
Turquois: Byzantine Consensus in Wireless Ad hoc Networks

Henrique Moniz, Nuno Ferreira Neves, and Miguel Correia
University of Lisboa∗

Portugal
{hmoniz, nuno, mpc}@di.fc.ul.pt

Abstract

The operation of wireless ad hoc networks is intrinsically
tied to the ability of nodes to coordinate their actions in a
dependable and efficient manner. The failure of some nodes
and momentary breakdown of communications, either of
accidental or malicious nature, should not result in the
failure of the entire system. This paper presents Turquois
- an intrusion-tolerant consensus protocol specifically de-
signed for resource-constrained wireless ad hoc networks.
Turquois allows an efficient utilization of the broadcasting
medium, avoids synchrony assumptions, and refrains from
public-key cryptography during its normal operation. The
protocol is safe despite the arbitrary failure of f < n

3 pro-
cesses from a total of n processes, and unrestricted mes-
sage omissions. The protocol was prototyped and subject
to a comparative performance evaluation against two well-
known intrusion-tolerant consensus protocols. The results
show that, as the system scales, Turquois outperforms the
other protocols by more than an order of magnitude.

1. Introduction

Intrusion tolerance lets systems remain operational, even
if some of their components fall under the control of a
sophisticated adversary and start to act with malicious in-
tent. Over the years, several solutions based on this con-
cept have been proposed for LAN settings, for example, to
build replicated services and group communication proto-
col stacks (e.g., [3, 22]). However, very little work has been
done to develop distributed system models and protocols for
intrusion-tolerant wireless ad hoc networks.

Wireless ad hoc networks are characterized by the lack of
centralized control. There is no notion of infrastructure and
usually every node plays an equal role on the network op-
eration. These characteristics make them particularly suited

∗This work was partially supported by the FCT through the
Multi-annual and the CMU-Portugal Programmes, and the project
PTDC/EIAEIA/100894/2008 (DIVERSE).

for unplanned or emergency scenarios, where the reliance
on a single point of failure is not only inappropriate but
maybe even unattainable.

Nevertheless, the ability for nodes to conduct coordi-
nated activities is of paramount importance in many wire-
less ad hoc network applications. Nodes may need, for
instance, to synchronize clocks, order messages, elect a
leader, accommodate other nodes in a group, or agree on a
common decision. All these activities require some sort of
agreement among the nodes, and therefore it is imperative
that this operation is performed in a dependable way. The
failure of some nodes should not be synonymous with the
failure of the entire system. Hence, correct nodes should be
able to reach agreement even if others are uncooperative, ei-
ther by crashing, not communicating, or plainly acting self-
ishly or maliciously.

The consensus problem is a fundamental abstraction of
this necessity for agreement. Basically, it states that every
node proposes a value, and then the nodes have to decide
on a common result. While simple to describe, it is far from
being a trivial problem. Consensus has associated impos-
sibility results in systems where nodes or communication
links can fail [13, 25]. Wireless ad hoc networks, in par-
ticular, are inherently unreliable. Environmental phenom-
ena such as interference, fading, and collisions give rise to
pervasive communication failures, and node mobility may
result in momentary disconnection. In addition, wireless ad
hoc networks are usually resource-constrained. They usu-
ally have less bandwidth than wired local networks, and the
computational power of their nodes is often more restricted.

The aim of this paper is to conciliate intrusion tolerance
with the unreliable resource-constrained nature of ad hoc
networks. The paper focuses on the problem of binary con-
sensus for single-hop wireless ad hoc networks, assuming
that nodes are subject to transitory disconnection and per-
manent corruption by a malicious entity. In order to maxi-
mize the efficiency of the solution, we will make a rational
use of the resources provided by the environment. Namely,
since the network provides a natural broadcasting medium,
the cost of transmitting a message to multiple nodes can be

just the same of sending it to a single one, as long as they are
within communication range. Properly exploited, this prop-
erty can have a profound impact on performance. However,
to take advantage of this property one needs to depart from
the traditional modeling assumptions of intrusion-tolerant
systems. Usually they assume a reliable point-to-point com-
munication model, which hinders any possibility of taking
advantage of the broadcasting medium (because it forces
the implementation of end-to-end message delivery mecha-
nisms, e.g., TCP). Thus, the underlying model should also
embrace the inherent unreliability of radio communications.

In this paper, we propose a model that derives from the
communication failure model introduced by Santoro and
Widmayer [25]. Their model assumes the existence of dy-
namic and transient transmission faults, meaning that any
communication from one node to another can be faulty at
one moment and be correct at another. In a wireless envi-
ronment, this implies that any broadcast message may be
delivered non-uniformly by the intended recipients. Some
of them may deliver the message, while others might not.
Under particularly harsh conditions, like a jamming attack,
even all messages may be lost during a period of time.

Our model assumes a system composed of n ad hoc
nodes where a subset f of them may be compromised by
a malicious adversary (with f < n

3). Compromised nodes
can fail in an arbitrary (or Byzantine) manner, namely by
sending messages with erroneous content or by simply be-
coming silent. Therefore, we will consider that potentially
all transmissions from these nodes might be lost (or dis-
carded), either due to network omission faults or bad behav-
ior. Additionally, we will assume the existence of dynamic
omission transmission faults that might affect the communi-
cations between correct nodes. Our consensus protocol will
ensure progress towards a decision in rounds where these
faults are σ ≤ dn−t

2 e(n − k − t) + k − 2 (where k is the
number of nodes required to decide and t ≤ f is the num-
ber of processes that are actually faulty). If a higher number
of faults occur, then the protocol always ensures safety, but
progress might be stopped until the network starts to behave
better.

The paper has the following contributions:
(1) A binary consensus protocol, named Turquois1, de-

signed to tolerate a combination of Byzantine nodes and
dynamic omission transmission faults. To the best of our
knowledge, this is the first consensus protocol that exhibits
this characteristic.

