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Abstract

This paper proposes GRIDTS, a grid infrastructure in
which the resources select the tasks they execute, on the
contrary to traditional infrastructures where schedulers find
resources for the tasks. This solution allows scheduling de-
cisions to be made with up-to-date information about the
resources, which is difficult in the traditional infrastruc-
tures. Moreover, GRIDTS provides fault-tolerant schedul-
ing by combining a set of fault tolerance techniques to cope
with crash faults in components of the system. The solution
is mainly based a tuple space, which supports the schedul-
ing and also provides support for the fault tolerance mech-
anisms.

1. Introduction

The essence of grid computing is to provide efficient ac-
cess to resources, maximizing the resource utilization while
trying to minimize the job total execution time. The per-
formance of the grid depends strongly on the efficiency of
the scheduling. A schedule is an assignment of the tasks
of a job to a set of resources. Each job consists of a set of
tasks, and each task has to be executed by one of the grid
resources for a certain time.

Many schedulers rely on accurate information about re-
sources’ attributes (CPU speed and load, memory) and tasks
to do the scheduling. The information used by the sched-
ulers is usually provided by an information service that is
responsible for gathering data about all resources that com-
pose the grid. Gathering this information is like taking a
snapshot of the grid, i.e., getting the global grid state in
a certain instant. This operation is reasonably costly in a
large grid, and the snapshot tends to become outdated in a
short time when the grid is comprised by a large number of
non-dedicated, heterogeneous, widely-dispersed resources.
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The key problem is that information obtained from the in-
formation service may be outdated by the time the sched-
uler needs it to schedule tasks. Moreover, getting an accu-
rate snapshot in an asynchronous distributed system (as the
Internet) is impossible [7].

To overcome this complexity, we propose GRIDTS, a
novel grid infrastructure. In our approach, resources select
the tasks they want to execute, instead of the scheduler find-
ing resources for the tasks. This solution does not use an
information service and allows scheduling decisions to be
made with up-to-date information, since, naturally, each re-
source has always up-to-date information about itself. In a
nutshell, in our approach an user gives its job to a broker
that breaks it in tasks and inserts these tasks in the tuple
space. The available resources are permanently in a loop:
get a task from the tuple space, execute the task, put results
in the tuple space, get another task from the tuple space,
execute task. . .

GRIDTS is based on the generative coordination model,
in which processes (brokers, resources) interact through a
shared memory object called tuple space [10]. This coor-
dination model supports communication that is decoupled
both in time and space, i.e., in which processes do not need
to be active at the same time and do not need to know each
others locations or addresses [5]. This makes it particularly
suited for highly dynamic systems like a grid.

In large-scale grids the probability of failures occur-
ring is high. Many of the current grids have single points
of failure, i.e., not all their components are fault-tolerant.
GRIDTS is fault-tolerant, in the sense that all components
in the system can fail by crashing and the system still be-
haves as expected.

Fault tolerance in GRIDTS is enforced using a combina-
tion of mechanisms. Transactions are used to guarantee that
the failure of a resource or a broker does not cause the loss
of a task or leaves the tuple space in an inconsistent state.
Checkpointing is used to limit the work lost when a resource
fails during the execution of a task, allowing another re-
source to continue where the first left. Finally, replication



is used to enforce the fault-tolerance and availability of the
tuple space. In [8] we gave a brief overview of GridTS, fo-
cusing mainly on its experimental evaluation. This paper,
on the contrary, makes a detailed presentation of the fault-
tolerant scheduling algorithm.

This work has two main contributions. Firstly, it presents
an architecture for a computational grid that allows re-
sources to find tasks suited for their attributes, even if those
attributes change with time. This eliminates the complex-
ity of gathering information about the whole grid. Sec-
ondly, the infrastructure provides fault-tolerant scheduling
by combining a set of fault tolerance techniques – transac-
tions, checkpointing, replication – to tolerate crash faults in
any component of the system.

