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Abstract—Container-based virtualization technologies such as
Docker and Kubernetes are being adopted by cloud service
providers due to their simpler deployment, better performance,
and lower memory footprint in relation to hypervisor-based
virtualization. Kubernetes supports basic replication for availa-
bility, but does not provide strong consistency and may corrupt
application state in case there is a fault. This paper presents a
state machine replication scheme for Kubernetes that provides
high availability and integrity with strong consistency. Replica
coordination is provided as a service, with lightweight coupling
to applications. Experimental results show the solution feasibility.

I. INTRODUCTION

The increasing adoption of cloud computing [1] by orga-
nizations and individuals is driving the use of virtualization
technology [2], [3]. Virtualization is extremely important in
cloud computing mainly to isolate the consumers and to control
the provisioning of resources.

The prevalent virtualization technology in cloud data centers
is based on hypervisors. Each server has an hypervisor (e.g.,
Xen or KVM) on top of which are executed virtual machines
(VMs) containing their own operating system (OS) and user
software. However, container-based virtualization (or OS-level
virtualization) is gaining increasing acceptance [4]. In this form
of virtualization, several containers are executed on top of the
same OS, with benefits such as simpler deployment, better
performance, and lower memory footprint, in comparison to
hypervisor-based virtualization.

Docker is the most popular container-based virtualization
technology [5]. Docker supports the execution of containers
on top of Linux. However, it does not support management or
orchestration of containers in a cluster environment. Therefore,
engineers at Google developed Borg [6] and, the better known,
Kubernetes [7], a system that allows controlling the lifecycle
of containers on a cluster environment.

Kubernetes supports basic application replication for availa-
bility. Specifically, it allows defining the number of container
replicas that should be running and, whenever a replica stops,
it starts a new one from an image. However, this scheme does
not provide strong consistency. For instance, if a replica fails
two problems may happen: part of the application state may
be lost (in case it is stored in the containers) or the state may
become corrupted (in case it is stored in a backend data store,
outside of the containers). In relation to the latter issue, if there

is a backend data store, access concurrency must be managed
to prevent corruption.

This paper presents Koordinator, a new container replica
coordination approach that provides availability and integrity
with strong consistency in Kubernetes. Koordinator is based
on state machine replication (SMR) [8], an approach that keeps
replicas consistent even if some of them fail, providing high
availability and integrity. Koordinator is provided as a service,
i.e., on top of Kubernetes, with lightweight coupling with the
application being replicated.

The rest of this paper is organized as follows. Section II
briefly introduces container-based virtualization. Section III
presents Koordinator. The experimental validation and results
are presented in Section IV. Section V discusses related works
and Section VI concludes the paper.

II. CONTAINER-BASED VIRTUALIZATION

Container-based virtualization, or OS-level virtualization, is
implemented by an OS, as the second name suggests (Figure
1). Each container contains libraries and application code. Iso-
lation between containers is provided by the OS itself, e.g., by
mechanisms such as Linux cgroups and namespaces in Docker
and Linux Containers (LXC). Container management software
provides functionality such as the creation of containers.
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Fig. 1: Container-based Virtualization.

In large-scale systems, such as cloud data centers, there
may be a vast number of containers, so their management and
orchestration with basic tools to create/delete containers may
be complicated. Kubernetes is a container management system
that simplifies such management in a cluster, i.e., in a group
of physical or virtual machines. The two major alternatives to
Kubernetes are Docker Swarm and Apache Mesos.
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Fig. 2: Architecture of Kubernetes.

Figure 2 presents the Kubernetes architecture. Each machine,
either virtual or physical, is designated by node. A pod is a
group of one or more containers that must be in the same
machine and constitutes the minimal management unit. Pods
receive network address and are allocated to nodes. Containers
inside a pod share resources, such as volumes where they can
write and read data. Each node contains an agent called kubelet
that manages its pods, containers, images, and other resources.

A Kubernetes cluster often provides services that process
requests incoming from clients (e.g., REST/HTTP requests).
A typical interaction is the following. A client request reaches
the cluster through its firewall (top-right of the figure), which
forwards it to the proxy at a node. That proxy forwards the
request to the kubelet. The kubelet does load balancing, in
case the service is replicated, and forwards the request to a
container in a pod that processes it.