(2) Since the system is asynchronous and can have both
Byzantine nodes and dynamic omission faults, consensus
is bound by the impossibility results of [13, 25]. Turquois
circumvents these impossibility results by employing ran-
domization, ensuring termination with probability 1.

1Turquois: 1. a semiprecious stone, typically opaque and of a sky-blue
color; 2. french for Turk, historic enemy of the Byzantine.

(3) A novel mechanism for broadcast message authen-
tication that resorts to an inexpensive hashing operation
instead of typical public-key cryptography, preserving the
computational restrictions usually associated with mobile
nodes and increasing efficiency.

(4) An experimental evaluation of the protocol and a
comparison with two well-known intrusion-tolerant binary
consensus protocols [7, 8] in various network and failure
scenarios. The evaluation shows that our protocol performs
significantly better (more than one order of magnitude faster
in several cases), exposing the inappropriateness of the clas-
sical model of intrusion-tolerant systems for wireless ad hoc
networks.

2. Related Work

Over the past decade, there have been some contributions
to the solution of consensus in wireless ad hoc networks,
however, almost all of them did not consider the presence
of Byzantine nodes. Research on Byzantine fault-tolerant
protocols for wireless environments has been practically re-
stricted to broadcasting problems [14, 20, 12, 4, 15].

Concerning the problem of consensus, Badache et
al. were the first to present a protocol specifically for wire-
less environments [1]. Their solution considers that mo-
bile hosts (MHs) are connected to fixed mobile support sta-
tions (MSSs), which are assumed to be fully connected.
To solve consensus, each MH communicates the initial
proposal value to the respective MSS. The MSSs execute
amongst themselves the Chandra-Toueg consensus protocol
using a �S failure detector [9], and then communicate the
decision value to the associated MHs. Later on, this work
was extended by Seba et al. to take into consideration the
dynamism in the set of MSSs executing consensus due to
the handover of MHs [27].

Wu et al. describe a hierarchical consensus protocol for
mobile ad hoc networks [30]. Their protocol selects a sub-
set of predefined mobile nodes to act as clusterheads, which
take essentially the same role of the MSSs in the protocol of
Badache et al. [1]. The clusterheads gather the initial val-
ues of their associated nodes and execute consensus using a
�P failure detector. The decision is then propagated from
the clusterheads to the nodes. Vollset et al. present random-
ized consensus protocols that tolerate crashing nodes and
arbitrary topological changes [28]. Their solution, however,
requires a fairness condition where correct nodes are not
permanently disconnected.

The research discussed so far assumes reliable links. In
this paper, we address the consensus problem under a model
that extends the communication failure model of Santoro
and Widmayer [25, 24]. The communication failure model
has an associated impossibility result, stating that there is
no fixed-time solution to the problem of k-agreement (i.e.,

2

k > dn
2 e nodes decide the same value 0 or 1) if more

than n− 2 links are allowed to lose messages at every syn-
chronous communication step. This result ends up being
very restrictive because a single node crash causes n omis-
sion failures per round, thus preventing consensus.

Chockler et al. described a consensus algorithm for a sys-
tem where nodes can fail by crashing and messages can be
lost due to collisions [11]. Their protocol can solve consen-
sus due to the additional power offered by collision detec-
tors, which allow nodes to take measures to recover from
message losses. Message omissions other than those due to
collisions, however, are not covered by their model.

Borran et al. [6] address consensus under the heard-of
model (HO) [10], which permits a fine-grained specification
of the patterns of message delivery allowed for the problem
to be solvable. This work uses the HO model to express
the Paxos algorithm [16] and extend it with a communica-
tion layer for wireless networks, which provides a leader
election service. The reliance on a leader may not be very
appropriate in some ad hoc scenarios, and the problem of
dynamic omission transmission failures is not taken in con-
sideration because the protocol assumes periods of reliable
and delay bounded message deliveries.

Biely et al. also employs the HO model to distinguish
cases where the fault pattern exceeds the upper bound of
Santoro and Widmayer, but not in a harmful way to the sys-
tem (e.g., n − 1 faults are harmful if they originate at the
same node, but may not be if they originate each one at a
different nodes) [5]. The work of Schmid et al. presents an
analogous contribution in the sense that it limits the num-
ber of faults that each node may experience [26]. None
of these two contributions, however, deal with the essence
of the Santoro-Widmayer impossibility result because faults
are artificially restricted.

Moniz et al. address this issue by presenting a random-
ized consensus algorithm that tolerates a new upper bound
of dn

2 e(n− k) + k− 2 omission link failures per communi-
cation round, regardless of their pattern [19]. The protocol
described in this paper tolerates not only dynamic transmis-
sion omission faults, but also a static, a priori unknown,
subset of Byzantine nodes.

3. System Model

The system is composed by a fixed and known set of
n nodes, each one running a single process belonging to
Π = {p0, p1, ..., pn−1}. The communication between pro-
cesses proceeds in asynchronous broadcast rounds. At
each round, every process pi ∈ Π transmits a message
m to every process pj ∈ Π, including itself, by invoking
broadcast(m). A round r is defined as the rth time
that processes invoke the broadcast() primitive and is
triggered by a clock tick local to each process.

The fault model assumes that up to f processes can be
Byzantine, and that these processes may fail in an arbi-
trary way. For example, a Byzantine process can become
silent, send messages with wrong values, or collude with
other Byzantine processes to disrupt the correct operation
of the system. Such processes are said to be faulty, while
processes that follow the algorithm are called correct.

The fault model also accommodates dynamic omission
failures in message transmissions amongst correct pro-
cesses. A transmission between two correct processes pi

and pj is subject to an omission failure if the message
broadcast by pi is not received by pj . The number of omis-
sion failures that can occur per round is unrestricted, in the
sense that safety properties are always guaranteed. How-
ever, in order to ensure progress, we will make the fol-
lowing fairness assumption: given an unbounded number
of rounds, there are infinitely many rounds in which the
number of omission faults that affect correct processes is
bounded by a σ value (see protocol description). If a mes-
sage m transmitted by process pi to process pj is not sub-
ject to a dynamic omission failure and both processes are
correct, then m is eventually received by pj .

