Two other works also solve consensus under dynamic communication failures.
The work of Biely et al. does so by addressing the problem in the context of the
heard-of model of Charron-Bost and Schiper [4, 8]. This model permits a fine-
grained specification of the fault patterns allowed in the system, thus being
able to distinguish the cases where the fault pattern exceeds the lower bound
of Santoro and Widmayer but is not harmful to the system as a whole (e.g.,
n − 1 faults are harmful to the system if they originate at the same process,
but may not be if they originate each one at a different process). The work of

Schmid et al. presents an analogous contribution in the sense that it restricts the
number of faults that each process may experience such that the harmful fault
patterns are avoided [29]. None of these two contributions, however, deal with
the problematic essence of the Santoro-Widmayer impossibility result, which
is the failure of every transmission from a single process rendering consensus
impossible. This implies that consensus remains unsolvable if, for instance, in a
wireless ad-hoc network, a single node falls out of range of every other node for
an unknown period of time.

Crash-recovery models based on failure detection mechanisms can also be
applied to wireless environments because of their ability to capture the discon-
nection and eventual reconnection of processes [11, 15, 22, 1]. The granularity of
these models, however, was not intended to capture connectivity scenarios likely
to arise in wireless environments. For example, consensus cannot be solved in
scenarios where every good process (i.e., one that is not crashed) has some faulty
link to another good process. Such configuration violates the eventual weak ac-
curacy property required by failure detectors.

3 The k-Consensus Problem

The k-consensus problem considers a set of n processes where each process pi
proposes a binary value vi ∈ {0, 1}, and at least k > n

2 of them have to decide on
a common value proposed by one of the processes. The remaining n−k processes
do not necessarily have to decide, but if they do, they are not allowed to decide
on a different value. Our problem formulation is designed to accommodate a
randomized solution and is formally defined by the properties:

Validity. If all processes propose the same value v, then any process that de-
cides, decides v.

Agreement. No two processes decide differently.
Termination. At least k processes eventually decide with probability 1.

4 System Model

The system is composed by a fixed set of n processes Π = {p0, p1, ..., pn−1}.
The timing model is assumed to be synchronous. This implies that (1) there is
a known upper bound on time required by a process to execute a step, (2) there
is a known upper bound on message transmission delays, and (3) every process
has a local clock with a known bounded rate of drift with respect to real-time.

The communication between processes proceeds in synchronous rounds. At
each round, every process pi ∈ Π executes the following actions: (1) transmits a
message m to every process pj ∈ Π, including itself, by invoking broadcast(m),
(2) receives the messages broadcast in the current round by invoking receive(),
and (3) performs a local computation based on its current state and the set of
messages received so far. We should note that the assumption of a broadcast
operation generating n transmissions arises from the necessity of modeling the

possibility of non-uniform message delivery by the processes. In practice, this
operation can still be implemented efficiently by transmitting a single message.

Processes are modeled so as not to exhibit faulty behavior, i.e., they correctly
follow the protocol until termination. The notion of a faulty process is instead
captured by the assumption of faulty message transmissions. For example, a
crashed process can be expressed by the loss of every message transmitted by
it. The model considers omission transmission failures. A transmission between
two processes pi and pj is subject to an omission failure if the message sent by
pi is not received by pj .

In rounds where omission faults are bounded by f ≤ dn2 e(n− k) + k − 2 out
of the n2 transmissions that occur (where k is the number of processes required
to decide), the protocol necessarily makes some progress that eventually leads to
a decision. Therefore, if enough of these rounds occur, then the protocol ensures
termination with probability 1. Nevertheless, to simplify the correctness proofs
we will assume that there is some unknown time after which at most f faulty
transmissions occur at each round. The number of faults per round prior to this
is unrestricted and can for instance match the total number of transmissions n2.

Finally, every process pi ∈ Π has access to a local random bit generator that
returns unbiased bits observable only by pi, and access to a function #x(V) that
returns the number of occurrences of an element x in a vector V .

5 The Algorithm

This section presents a k-consensus algorithm (Algorithm 1). The algorithm is
tolerant to omission faults and relies on each process pi having access to a local
coin1 mechanism that returns random bits observable only by pi (e.g., [3, 5]).
Safety (i.e., the validity and agreement properties of consensus) is ensured by
the algorithm regardless of the number of omission faults that occur per round,
while liveness (i.e., the termination property) is ensured if, after some arbitrary
number of rounds, the number of omission faults per round does not exceed the
threshold f ≤ dn2 e(n− k) + k − 2.