The node where Kubernetes’ management components run
is denominated main node. Some important management com-
ponents are the etcd service that does notification (e.g., notifies
certain components when data is created or updated) and
kubectl that is used by operators to interact with the Kubernetes
cluster. Most communication between components uses the
REST API.

III. KOORDINATOR

This section presents our solution for replicating stateful
containers in Kubernetes.

A. Approach

The management of stateful containers in Kubernetes de-
pends on the number of containers replicas being executed. For
single-instance, non-replicated, containers, the state has to be
maintained securely by connecting the container to persistent
storage, e.g., a disk volume1. In that situation, if the con-

1https://kubernetes.io/docs/tasks/run-application/run-single-instance-
stateful-application/
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Fig. 3: Ordering requests for simultaneous clients accessing a
replicated stateful application.

tainer fails, the availability of the application is compromised.
Replicating the container can improve the application availa-
bility (the failure of a replica does not impair the application
availability) and provide better throughput (because requests
are distributed among replicas via the load balancing scheme
provided by Kubernetes). However, when multiple containers
access shared data in a persistent volume, this access has to be
coordinated, so that concurrent requests are properly executed.

A well-known approach to coordinate request execution in a
replicated application is state machine replication (SMR) [8].
With SMR, concurrent requests are ordered by a distributed
consensus algorithm and their execution happens in the same
way in all replicas (Figure 3). Paxos, Raft, PBFT, MinBFT,
and BFT-Smart are examples of such consensus algorithms
[9], [10], [11], [12], [13]. However, using such schemes with
containers is far from trivial. Although there are SMR libraries
available, e.g., Raft [10] and BFT-Smart [13], applications
have to be modified to use such software. The interface of an
SMR implementation can be complex to integrate with already
existing applications [14].

A possible strategy to coordinate replicated applications
is incorporating coordination in the environment where the
applications are executed. At least three possible approaches
can be considered when boarding a consensus algorithm in an
existing platform: integration, interception, and service [15],
[16]. Integration means building or modifying a component
in a system with the aim of adding some feature. There has
been a previous effort to integrate coordination in Kubernetes
with a new consensus protocol [17]. It this paper, instead, we
want to use available crash fault-tolerant consensus libraries
which are stable and continuously being improved, such as
BFT-Smart2 and Raft. The interception approach requires that
messages sent to the receiver are captured and passed to the
communication layer. A practical example of this approach is
the use of operating system interfaces to intercept system calls
related to the application [18]. Both integration and interception
are transparent for the clients which are accessing the replicated
system.

In contrast with the other approaches, the service approach
– the one we adopt – incorporates new functionality in the
system, in the form of a service layer on top of that system,
not as an integral part of it [19], [20]. In our case, this layer
is inserted between the client and the replicated containers to

2BFT-Smart is better known for tolerating Byzantine faults, but is can also
be configured to tolerate only crash faults, with improved performance.



coordinate the requests sent to the application, which is inside
those containers.

B. Coordination as as Service

Our proposal to incorporate coordination as a service in
Kubernetes resulted in a system we call Koordinator. Ko-
ordinator provides a service that allows a set of clients to
coordinate application state updates (writes) in containers on
Kubernetes. Koordinator is a container layer that orders the
requests, solving consensus (Figure 4a). State reads from the
application can be done directly from any of the containers,
bypassing the coordination layer, allowing these operations to
be done efficiently (Figure 4b). The write and read operations
are detailed next.
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Fig. 4: Koordinator: (a) coordinating updates and (b) direct
reading in the replicated application.

Clients send write requests to the cluster firewall (Figure 4a,
step 1), which forwards them to one of the nodes in the
cluster (N3). Each request is received by the proxy (step 2)
and delivered to the coordination layer (step 3). Koordinator
executes a distributed consensus algorithm to define the order
of requests (step 4), answering to the client when the consensus
is achieved (steps 5, 6, and 7). Koordinator proceeds to the
execution of requests in the order they were assigned by the
consensus algorithm (step 8). In Koordinator, only leader-
based consensus algorithms are considered. That way, the
communication between the ordering and execution layers is
done through the consensus leader and the application replicas.

When reading the state of the application, client requests are
delivered directly to one of the application replicas (steps 1, 2
and 3). After processing the request, the application answer is
sent to the client (steps 4, 5 and 6).