2. Tuple Spaces

The generative coordination model, introduced in the
Linda programming language, allows distributed processes
to interact through a shared memory object called tuple
space, which can be implemented on a network using one
or more servers [10]. In this space, generic data structures
called tuples can be inserted, read and removed.

A tuple is an ordered sequence of typed fields. Given a
tuple t = 〈f1, f2, ..., fn〉, each field fi can be: actual, i.e., a
value; formal, i.e., a variable name preceded by a question
mark (“?”); or a wildcard, like “*” meaning any value. A
tuple in which all fields are actual is called an entry and
is denoted by a lowercase letter, e.g., t. A tuple with at
least one formal field is called a template and is denoted
by t̄. A tuple space can only store entries, never templates.
Templates are used to read tuples in the space.

An important characteristic of the generative coordina-
tion model is the associative nature of the communication:
tuples are not accessed through an address or identifier, but
rather by their content. An entry t and a template t̄ are said
to match if : (i) both have the same number of fields; (ii)
corresponding fields have the same type, and; (iii) corre-
sponding actual fields have the same value. A tuple space
provides three basic operations [11, 10]:

• out(t): puts the tuple t in the tuple space (write);
• in(t̄): reads and removes a tuple t that matches t̄ from

the tuple space. If no matching tuple t is available,
the process stays blocked until a tuple matching the
template t̄ is available in the space (destructive read);

• rd(t̄): has a behavior similar to in , but leaves the
matched tuple t in the tuple space (non-destructive
read).

A typical extension to this model, which we adopt in this
paper, is the provision of non-blocking variants of the read
operations: inp and rdp. These operations work in the same
way as their blocking versions but return a “tuple not found”

value if no matching tuple is available in the tuple space.
All read operations are non-deterministic, because if there
is more than one matching tuple available, one of them is
chosen arbitrarily. In this paper we also use a variation of
the rd operation that reads all the tuples that match the tem-
plate, copy collect (̄t) [17].

2.1. Fault tolerance

Fault tolerance in the generative coordination model has
been considered in the literature from two points of view:
(i) the construction of fault-tolerant tuple spaces using repli-
cation [21, 3]; and (ii) application-level fault tolerance
mechanisms [13, 3]. The objectives of these works are es-
sentially to guarantee that (i) the service provided by the tu-
ple space stays available if there are crashes, by replicating
the server in several computers, and (ii) the tuple space state
stays valid according to the semantics of application when
application processes crash, by using transactions. We use
both to provide fault tolerance in our grid infrastructure.

In this paper, we consider that the tuple space is indeed
implemented by a set of servers and is fault-tolerant but we
do not delve into the details of how it is done since the prob-
lem is well understood and essentially solved [21, 3, 15, 20].

Transactions

This mechanism guarantees essentially that if a process tries
to execute a set of operations in the tuple space, either all the
operations are executed or none of them. If the process exe-
cutes all operations in the set, then the transaction is said to
commit. If the process fails (crashes) during the execution,
then the transaction is aborted; if some of the operations
have already been executed then the tuple space removes all
their effects to guarantee the atomicity [4].

In practice, the detection of a failure works the following
way [20]. When a process starts a transaction, it defines a
lease to do that transaction, i.e., a time interval during which
it will execute the transaction’s operations. If the process
does not commit during that time, the tuple space assumes
that the process failed and aborts the transaction. If the pro-
cess needs more time to execute the transaction, it periodi-
cally renews the lease. This lease mechanism involves time
assumptions about maximum processing and communica-
tion times.

In this paper, we consider that the tuple space pro-
vides two operations to indicate the beginning and
termination of a transaction: begintransaction and
committransaction. The semantics of the transactions for
each of the tuple space read/write operations is [13, 15, 20]:

• out : when a tuple is written inside a transaction, it is
not accessible to operations outside of the transaction
until the transaction commits. If the transaction aborts,



the tuples written inside the transaction are removed,
leaving the space as if the operations never occurred.