Cryptographic functions employed in the protocol are se-
cure and can not be subverted by an adversary, and each pro-
cess pi ∈ Π can call a local random bit generator to obtain
unbiased bits observable only by pi.

4. Problem Definition

The paper addresses the k-consensus problem. This
problem considers a set of n processes where each process
pi proposes a binary value vi ∈ {0, 1}, and at least k of
them have to decide on a common value proposed by one of
the processes (with n+f

2 < k ≤ n−f). The remaining non-
Byzantine processes (at most n−k) do not necessarily have
to decide, but if they do, they are not allowed to decide on a
different value. Our problem formulation is designed to ac-
commodate a randomized solution and is formally defined
by the properties:

Validity. If all correct processes propose the same value
v, then any correct process that decides, decides v.

Agreement. No two correct processes decide differently.

Termination. At least k correct processes eventually de-
cide with probability 1.

5. Turquois: Byzantine k-Consensus

The algorithm Turquois allows k processes out of n to
reach consensus on a binary value v ∈ {0, 1} (see Algo-
rithm 1). Correctness in maintained as long as the number
of Byzantine processes is bounded by f < n

3 . Furthermore,

3

the algorithm ensures safety (i.e., the validity and agree-
ment properties) despite an unrestricted number of trans-
mission omission faults. Progress towards termination is
guaranteed in rounds where the number of omission faults
is σ ≤ dn−t

2 e(n−k−t)+k−2, where t ≤ f is the number
of processes in the system that are actually faulty. Turquois
is a randomized algorithm. It relies on each process pi hav-
ing access to a local coin2 mechanism that returns random
bits observable only by pi (e.g., [2, 7]). The first local coin
protocol was proposed by Ben-Or, of which our protocol is
reminiscent [2].

In the algorithm, each processes pi has an internal state
comprised by three variables: (1) the phase φi ≥ 1, (2)
the proposal value vi ∈ {0, 1}, and (3) the decision sta-
tus statusi ∈ {decided, undecided}. Each process starts
its execution with φi = 1, statusi = undecided, while
vi is set to the initial proposal value indicated by the input
parameter proposali (Lines 1-3).

The algorithm runs in cycles of three phases, which are
called CONVERGE, LOCK, and DECIDE. A process is
in each one of these phases when its phase value is, re-
spectively, φi (mod 3) = 1, φi (mod 3) = 2, and φi

(mod 3) = 0. In the CONVERGE phase, processes try to
converge their proposal values by assuming the value they
observe the most. In the LOCK phase, processes try to lock
on a single value v ∈ {0, 1}. Each process either sets its
proposal value to this v or to a value ⊥ indicating a lack
of preference. Finally, in the DECIDE phase, processes at-
tempt to decide on the value locked on the previous phase.
If a process is not able to decide at the end of a DECIDE
phase, it may propose a random value at the beginning of
the following cycle. This random step guarantees that even-
tually there is a cycle that starts with every correct process
proposing the same value. When this happens, k correct
processes necessarily decide by the end of that cycle.

The algorithm is run in parallel by tasks T1 and T2,
which are activated by the respective when condition (Lines
5 and 8). When activated, a task runs towards comple-
tion without any interruption from the other task. Task T1
defines a broadcasting round and is activated periodically
upon a local clock tick (Lines 5-7). A process pi broad-
casts a message of the form 〈i, φi, vi, statusi〉 containing
its identifier i and the variables that comprise its internal
state.

Task T2 is activated whenever a message arrives (Lines
8-43). Some of the messages that a process is supposed to
receive may be lost, or may carry invalid content if trans-
mitted by a Byzantine process. Therefore, all arriving mes-
sages are subject to a validation procedure that constrains
the wrongful actions of Byzantine processes. Essentially, a
message is considered valid if it could have been sent by a

2As opposed to a shared coin that returns bits observable by all pro-
cesses (e.g., [21, 8]).

Algorithm 1: Turquois: a Byzantine k-consensus algorithm
Input: Initial binary proposal value proposali ∈ {0, 1}
Output: Binary decision value decisioni ∈ {0, 1}
φi ← 1;1
vi ← proposali;2
statusi ← undecided;3
Vi ← ∅;4

TASK T1:
when local clock tick do5

broadcast(〈i, φi, vi, statusi〉);6
end7

TASK T2:
when m = 〈j, φj , vj , statusj〉 is received do8

Vi ← Vi ∪ {m : m is valid};9

if ∃〈∗, φ, v, status〉 ∈ Vi : φ > φi then10
φi ← φ;11
if φ (mod 3) = 1 and v is the result of a coin flip then12

vi ← coini();13
else14

vi ← v;15
end16
statusi ← status;17

end18

if |{〈∗, φ, ∗, ∗〉 ∈ Vi : φ = φi}| > n+f
2

then19

if φi (mod 3) = 1 then /* phase CONVERGE */20
vi ← majority value v in messages with phase φ = φi;21

else if φi (mod 3) = 2 then /* phase LOCK */22
if ∃v∈{0, 1}: |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φi}| > n+f

2
then23

vi ← v;24
else25

vi ← ⊥;26
end27

else /* phase DECIDE */28
if ∃v∈{0, 1}: |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φi}| > n+f

2
then29

statusi ← decided;30
end31
if ∃v∈{0, 1}: |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φi}| ≥ 1 then32

vi ← v;33
else34

vi ← coini();35
end36

end37
φi ← φi + 1;38

end39

if statusi = decided then40
decisioni ← vi;41

end42
end43

process that followed the algorithm (details in Section 6).
Valid messages are accumulated in a set Vi (Line 9), while
the others are discarded.

Based on its current internal state and the messages ac-
cumulated in set Vi, a process pi performs a state transition,
which happens when one of two conditions occur:

1. the set Vi holds some message whose phase value φ is
higher than the current phase φi of pi;

4

2. the set Vi holds more than n+f
2 messages whose phase

is equal to the current phase φi of pi.