The internal state of a process pi is comprised by three variables: (1) the
phase φi ≥ 1, (2) the proposal value vi ∈ {0, 1}, and finally, (3) the decision
status statusi ∈ {decided, undecided}. Each process starts its execution with
φi = 1, statusi = undecided, while vi is set to the initial proposal value indicated
by the input register proposali.

A round of the algorithm is executed as follows. Upon every clock tick (line 5),
each process pi broadcasts a message of the form 〈φi, vi, statusi〉 containing the
variables that comprise its internal state, and receives the messages broadcast
by all processes (lines 6-7). Some of the messages that a process is supposed to
receive may be lost. Any new messages that a process pi receives at every round
are accumulated in a vector Vi (line 8). A message 〈φ, v, status〉 transmitted by
a process pj is considered new if it does not exist in Vi any message with phase
1 As opposed to a shared coin that returns bits observable by all processes (e.g., [25,

6]).

Algorithm 1: k-consensus algorithm
Input: Initial binary proposal value proposali ∈ {0, 1}
Output: Binary decision value decisioni ∈ {0, 1}
φi ← 1;1

vi ← proposali;2

statusi ← undecided;3

Vi ← ∅;4

for each clock tick do5

broadcast(〈φi, vi, statusi〉);6

receive();7

Vi ← Vi
⋃
{new messages received in the current round};8

while ∃〈φ,v,status〉∈Vi
: φ > φi do9

φi ← φ;10

vi ← v;11

statusi ← status;12

end13

if #〈φi,∗,∗〉(Vi) >
n
2

then14

if φi mod 2 = 1 then /* odd phase */15

if ∃v∈{0,1} : #〈φi,v,∗〉(Vi) >
n
2

then16

vi ← v;17

else18

vi ← ⊥;19

end20

else /* φi mod 2 = 0: even phase */21

if ∃v∈{0,1} : #〈φi,v,∗〉(Vi) >
n
2

then22

statusi ← decided;23

end24

if ∃v∈{0,1} : #〈φi,v,∗〉(Vi) ≥ 1 then25

vi ← v;26

else27

vi ← coini();28

end29

end30

φi ← φi + 1;31

end32

if statusi = decided then33

decisioni ← vi;34

end35

end36

value φ from pj . This implies that it is impossible to accumulate in vector Vi
more than one message with the same phase value φ from any single process.
Based on its current internal state and the messages accumulated so far in vector
Vi, each process pi performs a state transition (i.e., modifies φ, v or status).

Before explaining how a process performs a state transition, it is important
to note the distinction between round and phase. The term round pertains to a
periodic execution of the protocol activated by a synchronous event, a clock tick
in this case. The term phase pertains to a monotonic variable φi that is part of
the internal state of a process pi, and whose value increases as pi accumulates
messages of a certain form in vector Vi. How exactly φi is updated is explained
below. For now, it is beneficial to retain that for any given round, any two
processes pi and pj can have different phase values φi 6= φj .

A process pi performs a state transition when one of two conditions occur:

1. The vector Vi holds one message from some process pj whose phase φj is
higher than the phase φi of pi.

2. The vector Vi holds more than n
2 messages whose phase is equal to the phase

φi of pi.

The first case is straightforward (lines 9-13). When the condition is met (line
9), the process pi updates its state to match exactly the state of the received
message (lines 10-12).

The second case is more complex (lines 14-32). The way a process pi updates
its state depends on whether the current number of its phase φi is odd (i.e.,
φi mod 2 = 1) or even (i.e., φi mod 2 = 0). The odd phase essentially guarantees
that if two processes set their proposal to a value 1 or 0, they do it for the same
value. The even phase is where a process decides if it learns that a majority of
processes have the same proposal value.

If φi mod 2 = 1 (lines 15-20), then the proposal value vi is updated in the
following way: if there are more than n

2 messages of the form 〈φi, v, ∗〉 in Vi with
the same value v, then vi is set to v (lines 16-17), otherwise it is set to a special
value ⊥ /∈ {0, 1} indicating a lack of preference (lines 18-19).