• in/inp: a tuple removed from the space inside a trans-
action might have been written in the tuple space either
inside or outside of the transaction. If the transaction
aborts and a tuple written outside the transaction has
been removed inside the transaction, this tuple is re-
turned to the space leaving the space as if the removal
never occurred. When a tuple is removed from tuple
space inside a transaction, it is locked preventing other
process from reading or removing it.

• rd /rdp: when a tuple is read from the space inside a
transaction, it might have been written inside or out-
side the transaction. When a tuple is read from tuple
space, it is locked preventing other processes from re-
moving it.

Nested transactions

Some extensions of these basic transactions have been pro-
posed to deal with specific applications’ necessities. In
this paper we use one of those extensions, nested top-level
transactions [16]. A nested transaction is a transaction that
starts and finishes inside the scope of another transaction.
The transaction that starts the nested transaction is called the
parent. A nested top-level transaction commits or aborts in-
dependently of the transaction that created it: if it commits
the operations executed inside it take effect even if the par-
ent transaction aborts; if it aborts it does not force the parent
transaction to abort.

Due to the simplicity of tuple spaces and their language
independence, current programming languages provide this
communication and interaction model. Among them, the
JavaSpaces [20] – part of Java’s Jini framework – and the
TSpaces [15] are some of the most known. Both support
transactions.

3. GRIDTS

This section presents GRIDTS. We begin by presenting
the system model and the properties that GRIDTS has to
satisfy, then we give an overview of GRIDTS. Finally, we
describe the algorithms executed by the brokers and the re-
sources, and their correctness proofs.

3.1. System Model

The system is composed by an infinite set of clients and
a set of n servers U = {s1, s2, ..., sn}, which implement
a fault-tolerant tuple space. Fault tolerance is enforced by
replicating the tuple space in all servers [3, 21]. We as-
sume that an arbitrary number of clients and up to f servers
can be subject to crash failures. Each process behaves ac-
cording to its specification until it possibly crashes or stops

executing for some reason. A process that never crashes
is said to be correct, while a process that crashes is said
to be faulty. The client processes are divided in two sub-
sets: the set B = {b1, b2, b3, ...} of brokers and the set
R = {r1, r2, r3...} of resources. The client processes can
only communicate through the tuple space.

We assume the bag-of-tasks computation model in
which the tasks of an application are executed indepen-
dently [18], therefore there is no communication between
resources and no communication between the brokers. The
grid can be composed by heterogeneous machines, in dif-
ferent administrative domains, and/or volunteer machines
dispersed over the Internet.

We assume that the communication and processing are
asynchronous, i.e., that there are no time bounds on the
communication and processing delays. However, we also
assume the existence of the transactional services intro-
duced in Section 2.1, which cannot be implemented in a
strictly asynchronous system (additional time assumptions
are necessary).

It is important to clarify that the abnormal termination
of a resource is not the only reason for a task to stop being
executed. If a resource becomes unavailable to the grid for
any reason, for instance, because its owner needs to use it,
then we also consider it as a crash of the resource.

3.2. GRIDTS Properties

Distributed systems have been specified in terms of
safety and liveness properties [1]. Informally, a safety prop-
erty states that “something bad will not happen” during the
system execution, while a liveness property states that even-
tually “something good must happen”.

Consider that a task ready to be executed corresponds to
a tuple describing the task on the tuple space. There are
two properties that have to be satisfied by GRIDTS, one of
safety and one of liveness:

• Partial correctness: if a resource executing a task fails,
then the task becomes again ready to be executed.

• Starvation freedom: if there is some task ready to be
executed and a correct resource able to execute it, then
this task will eventually be executed.

The first property (safety) says that a task does not dis-
appear if the resource that is executing it fails. The second
property (liveness) says that every task will be executed if
there is at least one correct resource capable of executing it,
i.e., no task will be waiting forever to be executed. These
are the main properties that the system has to satisfy to guar-
antee that all tasks are executed if there is at least one re-
source that does not fail.