The first case is simpler (Lines 10-18). When the condi-
tion is met (Line 10), process pi updates the state to match
the state of the received message, with a slight exception.
The special instance is the following: if the phase value is
φ (mod 3) = 1 and the value v was obtained from the re-
sult of a coin flip (which can be verified from the validation
procedure described in Section 6), then pi executes a local
coin flip to determine vi (Lines 12-13). Since it is not pos-
sible to force Byzantine processes into a fair coin flip, this
step becomes necessary to guarantee that correct processes
assume a random value.

The second case is more complex (Lines 19-39). The
way a process pi updates its state depends on the value of its
current phase number φi modulo 3. In CONVERGE phases
(φi (mod 3) = 1) the proposal value is set to the majority
value of all messages with phase value φ = φi (Lines 20-
21).

In LOCK phases (φi (mod 2) = 2) the proposal value
vi is updated the following way (Lines 22-27): if there are
more than n+f

2 messages of the form 〈∗, φ, v, ∗〉 in Vi with
φ = φi and the same value v, then vi is set to v (Lines
23-24), otherwise it is set to a special value ⊥ /∈ {0, 1}
indicating a lack of preference (Lines 25-26). This step en-
sures that in the following phase φi + 1 every process either
proposes the same value v ∈ {0, 1} or ⊥. Furthermore, if
there was unanimity amongst correct processes at the previ-
ous phase φi − 1, then every process must set its proposal
value to the same value v (since messages with a different
value are considered invalid). This will imply that in the
next phase φi + 1 every process receives the same value
v ∈ {0, 1} in all valid messages and decides.

In DECIDE phases (φi (mod 2) = 0), a process sets
statusi to decided if there are more than n+f

2 messages of
the form 〈∗, φ, v, ∗〉 in Vi with φ = φi and the same value
v 6= ⊥ (Lines 29-31). The proposal value vi is set to v if
there is at least one message of the form 〈∗, φ, v, ∗〉 in Vi

with φ = φi and a value v 6= ⊥. Otherwise, vi is set to the
value of function coin(), which returns a random number
0 or 1, each with probability 1

2 (Lines 32-36). Regardless of
the previous steps, the phase is always incremented by one
unit (Line 38).

At the end of each round, a process pi checks if statusi

has been set to decided. If so, it decides by setting the
output variable decisioni to the current proposal value vi

(Lines 40-42). Further accesses to this variable do not mod-
ify its value. Hence, they have no impact on the correctness
of the algorithm. The full correctness proof can be found in
an accompanying technical report [18].

6. Validation of Messages

A process pj must check the validity of arriving mes-
sages before adding them to set Vj . This procedure is fun-
damental to the correct operation of the protocol because
it limits the wrongful actions that a Byzantine process can
accomplish. There are two types of validation that a mes-
sage must pass: authenticity validation and semantic val-
idation. The first guarantees that some of the fields of a
message were actually generated by a process pi, while the
second ensures that the contents of a message are congruent
with the current execution of the algorithm. A message is
deemed valid if it passes both tests.

6.1. Authenticity Validation

This form of validation provides (partial) message
authentication. More precisely, for any message
〈i, φ, v, status〉, it provides to a receiving process pj as-
surance that the values of φ and v originated at the alleged
source process pi. This statement deserves the following
caveat. The authenticity of the status variable is not pro-
tected by this mechanism. Consequently, it is possible for
a malicious entity to replay a message 〈i, φ, v, status〉 with
an arbitrary status value. This, however, does not impact
the correctness of the protocol because our semantic vali-
dation mechanism (see next section) requires processes to
justify their status based on the received proposal values,
therefore, making the attack ineffective.

Authentication is based on a mechanism for generating
and verifying one-time hash-based message signatures that
is particularly efficient for a round-based group communi-
cation protocol with a small domain of input values. In our
case, the mechanism is devised for an input domain of three
values (0, 1, and⊥), which represents the possible proposal
values that a message can have. To the best of our knowl-
edge, this is the first time such a mechanism is employment
in an agreement protocol.

The mechanism is composed by a generic message au-
thentication procedure for each phase of the k-consensus
protocol, and by a key exchange procedure that has to be ex-
ecuted periodically. The message authentication resorts to
an efficient one-way hash function H to generate hash val-
ues of length h (e.g., SHA-256 or RIPEMD-160) [17]. The
key exchange procedure resorts to a more computationally
expensive trapdoor one-way function F (e.g., RSA [23])
that is used to sign an array of verification keys. It is as-
sumed that each process pi has an associated public/private
key pair to be used in F , where pui is the public key and
pri is the private key. Every process knows the public key
of all other processes.

5

Key Exchange. The key exchange procedure generates
m secret keys, which are essentially random bit strings
of length h, and distributes the corresponding verification
keys. These are valid for m phases of the k-consensus pro-
tocol. If m is equal to or larger than the number of phases
required to reach consensus, then the key exchange proce-
dure only needs to be executed once, at the beginning of the
k-consensus protocol. Potentially, this scheme can be fur-
ther optimized so that a single key exchange can span mul-
tiple instances of the k-consensus. Nevertheless, for clarity
purposes, we describe the scheme assuming only a single
instance.

For each process pi, the key exchange e ≥ 1 con-
sists of the following steps. Process pi generates a two-
dimensional array SKi of secret keys, such that each el-
ement SKi[φ][v] is a random bit string of length h, with
(e−1)m+1 ≤ φ ≤ em and v ∈ {0, 1,⊥} 3. It then creates
an equivalent two-dimensional array V Ki of verification
keys, such that each element V Ki[φ][v] = H(SKi[φ][v]).
Finally, the verification keys array V Ki is signed using the
trapdoor one-way function F and the private key pri, and
then both the V Ki and the signature are disseminated to the
other processes using an out-of-band reliable channel.

When V Ki arrives to a process, the correctness of the
keys is confirmed by verifying the signature with the public
key of pi, and then the array is stored for future use. For
efficiency purposes, the first V Ki array can be distributed
offline along with the public keys. Subsequent arrays may
be transmitted during idle periods of the system such that
interference with normal execution is kept to a minimum.