The read protocol is extremely important performance-wise,
as most workloads have much more reads than writes [21]
and the read protocol is much lighter than the write protocol.
However, the read protocol also implies that an application
replicated using this scheme provides only eventual consistency
[22]. With this consistency it is ensured that after an application
state update (write) without further updates, all reader clients
will get the new updated value. However, during the execution
of update requests, clients that are doing reads can receive dif-
ferent replies (either the old or the new one). This inconsistency

window is defined by factors such as network latency, request
time processing, and the number of application replicas. Social
networks are common examples of applications that provide
only eventual consistency.

Submitting reading requests through Koordinator (as in Fig-
ure 4a) could provide strong consistency by ordering them.
However, in this paper we provide strong consistency by cre-
ating only one instance of the application. Strong consistency
is required, for example, in collaborative document edition.

Algorithm 1 Code executed by replica pi

{ Code executed if replica is the consensus coordinator }
Shared Variables and Data Structures:
1: replies〈〉 = ∅ {Map of replies from replicas}
2: ordered request buffer〈〉 = ∅ {A hash table to store ordered requests}
3: last stable request =⊥ {The last completed/answered request}
4: agreement replicas = ∅ {Set of Raft replicas}
5: application replicas = ∅ {Set of Application replicas}

Main Task:
6: foreach ri ∈ application replicas do
7: start Execution Task(ri, i) {i is the i-th process id}

Execution Task:
8: 〈ri, pi〉 ← {ri, i} {Setting received arguments/parameters}
9: position← 1 {Position of the next request}

10: repeat forever
11: if |request queue| > 0 then
12: operation← ordered request buffer〈position〉
13: send(pi, 〈ORDERED-REQUEST, operation〉) to ri
14: wait until (receive(〈REPLY, result〉) from ri) ∨ (∆ri

expired)
15: if ∆ri

not expired then
16: response← {result from message 〈REPLY, result〉}
17: replies〈position〉 ← replies〈position〉 ∪ {〈pi, response〉}
18: majority ← b|application replicas|/2c+ 1
19: position← position + 1
20: if (|replies〈position〉| ≥ majority) ∧ (last stable request <

position) then
21: last stable request← position

Listener Task:
22: upon receive(〈WRITE-REQUEST, operation〉) from client cj
23: 〈status, order〉 ← underlying_consensus(operation) {Ordering

request through a consensus algorithm}
24: ordered request buffer〈order〉 ← operation
25: send(pi, 〈REPLY, status〉) to cj

{ Code executed if the replica is not the coordinator }
Listener Tasks:
26: upon receive(〈READ-REQUEST, operation〉) from client cj
27: command← {operation from message
〈READ-REQUEST, operation〉}

28: result←execute(command)
29: send(pi, 〈REPLY, result〉) to cj
30: upon receive(〈ORDERED-REQUEST, operation〉) from process pj

31: command← {operation from message
〈ORDERED-REQUEST, operation〉}

32: result←execute(command)
33: send(pi, 〈REPLY, result〉) to pj

C. System Model

Before presenting the Koordinator’s algorithm in a more
rigorous way, we present the system model.

There is a set C of replicated containers, out of which at
most of f < |C|/2 can suffer crash faults. Note that containers
do not recover from failures, instead new containers can be
launched to replace faulty ones, re-configuring the system.

We assume an eventually synchronous system, i.e., that
communication delays eventually stabilize [23]. Clients and
servers are connected through reliable channels [24]. This
implies that messages sent will be eventually received.



To order incoming requests, we consider that our system
uses Raft as consensus algorithm. In this sense, as soon as
a request is ordered, the protocol notifies the client using an
ACK. Ordered requests enter in an execution queue. Note that
as our coordination layer is a service, we could use another
consensus algorithm like Paxos [14] or BFT-Smart [13].

D. Detailed Algorithm

In the following, we present details of the protocol operation.
Specifically, Algorithm 1 describes the behavior of the replicas,
distinguishing the replica that coordinates the consensus (the
leader) from the rest. The algorithm has four tasks that execute
in isolation and some variables to keep up consistency of the
replica state (lines 1 – 5).