3.3. Overview of GRIDTS

Resource allocation is an important problem in dis-
tributed systems, and the same is true in grid computing.
In this context the problem is finding resources to execute
the tasks that compose an application. Each resource is as-
sumed to be available during a limited time and it is also
assumed that typically there are not enough resources to ex-
ecute all tasks. Scheduling tasks to the resources is usu-
ally made by schedulers that get the information about the
available resources from a information service [9] and use
this information to choose which resources will use to exe-
cute the tasks. This paper proposes a completely different
scheduling scheme.

In GRIDTS, we use a tuple space for supporting task
scheduling. Briefly, the idea is the following. Tuples de-
scribing the tasks to be executed are placed by the user in
the tuple space. The grid resources retrieve from the tuple
spaces tuples that describe tasks that they are able to exe-
cute, and execute them. After each execution, the result is
placed in the tuple space, becoming available via broker to
the user who submitted the tasks to the grid. Each task rep-
resents one unit of work that may be performed in parallel
with other tasks. The description of a task contains all the
necessary information for its execution, like: the identifi-
cation of the task, the requirements for its execution (e.g.,
processor load, processor speed, available memory, operat-
ing system), the code to be executed, and the parameters
(input data) to the execution of the task. The users do not
need to know what resources will execute the tasks, their
location or when these resources will be available.

Therefore, our approach leverages naturally the full de-
centralization of the scheduling. Moreover, due to the flex-
ibility of our infrastructure and the time and space decou-
pling of the involved entities, it is not necessary to have
an information service because the resources themselves
search for the tasks to be executed.

Figure 1. The GRIDTS infrastructure

Figure 1 presents the GRIDTS infrastructure. Schedul-
ing of tasks is based on the replicated-worker pattern, also
known as master-workers pattern [6]. This pattern has two
kinds of entities: one master and several workers. The mas-

ter gives tasks to the workers that execute them and return
the results to the master.

In GRIDTS there is not one but several masters – called
brokers – that get jobs from their users, divide the jobs in
tasks and make these tasks available to the resources that
compose the grid. Brokers are usually specific to one class
of applications, i.e., they only know how to decompose jobs
of this class. For example, if the application deals with pro-
cessing satellite images, the broker decomposes the image
(job) in several parts (tasks), that can be analyzed by dif-
ferent resources. When a resource/worker finishes execut-
ing a task, it gives the result to the broker that assembles
all results and returns them to the user. All communication
between brokers/masters and resources/workers is done ex-
clusively through the tuple space.

The architecture of GRIDTS has the immediate benefit
of not requiring an information service for indicating the
resource utilization. On the contrary, it enforces a natural
form of load balancing since the resources pick tasks ade-
quate to their conditions and get a new one whenever the
previous ended. However, there are also some challenges.
The first is a problem of fairness since multiple brokers can
put tasks concurrently in the tuple space. The second is re-
lated to fault tolerance. GRIDTS has to tolerate failures in
the brokers and, more importantly, to deal efficiently with
resources’ failures.

3.4. Designing GRIDTS

As presented in Section 3.3 the GRIDTS infrastructure
comprises brokers, resources and the tuple space. In this
section we define the behavior of the brokers and resources
by presenting the algorithms they execute.

To facilitate the understanding of algorithms, the struc-
ture of the tuples used is described below. In all tuples, the
first field is the name of the tuple. Most tuples contain some
of the fields jobId and taskId, which identify the job and
the task, respectively:

• 〈“TICKET”, ticket〉 represents the tickets used to enforce
an order on task execution. The objective is to guarantee
the fairness of the scheduling, i.e., starvation freedom. The
ticket field contains the ticket number. The tuple space is
initialized with a tuple 〈“TICKET”, 0 〉.