If φi mod 2 = 0 (lines 21-30), then the process sets statusi to decided if
there are more than n

2 messages of the form 〈φi, v, ∗〉 in Vi with the same value
v 6= ⊥ (lines 22-24). The proposal value vi is updated to v if there is at least one
message of the form 〈φi, v, ∗〉 in Vi with a value v 6= ⊥, otherwise vi is set to the
value of function coin(), which returns a random number 0 or 1, each with a
probability 1

2 (lines 25-29). Regardless of whether the phase φi is odd or even,
its value is always incremented by one unit at line 31.

At the end of each round, a process pi checks if statusi has been set to
decided. If so, it decides by setting the output variable decisioni to the current
proposal value vi (lines 33-35). Any further accesses to this variable do not alter
its value. Hence, they have no impact on the correctness of the algorithm.

In the presented algorithm, processes do not voluntarily stop sending mes-
sages. The fact that the system stabilization time is unknown combined with the
assumed fault model means that processes have no way of knowing when other
processes have decided. This limitation can be easily overcome by having the
processes execute for an additional round after deciding, where the broadcast
operation is performed through a reliable (and possibly asynchronous) chan-
nel. Raynal and Roy showed that it is possible to implement reliable and asyn-
chronous communication on top of an unreliable and synchronous model, and

vice-versa [26]. One can assume the presence of a reliable channel that is judi-
ciously used in such situations.

6 Correctness Proof

In this section we prove the correctness of the algorithm. Up to Theorem 2 we
prove validity and agreement properties, which are made on the assumption that
the system might be subject to an unbounded number of faults per round. From
Lemma 4 and on, we address the termination property and assume the number
of faults per round is f ≤ dn2 e(n− k) + k − 2.

Lemma 1. If every process pi with phase value φi = φ has the same proposal
value vi = v, then every process pj that sets φj = φ+ 1 also sets vj = v.

Proof. The lemma is going to be proved by induction on the number of processes
that reach phase φ + 1. Basis: Without loss of generality, let p1 be the first
process that sets φ1 = φ + 1. In this case, process p1 must have received more
than n

2 messages of the form 〈φ, ∗, ∗〉 (Line 14). Since every process pi with
φi = φ has the same value vi = v, every broadcast message of the form 〈φ, ∗, ∗〉
carries the same proposal value v (Line 6). This implies that the more than n

2
messages received by process p1 have the form 〈φ, ∗, ∗〉 with the same value v.
Therefore, p1 must set its proposal value to v (either on Line 17 or 26). Inductive
step: Assume that every process pu with 1 ≤ u ≤ j−1 has φu = φ+1 and vu = v,
and now we want to demonstrate that when pj sets φj = φ + 1 it will also set
vj = v. In order for process pj to set φj = φ + 1 it must have in vector Vj (1)
more than n

2 messages of the form 〈φ, ∗, ∗〉 (Line 14) or (2) at least a message
of the form 〈φ + 1, ∗, ∗〉 (Line 9). Condition (1) corresponds to the basis case,
and therefore it has already been shown that pj sets vj = v. Condition (2) also
results in the same outcome, since by hypothesis message 〈φ+ 1, ∗, ∗〉 must have
been transmitted by one of the pu processes, and therefore pj also sets φj = φ+1
and vj = v (Lines 10-11). ut

Lemma 2. Let φ be some odd phase (i.e., φ mod 2 = 1). If every process with
phase value φ has the same proposal value v, then every process that sets its
phase to any value φ′ > φ+ 1 decides v.

Proof. Since every process with odd phase value φ has the same proposal value
v, by Lemma 1, every process that reaches even phase φ + 1 also has proposal
value v (either on Lines 10-11 or Lines 17 and 31). Let pi be the first process
to set phase value φi = φ + 2. Since there is no other process pj with phase
value φj > φ + 1, the only way for pi to go from phase φ + 1 to φ + 2 is to
receive more than n

2 messages of the form 〈φ+ 1, ∗, ∗〉 (Line 14). Since φ+ 1 is
even and all these messages carry the same proposal value v, this implies that pi
sets statusi = decided, vi = v and φi = φ+ 2 (Lines 23, 26, 31). Consequently,
process pi can now decide v (Line 34).