The code of lines 1 to 21 refers to the coordinator replica,
which is the coordinator of Raft. Only coordinator replica ini-
tialize variables in lines 1 to 5 and runs execution tasks, one for
each application replica. These tasks manage communication
between each node of the application layer and the coordination
layer. The remaining replicas execute these tasks only if they
eventually assume the leader role.

When the coordinator replica starts, it first executes the
Main Task that creates and starts an execution task for each
application replica in the set application replicas (lines 6
and 7). ri and i are parameters used in the tasks. As we said
in Section III-B, we distinguish between two operation types:
read, an operation that reads data, and write, an operation
that creates or updates data. As explained before, our protocol
handles only write requests, read requests are handled directly
to the application layer bypassing protocol (lines 26 – 29).

To execute a write operation, the client sends a message
〈WRITE-REQUEST, operation〉 to the coordinator replica.
The Listener Task of the coordinator handles these requests
(lines 22 – 25). Upon receiving a write operation – in line 23
–, the coordinator first sends that operation to the underlying
consensus protocol that defines its order. After the order is
defined, the coordinator stores the operation in a buffer that
will be consumed by the execution tasks in order (line 24).
At last, the coordinator replies to the client that requested the
operation (line 25). Note that the operation will be processed
later, as soon as it consumed by the execution tasks (line 12).

Next, task i enters in an infinite loop to process requests
(lines 10 – 21). When task i retrieves an ordered operation, it
immediately sends it to the i-th application replica and waits for
its reply (lines 12 – 14). If it received the reply, so the timeout
has not expired, the task gets the result of the operation and
stores it in a response map (e.g., replies data structure). This
happens in lines 16 and 17.

In next steps, (i) the task determines a majority value based
on the number of active (application) replicas (up to dN/2e−1
application replicas can crash, leaving the system, line 18); and
(ii) get ready for the next request (line 19). Finally, if there is a
reply with majority – which states that a reasonable amount of
replicas executed that request –, this request number indicates
the last stable request, or the last answered request (lines 20,
21). Note that, if the timeout expires, the queue position will

remain the same. In that case, in next loop the tasks will try
to execute this request again.

IV. EVALUATION AND RESULTS

We implemented a prototype of Koordinator in Go (available
at github.com/caiopo/raft) and evaluated it experimentally. The
environment consisted of a set of four computers, each one with
a Quad-Core Intel i7 processor working at 3.5 GHz, 12GB of
memory, 1TB of disk with 7200RPM, and one 10/100 Mbits
fast ethernet card. Each node run Ubuntu 14.04.3 64 bits, kernel
3.19.0-42.

For the experiments we used Kubernetes 1.1.7. We dis-
tributed four machines as following: one machine ran the main
node, and the rest ran as container execution nodes. We used
Docker containers. Raft was instantiated as consensus protocol
in the coordination layer.

We used a microbenchmark to evaluate some scenar-
ios of our proposal. The microbenchmark ran an appli-
cation based on a text repository, called logger (available
at hub.docker.com/r/caiopo/logger). The experiments involved
three scenarios:

1) Only writers (e1). The system is evaluated with clients
doing only writes. An example of this scenario is an
application that registers operations in a log.

2) Reading with strong consistency (e2). To enable clients
to read data with strong consistency, this scenario has a
single instance of the application container.

3) Reading with eventual consistency (e3). Clients can read
data faster if only eventual consistency is guaranteed. In
this case, the application can be replicated to allow a
higher read throughput and lower latency. Moreover, ad-
ditional replicas provide fault tolerance. In this scenario
we have three replicas of the application.

Clients (writer or reader) are located in the main node
(Figure 5). We created a firewall (FWw) to direct all writing
operations to the Raft leader replica. The firewall is inside a
container, receiving requests via proxy. The firewall and the
Raft leader are on the same node, to where all writers send
requests. When clients are reading data from the application
replicas, Kubernetes provides internal round-robin distribution
of the requests via its proxy (e3 scenario). During each exper-
iment execution, the Raft leader is instantiated in a different
node, according to the elections (Table I). Furthermore, the
node on which readings are done is different from the node
that hosts the leader, to avoid overloading the node.
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Fig. 5: Configuration used in the experiments.