• 〈“JOB”, jobId ,nTasks, ticket , information, code〉 rep-
resents all common information of tasks from the same job.
The nTasks field contains the number of tasks that compose
the job, ticket is the ticket value associated with the job, and
information indicates the attributes for job execution (e.g.,
the required processor speed, memory, operating system).
The field code can contain either the code to be executed or
a reference to its location (e.g., an URL).

• 〈“TASK”, jobId , taskId , information, parameters〉 rep-
resents the task to be executed. The information field has
attributes for task execution. The parameters field contains



input data for the task or a reference to its location. A task is
uniquely identified by jobId and taskId .

• 〈“RESULT”, jobId , taskId , result〉 represents the result
of a task execution. The result field contains the result or
a reference to its location.

• 〈“CHECKPOINT”, jobId , taskId , checkpoint〉 repre-
sents the state of a task after a partial execution, i.e., a
checkpoint. If a resource fails during the execution of a
task, this checkpoint is used by another resource to continue
executing the task. The checkpoint field contains the partial
state of task computation or a reference.

• 〈“TRANS”, transId , ticket , jobId〉 indicates the last
transaction executed by a broker, since brokers execute a
sequence of two transactions. The objective is to prevent
the broker from re-executing the same transaction if it fails
and recovers. transId identifies the last process transaction
successfully committed. ticket and jobId have the usual
meanings and are used to specify what the broker was doing
when it failed.

There can be minor variations of the job and task tuples.
The job and task tuples described above were designed for
applications whose tasks execute the same code and only
the input data is different for each task. Trivial modifica-
tions are needed, for instance, for applications whose tasks
execute different code, but have the same input data, or for
applications in which both the code and the input data is
different for all tasks.

3.4.1 Broker

The algorithm executed by the brokers is presented in Al-
gorithm 1. It uses (basic, not nested) transactions to tolerate
brokers faults. A first transaction is used to ensure that the
job tasks are inserted atomically in the space, i.e., either all
of them are inserted or none (in case the broker fails during
the insertion). The second transaction is used to get results
of the job tasks atomically from the space. These transac-
tions allow also the broker not to be locked waiting until all
the tasks are executed, i.e., the broker can leave the system
after having placed the tasks into the space and later run
again to get the results.

The algorithm starts by verifying if the broker has been
restarted due to a failure. This is done using the rdp() oper-
ation (line 2). If this operation does not return a tuple then
transId = 1 (line 1), the job is divided in a set of tasks (line
4) and the first transaction is executed (lines 5-14), possibly
followed by the execution of the second transaction. Oth-
erwise, line 2 sets transId to the value of the third field of
the tuple, which in this algorithm must be 2, and the second
transaction is executed (lines 17-25). This second situation
happens when the first transaction has been completely ex-
ecuted (so the out in line 13 was inserted in the tuple space)
but the second transaction was interrupted due to a failure

Algorithm 1 Broker bi

procedure broker(jobId, information, parameters, code)
1: transId = 1;
2: rdp(“TRANS”, ?transId , ?ticket , jobId)
3: if (transId = 1) then
4: tasks ← generateTasks(parameters);
5: begin transaction // transaction 1- inserts tasks in tuple space
6: in(“TICKET”, ?ticket);
7: out(“TICKET”, + + ticket);
8: out(“JOB”, jobId ,nTasks, ticket , information, code);
9: for i← 1 to nTasks do

10: out(“TASK”, jobId , tasks[i ].id , task [i ].information,
tasks[i ].parameters);

11: end for
12: transId = 2;
13: out(“TRANS”, transId , ticket , jobId);
14: commit transaction
15: end if
16: if (transId = 2) then
17: begin transaction // transaction 2- gets results from tuple space
18: for taskId ← 1 to nTasks do
19: inp(“RESULT”, bi , jobId , taskId , ?r);
20: result ← result ∪ {r};
21: end for
22: in(“TRANS”, 2, ticket , jobId)
23: in(“JOB”, jobId ,nTasks, ticket , information, code);
24: deliverToUser(result);
25: commit transaction
26: end if

of the broker (so the in in line 22 was not executed). There-
fore, the objective is to avoid the tasks from being reinserted
in the tuple space due to a failure.