The next process that sets its phase value to φ + 2 also decides v because
it either accumulates more than n

2 messages with phase value φ + 1 and same

proposal value v (Lines 23, 26, 31 and 34), or receives a message from pi of
the form 〈φ+ 2, v, decided〉 (Lines 10-12 and 34). This reasoning can be applied
recursively to any other process that sets its phase value to φ+ 2. It follows that
any process that sets its phase value to φ′ ≥ φ+2 must either had been at phase
φ+ 2, and hence decided, or it must have received some message from a process
that went through phase φ+ 2, and thus also deciding. Therefore, every process
that sets its phase to any value φ′ > φ+ 1 decides v. ut

Theorem 1. If all processes propose the same value v, then every process that
decides, decides v.

Proof. If every process has the same initial proposal value v, then they all start
in odd phase 1 and set proposal value to v (Lines 1-2). Therefore, by Lemma 1,
every process pj that sets phase φj = 2 also has proposal value vj = v. Moreover,
by Lemma 2, every process pi that sets its phase to φi > 2, decides v. ut

Lemma 3. In some even phase φ, there are no two process pi and pj that receive
messages of the form 〈φ, 0, ∗〉 and 〈φ, 1, ∗〉, respectively.

Proof. Suppose otherwise. Then pi and pj are two processes with phase value φ
that, respectively, receive a message 〈φ, 0, ∗〉 from pu and a message 〈φ, 1, ∗〉 from
pw. This implies that process pu sets vu = 0 either because on odd phase φ− 1
it accumulated more than n

2 messages of the form 〈φ− 1, 0, ∗〉 (Lines 16-17, 31),
or because it received a message 〈φ, 0, ∗〉 (Lines 10-11) from a process that had
accumulated that majority of 〈φ−1, 0, ∗〉 messages. Using a similar reasoning, in
order for process pw to set vw = 1, some process must have received on odd phase
φ− 1 more than n

2 messages of the form 〈φ− 1, 1, ∗〉. But this is a contradiction
because only one of the proposal values 0 and 1 can be in a majority of the
messages broadcast for any particular phase number. ut

Theorem 2. No two processes decide differently.

Proof. Let pi be the first process to decide, and do so when phase φi = φ (Line
34). Without loss of generality, let the decision value be 1. Then, vector Vi
must contain more than n

2 messages of the form 〈φ− 1, 1, undecided〉, and φ− 1
must be even (to allow the execution of Lines 23, 26, and 31). By Lemma 3,
no other process pj can receive a message of the form 〈φ − 1, 0, ∗〉. Therefore,
every other process pj with phase φj = φ has proposal value vj = 1 either
because it accumulates more than n

2 messages with at least one being of the
form 〈φ − 1, 1, ∗〉 (Line 26), or because it receives a message 〈φ, 1, ∗〉 (Line 11)
transmitted by process pi (or another process that sets its proposal value to 1).
Additionally, since all processes with phase φ have proposal value 1, then by
Lemmas 1 and 2, every process that decides in phase φ′ > φ will do it for value
1. ut

The remainder of the proof serves to prove the termination property of con-
sensus (Theorem 3) and is made on the assumption that the message scheduling
falls under the control of an adversary that can cause no more than f faults per
round for f ≤ dn2 e(n− k) + k − 2.

Lemma 4. If some process pi has some phase value φi > 1, then there is a set
of processes S such that ∀pj∈S : φj ≥ φi − 1 and |S| > n

2 .

Proof. Given a phase number φ > 1, then there must be some process pi that is
the first to set its phase to φi = φ. In order to do this, pi must have more than
n
2 messages of the form 〈φ− 1, ∗, ∗〉 in vector Vi (Line 14). It follows that there
are more than n

2 processes that were at some point in time in phase φ− 1. ut

Lemma 5. If some process pi has phase value φi = φ, then eventually there is
a set of processes S such that ∀pj∈S : φj ≥ φ− 1 and |S| ≥ k.

Proof. Suppose otherwise. By Lemma 4, if some process pi has φi = φ > 1, then
there is a set of processes S such that ∀pj∈S : φj ≥ φ − 1 and |S| > n

2 . Let
R+ = S where n

2 < |R+| < k, and R− be the set of remaining processes, i.e.,
∀pu∈R− : φu < φ− 1 where n− k < |R−| < n

2 .
By assumption, the adversary can create at most f = f1 + f2 message omis-

sions per round, where f1 = dn2 e(n − k) and f2 = k − 2. In order to prevent
processes in R− from reaching φu ≥ φ− 1, the adversary must omit every mes-
sage from processes of R+ to R− (due to Lines 9-13). This implies the elimination
of more than n

2 messages in more than n − k processes because |R+| > n
2 and

|R−| > n− k. It is clear that after consuming f1 faults, there are at most n− k
processes in R− that do not receive any message from R+.