TABLE I: Nodes with Raft leader and targeting readings

Experiment Raft leader Readings to
e1 N1 -
e2 N2 N3
e3 N2 N1

TABLE II: Experimental results

writers (16) readers (256)
latency (ms) latency (ms)

exp. mean st.dev. req/s mean st.dev. req/s
e1 37 1.8 431 - - -
e2 38 13.5 420 5 27.1 50318
e3 44 43.9 363 10 32.4 24835

The workload is the following. 16 writers simultaneously
send 8000 requests and 256 readers simultaneously send 80,000
requests. The Apache benchmarking tool (ab) is used to create
and send the requests. The payload is around 100 bytes for
requests and 5 bytes for replies. Each client only sends a new
request upon receiving the reply for the previous request.

Clouds usually offers a pay-as-you-go cost model. That way,
we measured the resource consumption of CPU and network of
the machines used in the experiment. The dstat tool was used
for monitoring the resources during the experiments execution
(available at dag.wiee.rs/home-made/dstat/).

The main results for the three sets of experiments are shown
in Table II. The latency of writing clients is barely affected by
the inclusion of reading clients, as observed when comparing
the first two rows of results (e1 and e2). In the case of only
one application instance (e2), requests are all executed by the
node which receives them. With more application replicas (e3),
requests are sent to other nodes, via proxy load balancing,
increasing latency because of the network usage (5ms to 10ms).
Network impacts also in the throughput (request per second),
from 50 hundred in e2 to 25 hundred in e3.

We show the resource consumption (CPU and network) for
the two most representative scenarios: with and without readers
(e1 and e2). In the first scenario (e1) the node with the Raft
leader (N1) consumes more resources than other nodes because
only writing operations are done in the leader (Figure 6).
Nodes 2 and 3 show the same network behavior (Figure 6b).
When reading data from one application instance (e2), the
node which hosts the application container presents a peak
of usage (Figure 7a). However the main work remains to the
leader, hosted in N2. The Raft leader consumes more network
bandwidth, except when readings happen (Figure 7b).

V. RELATED WORK

SMR is a problem known since the 1980s [8]. Lamport
presented Paxos, which is one of the algorithms that most
inspired work in the area [9]. The first efficient Byzantine
fault-tolerant SMR algorithm was created by Castro and Liskov
and is known as PBFT [11]. Veronese et al. designed a set of
SMR algorithms that use a trusted component to be efficient
in performance and number of replicas [12].

Currently there are just a few stable SMR library implemen-
tations, as these algorithms are hard to implement. An interest-
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Fig. 6: CPU (a) and network (b) usage in experiment e1.

ing one is BFT-Smart [13] that provides advanced functions like
state transfer and reconfiguration for dynamic environments.
Evaluation of BFT-Smart in containers has shown higher per-
formance comparing with traditional VMs [25]. There are also
a few practical implementations of the Raft algorithm, which
tolerates only crashes [10]. Prime is another stable Byzantine
fault-tolerant SMR library publicly available [26].

A recent work from some of the authors integrated SMR
in Kubernetes using Raft [17]. The goal was to provide
transparent coordination and reduce the size of application
containers. Raft integrated in Kubernetes presented perfor-
mance 17.4% worse than Raft running directly in a physical
machines without virtualization. Our current work follows a
very different approach: in Koordinator the coordination is
made as a service, instead of being integrated in the container
management environment. In this sense, it runs outside of
Kubernetes, providing transparency to the client application and
improving modularity. To the best of our knownledge, there are
no other works bringing together SMR and Kubernetes.

There is a recent excitement with consensus and state
machine replication in the context of cryptocurrencies and
blockchain [27], [28], [29]. These systems use consensus
to build a replicated ledger, which is essentially a log of
transactions. The original blockchain was part of the Bitcoin
cryptocurrency design and provided only eventual consen-
sus, although it tolerated Byzantine faults [27]. More recent
blockchains like Hyperledger Fabric already provide strong
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Fig. 7: CPU (a) and network (b) usage in experiment e2.

consensus [29]. Our approach could be used to implement a
containerized blockchain with low effort.

VI. FINAL REMARKS

This paper presented Koordinator, a first effort to incorporate
coordination in Kubernetes as a service, that is, outside of
container’s management layer. Coordination is a necessary
feature for applications that need to keep their state consistent.
To evaluate the feasibility of Koordinator, some experiments
were done. These experiments analyzed applications with
strong consistency and eventual consistency, two semantics
very employed to the internet applications.
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