The first transaction starts by getting, incrementing and
writing again the ticket tuple in the space (lines 6-7). These
operations must be done inside a transaction because if the
ticket tuple is removed from the space and not reinserted,
then no more jobs can be inserted in the space. After han-
dling the ticket, transaction 1 puts one job tuple describing
the job in the space, and the corresponding task tuples (lines
8-11). Transaction 1 finishes with the insertion of the trans
tuple in the space, indicating that this transaction was suc-
cessfully executed (lines 12-13).

Transaction 2 gets the results of the tasks from the tuple
space (lines 18-21). The trans tuple and the job tuple are re-
moved from the space (lines 22-23). The result is delivered
to the user in a reliable way (line 24).

3.4.2 Resource

Algorithm 2 describes the functioning of a resource ri.
The algorithm starts by searching all job tuples in the
space (copy collect operation - line 2) and choosing the
most adequate to be executed according to some criteria –
chooseJob() function (line 3). To guarantee a fair schedul-
ing, i.e., the starvation freedom property, the criteria should
be to choose the job with smallest ticket that the resource
can execute. However, other ways to choose a job are pos-



Algorithm 2 Resource ri

procedure resource()
1: loop
2: jobList ← copy collect(“JOB”, ∗, ∗, ∗, ∗, ∗, ∗);
3: job ← chooseJob(jobList);
4: if (job 6= ⊥) then
5: taskId ← chooseTask(job);
6: if (taskId 6= ⊥) then
7: begin transaction // gets and executes a task
8: inp(“TASK”, job.jobId , taskId , ∗, ?parameters);
9: result← executeTask(job.jobId , taskId ,

parameters, job.code);
10: out(“RESULT”, job.jobId , taskId , result);
11: commit transaction
12: end if
13: end if
14: end loop
function executeTask(jobId , taskId , parameters, code)
15: repeat
16: begin transaction // partially executes a task
17: inp(“CHECKPOINT”, jobId , taskId , ?checkpoint)
18: partialResult , checkpoint , taskFinished ←

partialExecute(code, parameters, checkpoint);
19: if not (taskFinished) then
20: out(“CHECKPOINT”, jobId , taskId , checkpoint)
21: end if
22: commit transaction
23: until (taskFinished)
24: return partialResult

sible, e.g., using a network of favors, where the users who
donate more resources will have greater priority when they
need to make use of the grid [2]. This stimulates the users to
donate their idle resources to execute application of others
users and minimizing the free-riding users – users that con-
sume resources donated by others without donating any of
their own. This criteria, however, does not guarantee star-
vation freedom.

After the job selection, the resource selects the task it can
execute according to some specific heuristic (chooseTask
operation - line 5). It is important to clarity that the per-
formance of scheduling depends strongly on the efficiency
of the heuristic chosen. Thus, any scheduling heuristic that
uses only local information about resources can be used in
GRIDTS.

We propose a simple heuristic by classifying both jobs
and resources in classes. Resources are classified in classes
CR = {r1, . . . , rnc} according to their speed. For instance,
if they are classified in three classes (nc = 3), the first class
can have resources until 1GHz, the second one resources
from 1 to 3GHz, and the third one over 3GHz. Tasks are
classified in classes CT = {t1, . . . , tnc} according to their
size. It is the broker that is responsible for classifying the
tasks in classes, putting this information in the task tuple
(in the information field). The number of task and resource
classes rc is the same and there is a correspondence between
classes: class r1 should include the slower resources and

class t1 the smaller tasks; class rnc should include the faster
resources and class tnc the larger tasks.