Since by definition |R−| − (n − k) = k − |R+| > 0, there must be k − |R+|
processes in R− that could still receive messages from every process in R+. Let
R−∗ denote the set of processes in this situation. To prevent every process pu in
R−∗ from reaching φu ≥ φ − 1, the adversary must create |R+||R−∗ | omissions,
where |R+| + |R−∗ | = k. However, the adversary only has f2 = k − 2 = |R+| +
|R−∗ |−2 faults available. This creates a contradiction because |R+||R−∗ | > |R+|+
|R−∗ | − 2, for all |R+| ≥ 1 and |R−∗ | ≥ 1. This implies that some process in |R−|
always increases its phase value when n

2 < |R
+| < k. ut

Lemma 6. Let R+ be the set of processes such that ∀pi∈R+ : φi ≥ φ, with
|R+| = k + α and 0 ≤ α ≤ n− k. Let α or more processes in R+ have phase φ
and the remaining processes of R+ have phase φ+1. Let R− be the set of process
such that ∀pj∈R− : φj < φ, with |R−| = n− k − α. Whenever a round has such
configuration, some process increases its phase value.

Proof. Suppose otherwise. Then, under the Lemma conditions, there must be a
message schedule where at some round no process increases its phase value.

In order to prevent every process in R− from increasing its phase value, the
adversary must omit every message from R+ to R− (due to Lines 9-13). This
requires that |R+||R−| faults must be spent. Since |R+||R−| = (k+α)(n−k−α)
and the total number of omissions per round is f = dn2 e(n− k) + k− 2, then the
adversary is left with no more than f − |R+||R−| ≤ (α+ dn2 e+ k − n)α+ k − 2
faults.

In order to block each of the α processes in R+ with phase φ, the adversary
must omit all messages from processes in R+ with phase φ + 1 (Line 9) and it

must prevent the reception of more than n
2 messages of the form 〈φ, ∗, ∗〉 also

from processes in R+ (Line 14). This implies that each of the α processes with
phase φ can receive the n − k − α messages from processes in R− and at most
bn2 c messages from processes in R+. Therefore, the adversary must create at
least

[
n− (bn2 c+ n− k − α)

]
α faults to stop the progression of the α processes.

Since
[
n− (bn2 c+ n− k − α)

]
α = (α+ dn2 e+k−n)α, the adversary is left with

no more than k − 2 faults.
For the remaining k processes in R+, there are two possible cases:

1. First consider the two extreme situations, where all k processes either have
phase value φ or φ+ 1. Since the adversary only has k − 2 faults left, some
process has to receive more than n

2 messages with the same phase φ or φ+1.
Therefore, some process increases its phase value (Line 14).

2. Second consider that some of the k processes have phase value φ + 1 and
the others have phase value φ. Let H be the set of processes with φ + 1
and L the set of processes with φ, such that |H| + |L| = k. To block the
processes in L, the adversary has to omit |H||L| messages (due to Line 9).
Since the adversary only has k−2 = |H|+|L|−2 faults left, it cannot prevent
some process from increasing its phase because |H||L| > |H|+ |L| − 2 for all
|H| ≥ 1 and |L| ≥ 1.

ut

Lemma 7. Let φinit = 1 be the initial phase value for all processes. Some pro-
cess pi eventually sets φi > φinit.

Proof. If every process has the same phase value φinit, then according to the
conditions of Lemma 6, this is equivalent of having every process in set R+ with
phase φinit, such that |R+| = n. Therefore, by Lemma 6, some process has to
increase its phase value and set φi > φinit. ut

Lemma 8. If some process has phase value φ, then eventually some process
must have phase value φ+ 1.