Message Authentication. For any phase φ, a message
〈i, φ, v, status〉 broadcast by process pi is authenticated by
attaching SKi[φ][v]. When a process pj receives the mes-
sage, it applies the hash function to SKi[φ][v] and verifies if
H(SKi[φ][v]) is equal to V Ki[φ][v]. If they are equal, then
by the properties of cryptographic hash functions φ and v
originated at pi.

6.2. Semantic Validation

The semantic validation ensures that the values carried
by the three states variables within a message are congru-
ent with the execution of the algorithm. For example, if,
at phase φ = 1, every correct process broadcasts the same
value 0, then it is not possible for a process that is executing
the protocol to send a proposal value of 1 at phase φ + 1.
Therefore, if such proposal arrives, then it must have been
sent by a Byzantine process, and it can be discarded without
impacting the protocol. In practice, this validation mecha-
nism restricts the way that Byzantine processes may lie.

3In practice, SKi[φ][⊥] only needs to be generated if φ (mod 3) = 0
because ⊥ is an acceptable proposal value only in such phases.

There are two ways for the congruency of messages to
be verified: one is implicit and the other is explicit. The im-
plicit way is based on whenever a process receives a mes-
sage, it sees if enough messages have arrived to justify the
values carried by the message just received. For example, if
a process has in set Vi more than n+f

2 messages with phase
φ, then, for any message of the form 〈∗, φ + 1, ∗, ∗〉, its
phase value is implicitly valid.

The explicit way is based on broadcasting, along with the
message, the previous messages that justify the values of the
state variables. For example, a message with phase φ+1 can
be justified by having appended more than n+f

2 messages of
the form 〈∗, φ, ∗, ∗〉 (and, naturally, the appended messages
must also pass the validity checks).

Our current implementation of the algorithm resorts to
both techniques. First, a process tries an implicit validation,
which is optimistic by nature, and is much more efficient
because messages are allowed to be kept small. However, if,
for the following clock tick, a process is forced to broadcast
the same message, then explicit validation is employed by
appending the justifying messages.

Each of the state variables carried by a message are val-
idated independently. A message passes this validation test
if all three variables pass in their individual test. The mes-
sages required to validate each variable may sometimes
overlap. Next, we explain in more detail how to perform
the validations.

Phase value. The phase value φ of a message of the form
〈∗, φ, ∗, ∗〉 requires more than n+f

2 messages of the form
〈∗, φ− 1, ∗, ∗〉 to be considered valid.

Proposal value. The validation of the proposal value
varies according to the phase carried in the message. Mes-
sages with phase value φ = 1 are the only that do not require
validation and are immediately accepted.

• Messages with phase φ (mod 3) = 2: The proposal
value v is valid if there are more than (n+f

2)/2 mes-
sages with phase φ− 1 and proposal value v.

• Messages with phase φ (mod 3) = 0: If the proposal
value is v ∈ {0, 1}, then it requires more than n+f

2
messages with phase φ − 1 and proposal value v. If
the proposal value is ⊥, then it requires more than
(n+f

2)/2 messages of the form 〈∗, φ−2, 0, ∗〉 and more
than (n+f

2)/2 messages of the form 〈∗, φ− 2, 1, ∗〉.

• Messages with phase φ (mod 3) = 1: The validity of
proposal value v in these messages depends if it was
obtained deterministically (Line 33) or randomly (Line
35). If obtained deterministically, it requires more than

6

n+f
2 messages of the form 〈∗, φ − 2, v, ∗〉. If set ran-

domly, then it requires more than n+f
2 messages of the

form 〈∗, φ− 1,⊥, ∗〉.

Status value. For the status variable, any message with
phase φ ≤ 3 must necessarily carry value undecided be-
cause no process can decide prior to phase 3. For messages
with φ > 3, a status = decided (and value v) requires
more than n+f

2 messages of the form 〈∗, φ, v, ∗〉 where φ
(mod 3) = 0. A status = undecided requires more than
(n+f

2)/2 messages of the form 〈∗, φ′, 0, ∗〉 and more than
(n+f

2)/2 messages of the form 〈∗, φ′, 1, ∗〉, where φ′ must
be the highest φ′ (mod 3) = 2 lower than φ.

7. Performance Evaluation

This section compares the performance of the Turquois
protocol with the intrusion-tolerant binary consensus pro-
tocols of Bracha [7] and Cachin et al. (named ABBA [8])
in 802.11b wireless ad hoc networks. Like Turquois, both
are leader-free randomized protocols that achieve optimal
resilience in terms of Byzantine processes. Unlike our pro-
tocol, they were not designed with a wireless environment
in mind, and employ the typical intrusion-tolerant asyn-
chronous model with reliable point-to-point links.

The protocol of Bracha does not resort to any kind of
cryptographic operations, apart from a computationally ef-
ficient hash function to authenticate the point-to-point chan-
nels, but requires many message exchanges (in complexity
order of O(n3)), and the expected worst-case number of
rounds to terminate is O(2n). The ABBA protocol, on the
other hand, has message complexity of O(n2) and termi-
nates in a constant number of steps (at most two rounds of
three steps each), but relies heavily on expensive public-key
cryptography.

7.1. Testbed and Implementation

The experiments were carried out on the Emulab
testbed [29]. A total of 16 nodes were used, each one with
the following hardware characteristics: Pentium III proces-
sor, 600 MHz of clock speed, 256 MB of RAM, and 802.11
a/b/g D-Link DWL-AG530 WLAN interface card. The op-
erating system was the Fedora Core 4 Linux with kernel
version 2.6.18.6. The nodes were located on the same phys-
ical cluster and were, at most, a few meters distant from
each other.