Resources start getting tasks from the corresponding
class of tasks, i.e., if a resource belongs to class ri it gets
a task from class ti. When there are no more tasks of class
ti, it tries to get a task of class ti+1; if there no tasks from
that class, it tries to get from ti+2, etc.; if there are no more
from class tnc them it starts trying to get tasks from class
ti−1, etc. If there are no more tasks, it means that all job
tasks are being (or have been already) executed. By enforc-
ing faster resources to execute larger tasks first, and slow
resources to execute smaller tasks first, the probability of
large tasks being scheduled to slow resources is reduced,
and the job execution tends to terminate faster.

After a task is chosen a transaction begins (lines 7-11).
The task chosen is removed from the tuple space (line 8),
executed (executeTask operation - line 9) and the result is
inserted in the space (line 10). The transaction guarantees
that these three operations are done atomically. If the re-
source fails during the transaction, the task tuple is returned
to the space and will be eventually executed by another re-
source (or the same if it later recovers).

In a grid environment, with hundreds, thousands, or even
tens of thousands of resources, joins, exists and failures of
resources are frequent. Tasks usually take a long time to
execute, e.g., hours or even days, so it is not convenient
to restart from scratch the execution of a task whenever the
resource that is executing it fails. To minimize this problem,
GRIDTS uses a backward error recovery mechanism that
consists in periodically saving the state of the resource – a
checkpoint – in stable storage [14]. If the resource fails,
then another resource, or even the same in case it recovers,
continues the execution of the task from that checkpoint.

The execution of a task is described in Algorithm 2, lines
15-24. GRIDTS uses the tuple space as stable storage, so
when a resource is executing a task, it periodically inserts
a checkpoint tuple in the space. Before the resource starts
executing a task, it searches for a checkpoint tuple in the
tuple space (line 17). If it exists the resource starts executing
the task from this checkpoint onwards.

The task execution involves a top-level nested transac-
tion in lines 16-22 (see Section 2.1). If the resource fails
when executing this transaction, the two transactions in the
algorithm are aborted. However, the checkpoint tuple in-
serted in the last committed top-level nested transaction
(line 20) remains in the tuple space, instead of being re-
moved due to the abortion of the parent transaction. This is
the purpose of using a top-level nested transaction.

3.5. Correctness Proofs

This section makes an argument that GRIDTS satisfies
the two properties in Section 3.2. We start by proving the
following lemma:



Lemma 1 If there is some task ready to be executed and
a correct resource able to execute it, then some task will
eventually be executed.

Proof (sketch): The lemma states that there is “some task
ready to be executed”, which means there are at least two
tuples in the space (T is the taskId and J is its jobId):

TJ = 〈“JOB”, J ,nTasksJ , ticketJ , informationJ , codeJ 〉

TT = 〈“TASK”, J ,T , informationT , parametersT 〉
The lemma also states that there is a resource r that can

execute T and is correct, i.e., that executes Algorithm 2 for-
ever without stopping.

The proof is by contradiction. Assume r does not ex-
ecute any task after some arbitrary instant t. This is only
possible in two situations:

• r blocks at one of the lines 1 to 24. However, an in-
spection of the algorithm shows that the only line that
might block is line 2 since copy collect() is a blocking
operation, but this cannot happen since there is at least
one job tuple in the space, TJ .

• r does not manage to get a task tuple from the space,
which is not possible because there is at least one task
tuple in the space, TT .

This is a contradiction, so some task will eventually be exe-
cuted. �

The following theorems state that GRIDTS satisfies the
two properties in Section 3.2:

Theorem 1 If there is some task ready to be executed and a
correct resource able to execute it, then this task will even-
tually be executed (Starvation freedom).

Proof (sketch): This theorem is similar to the lemma above
but the lemma states that any task is executed, while the
theorem is about this task.

Let us consider, like in the previous lemma, that the job
is described by the job tuple TJ and the task by the task
tuple TT . The lemma proves that some task is executed.
Obviously we can apply the lemma iteratively to show that
infinite tasks are executed. What we have to prove is that
task T is not left behind indefinitely. This is enforced by
the ticket mechanism.