Proof. If some process has phase value φ, then by Lemma 5, eventually there is
a set R+ of k or more processes such that ∀pi∈R+ : φi ≥ φ− 1. This implies that
the system must reach a configuration where there are two sets of processes R+

and R− according to the conditions of Lemma 6. When this happens, by the
same Lemma, some process will increase its phase. This process can be in one of
three possible cases: (1) a process of R−; (2) a process with phase number φ− 1
of R+; or (3) a process with phase number φ of R+. The system configuration
resulting from cases (1) and (2) falls under the conditions of Lemma 6, and
therefore more processes will continue to increase their phase. Consequently, in
the most extreme scenario, the system will evolve to a configuration where all
process are in phase number φ, and case (3) will necessarily have to occur, and
some process pi will set its phase number to φi = φ+ 1. ut

Theorem 3. At least k processes eventually decide with probability 1.

Proof. The proof is organized in two parts. First, we show that as messages are
received, processes make progress on the protocol execution and continue to in-
crease their phase number. Second, we demonstrate that due to this progression,
eventually the system will reach to a configuration where at least k processes
decide with probability 1.

First part: By Lemma 7, some process pi eventually increases its phase num-
ber from the initial phase number, i.e., φi = φ > φinit. Then, by Lemma 8, some
process will eventually set its phase number to φ + 1. Moreover, by Lemma 5,
k or more processes set their phase value to at least φ. Since these Lemmas can
be applied repeatedly, this ensures that at least a set of k processes continue to
increase their phase numbers.

Second part: By Lemma 3, no two processes with the same even phase value φ
can receive messages 〈φ, 0, ∗〉 and 〈φ, 1, ∗〉. Therefore, any process pi that enters
the if condition of Line 14, and sets φi = φ+ 1 (Line 31), must set its proposal
value vi either to a common value v (Line 26) or to a random value 1 or 0 (Lines
28). Let S be the processes that eventually reach phase value φ+1, with |S| ≥ k
due to the above discussion. Then, at least k processes in S will set their proposal
values to the same v with probability p = 2−k. Therefore, the probability that
k processes do not set the same proposal value v is (1− p).

As the protocol progresses, and the phase number of processes increases, the
probability of not existing a phase where k processes propose the same value v is
limφ→∞(1−p)φ = 0. Thus, eventually there will be a phase φt where k processes
have the same proposal value v with probability 1. According to Lemma 2, every
process that sets its phase value to φ > φt decides v. Consequently, at least k
processes decide. ut

7 Performance

The algorithm guarantees the termination property of consensus in a probabilis-
tic fashion. Since the execution of the algorithm may need to extend for any
number of rounds and any process may reach an arbitrarily high phase, even-
tually there will be a phase where all processes flip the same coin value v and
decide (Theorem 3). The number of expected rounds for this to happen is O(2n)
after the system stabilizes in at most f faults per round. Note that this is the
most extreme possible scenario. In fact, the presence of an adversary that en-
forces a worst-case scheduling is very unlikely to happen in practice [19, 20]. A
simple inspection of the protocol suffices to observe that the algorithm is fast-
learning, i.e., it decides within two communication rounds in runs with no faults
or with certain fault patterns. This is true even if processes have different initial
proposal values. As long as the fault distribution is benign enough, k processes
will see the majority of one value during the first phase, propose the same value
for the second phase and decide.

8 Conclusions

Despite its usefulness to represent wireless ad-hoc communication environments,
research on the communication failure model has been limited. This is related
to an associated impossibility result, which states that no agreement is possible
in a synchronous system if at every communication round more than n− 2 mes-
sages can be lost [27, 28]. This paper presents a k-consensus algorithm tolerant
to transmission omission faults, the first to circumvent the Santoro-Widmayer
impossibility result using randomization. In a system with n processes, our al-
gorithm makes consensus possible among k > n

2 processes. It maintains safety
despite an unrestricted number of faults and ensures liveness if the number of
omission faults does not exceed dn2 e(n− k) + k− 2. Furthermore, the algorithm
can be fast learning in the sense that it terminates in two communication steps
under favorable conditions.

References

1. M. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the
crash-recovery model. Distributed Computing, 13(2):99–125, 2000.

2. E. A. Akkoyunlu, K. Ekanadham, and R. V. Huber. Some constraints and trade-
offs in the design of network communications. In Proceedings of the 5th ACM
Symposium on Operating Systems Principles, pages 67–74, 1975.

3. M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols. In Proceedings of the 2nd ACM Symposium on Principles of Distributed
Computing, pages 27–30, 1983.