All the protocols were implemented in C. In Turquois,
processes communicate using UDP broadcast. A local
clock tick is triggered if one of the following conditions is
true: (1) 10 ms have passed since the last broadcast, or (2)
the phase value was changed. In both Bracha’s and ABBA,

the processes use TCP to communicate because of their re-
quirement of reliable point-to-point links. Bracha’s proto-
col requires authenticated channels. To this end, we use the
IPSec Authentication Header with security associations be-
ing established between every pair of nodes before the ex-
ecution of the protocol. Both Turquois and ABBA employ
their own authentication mechanisms. For these protocols,
the cryptographic keys were generated and distributed be-
fore the execution of the protocols.

7.2. Methodology

The performance metric utilized in the experiments is the
latency. This metric is always relative to a particular pro-
cess pi, and it is denoted as the interval of time between the
moment pi proposes a value to a consensus execution, and
the moment pi decides.

The average latency for the whole set of processes is ob-
tained in the following manner. A signaling machine, which
does not participate in the execution of the protocols, is se-
lected to coordinate the experiment. It broadcasts a 1-byte
UDP message to the n processes involved in the experi-
ment. When a process receives such a message, it starts
a consensus execution. Processes record the latency value
as described above, and send a 1-byte UDP message to the
signaling machine indicating the termination of the execu-
tion of the protocol. The signaling machine, upon receiving
n such messages, waits five seconds, and recommences the
procedure. The average latency is obtained by repeating
this procedure 50 times, and then by averaging the latencies
collected by all processes. The confidence interval for the
average latency is calculated for a confidence level of 95%.

The experiments were carried out for combinations of
group size, proposal distribution, and fault load. The group
size defines the number of processes in the system. In our
experiments, the values are 4, 7, 10, 13, and 16 processes.
The proposal distribution defines the initial values to be pro-
posed by the processes. In the unanimous proposal distri-
bution all processes propose the same initial value 1. In the
divergent distribution processes with an odd process iden-
tifier propose 1, while the others propose 0. The fault load
defines the type of faults that are injected in the system.
In the failure-free fault load, all processes behave correctly.
The fail-stop fault load makes f = bn−1

3 c processes crash
before the measurements are initiated. In the Byzantine fault
load, f = bn−1

3 c processes try to keep the correct processes
from reaching a decision by attacking the execution of the
protocol. This is accomplished as follows. In both Bracha’s
and Turquois, a Byzantine process in phase 1 and 2 pro-
poses the opposite value that it would propose if it were
behaving correctly, and in phase 3 it proposes the default
value ⊥. This strategy is followed even if messages are po-
tentially considered invalid. In ABBA, since the protocol

7

terminates in a constant number of steps, a Byzantine pro-
cess does not have much room to delay the execution of the
protocol by proposing incorrect values. Instead, it transmits
messages with invalid signatures and justifications in order
to force extra computations at the correct processes. Finally,
the value of the parameter k in Turquois is set to k = n− f
in all fault loads, with f = bn−1

3 c.

7.3. Results

Failure-free fault load. Table 1 presents the average la-
tency for every tested combination of group size and pro-
posal distribution, in executions without process failures.
By observing the results, it becomes apparent that Turquois
performs significantly better than the other two protocols.
The difference becomes wider as the number of processes
increases, exceeding an order of magnitude in some cases.

The performance of Turquois stems naturally from its
design. Two fundamental reasons contribute to its effi-
ciency. First, the use of UDP broadcast takes full advan-
tage of the shared communication medium. This was only
possible because the protocol is able to tolerate dynamic
transmission faults. Second, the use of a novel hash-based
signature scheme for message validation allows for compu-
tational efficiency. The impact of these features is clearly
reflected in the results.

Bracha’s protocol is the worst contender, showing se-
rious performance degradation due to the O(n3) message
complexity. In addition to being a shared medium, wireless
ad hoc networks are restricted in their speed and capacity,
and, therefore, a higher number of message transmissions is
bound to have a severe cost. The ABBA protocol performs
better than Bracha’s, but still much worse than Turquois.
Despite its O(n2) message complexity, the fact that, like
Bracha’s, it still requires the use of TCP channels combined
with heavy cryptography proves to be too much of a burden.

The relative difference between proposal distributions
was approximately the same across all protocols, with the
latency roughly doubling from an unanimous to a divergent
proposal distribution. The reason for this is that when pro-
cesses propose different values, the protocols usually need
to execute for an additional cycle of steps. For example, in
Turquois, processes decide by the end of phase 3 with unan-
imous proposals, but with divergent proposals they typically
decide by the end of phase 6. Under the divergent scenario,
the first cycle of steps is usually not enough for processes
to decide, but is sufficient for a significant number of them
to converge into the same proposal value, which leads to a
decision by the end of the following cycle.

Fail-stop fault load. Table 2 shows the performance of
the protocols when f = bn−1

3 c processes crash before the
execution of the protocols begins. Two observations are

clear from these results. First, for all three protocols, there
is practically no difference between the two proposal dis-
tributions. Since f processes crash, for every group size
tested, exactly n− f = bn+f

2 c+ 1 processes are left in the
system. This means that, as the processes make progress,
they necessarily have to receive the same set of messages.
Thus, never diverging in their proposal values after the first
phase.

The second observation is that, for the unanimous pro-
posal distribution, in most cases the performance of the pro-
tocols is worse in the fail-stop scenario than in the fault-free
experiments. At a first glance this result seems counterintu-
itive because when some processes crash there is less con-
tention on the network and, in principle, the protocols can
run faster. The problem is that protocols become more sen-
sitive to message loss when only n−f processes are present
in the system. More retransmissions are needed to ensure
that processes receive enough messages to make progress.
Turquois is particularly sensitive to this fact. There are
two reasons that explain this: (1) since Turquois uses UDP
broadcast, a single collision can result in up to n − 1 pro-
cesses not receiving a message, while in the protocols that
employ TCP one collision results in just one process not
receiving the message; (2) furthermore, the timeout mech-
anism in the current implementation of Turquois is crude
when comparing to the sophistication of TCP, and is not
adaptable to network conditions nor to the number of pro-
cesses involved in the communication. This also explains its
proportionally wider confidence interval. An optimization
of the retransmission mechanism could significantly im-
prove the performance of Turquois in these scenarios. Nev-
ertheless, Turquois still performs significantly better than
the other two protocols with this fault load.