The job of the task to be executed is selected in lines
2-3 by function chooseJob() (Algorithm 2). In the text in
Section 4.3.2 we stated that this function chooses the job
with the smallest ticket value, say, ticketJ′ . We are inter-
ested in the case that T has not yet been executed, therefore
ticketJ′ ≤ ticketJ . There are two cases:

• if ticketJ′ = ticketJ then eventually the resource(s)
will execute all tasks of J , including T (given the
lemma).

• if ticketJ′ < ticketJ then eventually the resource(s)
will execute all tasks of J ′ and of all jobs with ticket
smaller than ticketJ . We end up with the previous
case, so T is eventually executed, like we wanted to
prove.

�

Theorem 2 If a resource executing a task fails, then the
task becomes again ready to be executed (Partial correct-
ness).

Proof (sketch): A resource r executes a task T inside the
transaction in lines 7-11 (Algorithm 2). The theorem is only
relevant after the task tuple TT is removed from the space
in line 8. If r fails, the semantics of the transaction for the
inp operation is clear: TT is returned to the tuple space, like
we wanted to prove (Section 2.1). A checkpoint tuple may
also be inserted in the space in line 20 and left in the space
in case of failure, due to the semantics of top-level nested
transactions. However this does not interfere with the fact
that TT is returned to the space, so task T becomes again
ready to be executed, like we wanted to prove. �

4. Related Work

TaskSpaces is a framework for grid computing [19]. The
paper claims that the framework is based on tuple spaces but
this does not seem to be true: tuple spaces partially inspired
the approach, but TaskSpaces ends up using a communi-
cation mechanism similar to message queues. TaskSpaces
uses two “tuple space” instances, one called task bag for
tasks, and another called result bag for results. The applica-
tion sends the tasks to the task bag, and the task bag sends
those tasks to the resources. After executing a task, the re-
source puts a result in the result bag, from which the results
are taken by the users. TaskSpaces uses an event notifi-
cation model where resources register with the task bag in
order to receive tasks. If tasks being executed in different
resources need to communicate, they exchange information
about their IP address and ports through yet another tuple
space instance, called communication bag. TaskSpaces is
not fault-tolerant.

PLinda [13] and FT-Linda [3] are fault-tolerant exten-
sions of the Linda language. PLinda uses a checkpoint
mechanism to tolerate faults on the tuple space, and uses
a transaction mechanism to allow processes to execute mul-
tiple tuple space operations atomically. FT-Linda assumes
a set of replicated tuple spaces interconnected by a net-
work supporting total order broadcast [12]. FT-Linda has
a restricted form of transactions mechanism called atomic
guarded statements (AGS). AGSs can execute multiple tu-
ple space operations atomically, but do not allow compu-
tation between the operations. Both Plinda and FT-Linda
use the replicated-worker pattern to exemplify the use of



their fault tolerance extensions in a cluster environment. In
both, the execution of a task by a resource is done inside a
transaction context (or AGS context). Thus, if a resource
fails while executing a task, the task can be executed by an-
other resource, but all processing executed is lost, because
the state of the process is only saved after the transaction
is committed. Our approach, also executes a task within a
transaction context, but we use a checkpointing mechanism
that allows a task to be resumed from the last checkpoint
saved in case of failure. Moreover, these works do not use
classes to improve the scheduling or deal with the problem
of fairness in job execution.

5. Final remarks

The paper presents GRIDTS in detail, including the al-
gorithms executed by the brokers and resources. GRIDTS
is a decentralized and fault-tolerant grid infrastructure, in
which the resources pick the tasks to execute, instead of us-
ing a centralized scheduler. The communication is made
using a tuple space, benefiting from it being decoupled in
time and space. GRIDTS combines different fault tolerance
techniques – checkpointing, transactions, replication – to
provide fault-tolerant scheduling. GRIDTS has been simu-
lated and its performance compared with other grid infras-
tructures [8]. We plan to implement GRIDTS in the near
future, possibly integrating it with OurGrid [2].
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