4. M. Biely, J. Widder, B. Charron-Bost, A. Gaillard, M. Hutle, and A. Schiper.
Tolerating corrupted communication. In Proceedings of the 26th ACM Symposium
on Principles of Distributed Computing, pages 244–253, 2007.

5. G. Bracha. An asynchronous b(n− 1)/3c-resilient consensus protocol. In Proceed-
ings of the 3rd ACM Symposium on Principles of Distributed Computing, pages
154–162, 1984.

6. C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantinople: Practi-
cal asynchronous Byzantine agreement using cryptography. Journal of Cryptology,
18(3):219–246, 2005.

7. T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, 1996.

8. B. Charron-Bost and A. Schiper. The heard-of model: Computing in distributed
systems with benign failures. Technical Report LSR-REPORT-2007-001, EPFL,
2007.

9. G. Chockler, M. Demirbas, S. Gilbert, N. Lynch, C. Newport, and T. Nolte. Con-
sensus and collision detectors in radio networks. Distributed Computing, 21(1):55–
84, 2008.

10. D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for
distributed consensus. Journal of the ACM, 34(1):77–97, 1987.

11. D. Dolev, R. Friedman, I. Keidar, and D. Malkhi. Failure detectors in omission
failure environments. In Proceedings of the 16th ACM Symposium on Principles
of Distributed Computing, pages 286–295, 1997.

12. M. J. Fischer. The consensus problem in unreliable distributed systems (A brief
survey). In M. Karpinsky, editor, Foundations of Computing Theory, volume 158
of Lecture Notes in Computer Science, pages 127–140. Springer, 1983.

13. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

14. J. Gray. Notes on data base operating systems. In R. Bayer, R. M. Graham,
and G. Seegmüller, editors, Operating Systems: An Advanced Course, volume 60
of Lecture Notes in Computer Science. Springer-Verlag, 1978.

15. M. Hurfin, A. Mostefaoui, and M. Raynal. Consensus in asynchronous systems
where processes can crash and recover. In Proceedings of the the 17th IEEE Sym-
posium on Reliable Distributed Systems, pages 280–286, 1998.

16. L. Lamport. Lower bounds for asynchronous consensus. Distributed Computing,
19(2):104–125, 2006.

17. L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

18. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1997.
19. H. Moniz, N. F. Neves, M. Correia, and P. Veŕıssimo. Experimental comparison of

local and shared coin randomized consensus protocols. In Proceedings of the 25th
IEEE Symposium on Reliable Distributed Systems, pages 235–244, 2006.

20. H. Moniz, N. F. Neves, M. Correia, and P. Veŕıssimo. RITAS: Services for random-
ized intrusion tolerance. IEEE Transactions on Dependable and Secure Computing,
to appear, 2009.

21. N. F. Neves, M. Correia, and P. Veŕıssimo. Solving vector consensus with a worm-
hole. IEEE Transactions on Parallel and Distributed Systems, 16(12):1120–1131,
2005.

22. R. Oliveira, R. Guerraoui, and A. Schiper. Consensus in the crash-recover model.
Technical Report 97-239, EPFL, 1997.

23. M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. Journal of the ACM, 27(2):228–234, 1980.

24. K. J. Perry and S. Toueg. Distributed agreement in the presence of processor and
communication faults. IEEE Transactions on Software Engineering, 12(3):477–482,
1986.

25. M. O. Rabin. Randomized Byzantine generals. In Proceedings of the 24th Annual
IEEE Symposium on Foundations of Computer Science, pages 403–409, 1983.

26. M. Raynal and M. Roy. A note on a simple equivalence between round-based
synchronous and asynchronous models. In Proceedings of the 11th IEEE Pacific
Rim International Symposium on Dependable Computing, pages 387–392, 2005.

27. N. Santoro and P. Widmayer. Time is not a healer. In Proceedings of the 6th
Symposium on Theoretical Aspects of Computer Science, pages 304–313, 1989.

28. N. Santoro and P. Widmayer. Agreement in synchronous networks with ubiquitous
faults. Theoretical Computer Science, 384(2-3):232–249, 2007.

29. U. Schmid, B. Weiss, and I. Keidar. Impossibility results and lower bounds for
consensus under link failures. SIAM Journal on Computing, 38(5):1912–1951, 2009.

30. G. Varghese and N. A. Lynch. A tradeoff between safety and liveness for random-
ized coordinated attack. Information and Computation, 128(1):57–71, 1996.