There are two exceptions to the observation that proto-
cols perform better in the failure-free fault load when com-
pared with the fail-stop fault load. They occur in Bracha’s
and ABBA when n = 16. This indicates that there may be a
turning point where the group size becomes more stringent
to performance than sensitivity to message loss, although
experiments with higher numbers of processes would be
necessary to confirm this.

Byzantine fault load. Table 3 shows the performance of
the protocols when f = bn−1

3 c processes act according to a
malicious strategy. It is interesting to note that the relative
difference between the unanimous and divergent proposal
distributions is similar to the scenario with no process fail-
ures, with the latency very roughly doubling in the divergent
distribution. Like in the failure-free scenario, this is due to
divergent proposal values forcing processes to execute for
extra rounds to reach a decision.

When compared directly to the failure-free scenario, this
fault load suffers from a performance degradation that be-

8

Average Latency ± Confidence Interval (ms)
Group Turquois ABBA Bracha
Size unanimous divergent unanimous divergent unanimous divergent

n = 4 14.90± 4.74 28.67± 9.99 74.70± 7.93 135.39± 28.04 101.06± 8.15 127.39± 22.99
n = 7 26.85± 6.18 54.38± 12.20 125.81± 6.22 253.66± 37.93 552.77± 31.36 715.15± 112.90
n = 10 43.15± 10.05 71.75± 25.05 277.90± 12.47 547.42± 81.94 1361.90± 33.17 2282.23± 315.53
n = 13 60.94± 14.15 128.07± 42.51 693.39± 103.45 1722.44± 295.05 3459.10± 100.34 6276.91± 734.11
n = 16 87.57± 22.34 236.31± 77.27 1914.54± 283.18 4309.51± 750.20 7321.41± 110.69 10420.00± 2640.11

Table 1. Average latency and confidence interval in a 802.11b network with no process failures (la-
tency in milliseconds and confidence level of 95%).

Average Latency ± Confidence Interval (ms)
Group Turquois ABBA Bracha
Size unanimous divergent unanimous divergent unanimous divergent

n = 4 42.26± 30.29 43.84± 31.27 77.31± 9.17 77.88± 9.34 99.29± 3.05 99.61± 3.17
n = 7 106.28± 37.98 110.18± 22.00 183.20± 15.96 169.90± 6.18 516.26± 26.70 519.76± 37.63
n = 10 168.45± 39.46 188.95± 35.05 310.97± 15.61 335.93± 24.09 2488.75± 52.53 2619.35± 75.43
n = 13 375.00± 56.03 387.22± 60.06 747.56± 44.77 771.68± 52.71 5992.63± 143.00 6267.88± 355.51
n = 16 395.96± 55.11 422.65± 82.41 1180.03± 109.18 1284.83± 103.64 6362.68± 136.64 6469.38± 159.40

Table 2. Average latency and confidence interval in a 802.11b network with fail-stop process failures
(latency in milliseconds and confidence level of 95%).

comes increasingly noticeable with a higher group size, spe-
cially with a divergent proposal distribution. The reason
for this is that many messages broadcast by Byzantine pro-
cesses carry values that fail to pass the validation mecha-
nisms of the protocols. The result is that, similarly to the
fail-stop scenario, protocols become sensitive to message
loss with the added burden of a higher contention (with n
processes broadcasting messages). As for Turquois, despite
its non-optimized timeout mechanism making it more sen-
sitive to this issue, it still manages to be the faster protocol.

8. Conclusions

The paper presented Turquois, an intrusion-tolerant bi-
nary consensus protocol specifically designed for wireless
ad-hoc networks. Its design takes into account the typ-
ically constrained resources of wireless ad-hoc environ-
ments, while aiming for optimal resilience parameters. The
protocol tolerates f < n

3 Byzantine processes. Further-
more, it assumes communication to be inherently unreliable
by incorporating the communication failure model [25].
Safety is maintained despite unrestricted message omis-
sions, and liveness is ensured in rounds where the number
of omissions is bounded by σ ≤ dn−t

2 e(n− k− t) + k− 2,
where k is the number of processes required to decide, and
t ≤ f is the number of processes that are actually faulty.
The timing assumptions are also very weak, requiring only
a local timeout on each process to ensure these keep sending
messages.

The key to its performance was the decision to assume

unreliable communication, which allows the protocol to
take full advantage of the broadcasting medium, where the
cost of transmitting a message to multiple nodes can be just
the same of sending it to a single one. Furthermore, the
protocol avoids the use of public-key cryptography during
its normal operation in order to preserve the computational
power of mobile nodes, which is usually limited. The pro-
tocol was subject to a comparative performance evaluation
against two well-known intrusion-tolerant consensus pro-
tocols. The results showed that, regardless of the type of
faults present in the system, Turquois significantly outper-
forms the other protocols, in particular as the number of
processes in the system increases.

References

[1] N. Badache, M. Hurfin, and R. Macedo. Solving the con-
sensus problem in a mobile environment. In Proceedings of
the 18th IEEE International Performance, Computing, and
Communications Conference, pages 29–35, 1999.

[2] M. Ben-Or. Another advantage of free choice: Completely
asynchronous agreement protocols. In Proceedings of the
2nd ACM Symposium on Principles of Distributed Comput-
ing, pages 27–30, 1983.

[3] A. Bessani, P. Sousa, M. Correia, N. F. Neves, and
P. Verı́ssimo. The CRUTIAL way of critical infrastructure
protection. IEEE Security and Privacy, 6(6):44–51, 2008.

[4] V. Bhandari and N. Vaidya. On reliable broadcast in a radio
network. In Proceedings of the 24th ACM Symposium on
Principles of Distributed Computing, pages 138–147, 2005.

[5] M. Biely, J. Widder, B. Charron-Bost, A. Gaillard, M. Hutle,
and A. Schiper. Tolerating corrupted communication. In

9

Average Latency ± Confidence Interval (ms)
Group Turquois ABBA Bracha
Size unanimous divergent unanimous divergent unanimous divergent

n = 4 44.74± 30.16 80.18± 33.93 87.65± 22.38 197.78± 25.25 111.16± 6.99 248.66± 38.80
n = 7 96.20± 37.88 186.74± 60.54 198.69± 17.72 361.53± 48.41 619.09± 23.40 1634.17± 236.21
n = 10 145.22± 23.21 288.94± 64.04 481.83± 31.10 1137.94± 37.78 2216.42± 54.17 5633.47± 668.64
n = 13 386.39± 38.57 719.79± 72.57 1573.46± 110.70 3276.53± 211.76 5445.93± 114.10 12656.41± 1572.59
n = 16 590.95± 76.14 904.27± 83.48 2940.68± 426.93 6045.06± 533.52 7698.29± 180.10 20412.36± 2271.55

Table 3. Average latency and confidence interval in a 802.11b network with Byzantine process fail-
ures (latency in milliseconds and confidence level of 95%).

Proceedings of the 26th ACM Symposium on Principles of
Distributed Computing, pages 244–253, 2007.

[6] F. Borran, R. Prakash, and A. Schiper. Extending
Paxos/LastVoting with an adequate communication layer
for wireless ad hoc networks. In Proceedings of the 27th
IEEE International Symposium on Reliable Distributed Sys-
tems, pages 227–236, 2008.

[7] G. Bracha. An asynchronous b(n− 1)/3c-resilient consen-
sus protocol. In Proceedings of the 3rd ACM Symposium on
Principles of Distributed Computing, pages 154–162, 1984.

[8] C. Cachin, K. Kursawe, and V. Shoup. Random oracles
in Constantinople: Practical asynchronous Byzantine agree-
ment using cryptography. Journal of Cryptology, 18(3):219–
246, 2005.

[9] T. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225–
267, 1996.

[10] B. Charron-Bost and A. Schiper. The heard-of model: Com-
puting in distributed systems with benign failures. Technical
Report LSR-REPORT-2007-001, EPFL, 2007.

[11] G. Chockler, M. Demirbas, S. Gilbert, C. Newport, and
T. Nolte. Consensus and collision detectors in wireless ad
hoc networks. In Proceedings of the 24th ACM Symposium
on Principles of Distributed Computing, 2005.

[12] V. Drabkin, R. Friedman, and M. Segal. Efficient byzantine
broadcast in wireless ad-hoc networks. In Proceedings of
the International Conference on Dependable Systems and
Networks, pages 160–169, 2005.

[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
the ACM, 32(2):374–382, 1985.

[14] C. Koo. Broadcast in radio networks tolerating Byzantine
adversarial behavior. In Proceedings of the 23rd Annual
ACM Symposium on Principles of Distributed Computing,
pages 275–282, 2004.

[15] C.-Y. Koo, V. Bhandari, J. Katz, and N. H. Vaidya. Reliable
broadcast in radio networks: the bounded collision case. In
Proceedings of the 25th annual ACM symposium on Princi-
ples of distributed computing, pages 258–264. ACM, 2006.

[16] L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems, 16(2):133–169, 1998.

[17] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 1997.

[18] H. Moniz, N. F. Neves, and M. Correia. Turquois: Byzan-
tine consensus in wireless ad hoc networks (extended ver-
sion). Technical Report DI/FCUL TR-10-02, Department of
Computer Science, University of Lisbon, 2010.

[19] H. Moniz, N. F. Neves, M. Correia, and P. Verı́ssimo. Ran-
domization can be a healer: Consensus with dynamic omis-
sion failures. In Proceedings of the 23rd International Sym-
posium on Distributed Computing, pages 63–77, 2009.

[20] A. Pelc and D. Peleg. Broadcasting with locally
bounded byzantine faults. Information Processing Letters,
93(3):109–115, 2005.

[21] M. O. Rabin. Randomized Byzantine generals. In Proceed-
ings of the 24th Annual IEEE Symposium on Foundations of
Computer Science, pages 403–409, 1983.

[22] M. K. Reiter. The Rampart toolkit for building high-integrity
services. In Theory and Practice in Distributed Systems,
volume 938, pages 99–110. Springer-Verlag, 1995.

[23] R. Rivest, A. Shamir, and L. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Com-
munications of the ACM, 21(2):120–126, February 1978.

[24] N. Santoro and P. Widmayer. Agreement in synchronous
networks with ubiquitous faults. Theoretical Computer Sci-
ence, 384(2-3):232–249, 2007.

[25] N. Santoro and P. Widmeyer. Time is not a healer. In Pro-
ceedings of the 6th Symposium on Theoretical Aspects of
Computer Science, pages 304–313, 1989.

[26] U. Schmid, B. Weiss, and I. Keidar. Impossibility results
and lower bounds for consensus under link failures. SIAM
Journal on Computing, 38(5):1912–1951, 2009.

[27] H. Seba, N. Badache, and A. Bouabdallah. Solving the con-
sensus problem in a dynamic group: an approach suitable for
a mobile environment. In Proceedings of the 7th IEEE In-
ternational Symposium on Computers and Communications,
pages 327–332, 2002.

[28] E. Vollset and P. D. Ezhilchelvan. Design and performance-
study of crash-tolerant protocols for broadcasting and reach-
ing consensus in MANETs. In Proceedings of the 24th
IEEE Symposium on Reliable Distributed Systems, pages
166–175, 2005.

[29] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An inte-
grated experimental environment for distributed systems and
networks. In Proceedings of the 5th Symposium on Oper-
ating Systems Design and Implementation, pages 255–270,
2002.

[30] W. Wu, J. Cao, J. Yang, and M. Raynal. Design and perfor-
mance evaluation of efficient consensus protocols for mo-
bile ad hoc networks. IEEE Transactions on Computers,
56(8):1055–1070, August 2007.

10

