Computing Journal (Springer) manuscript No.
(will be inserted by the editor)

An empirical study on combining diverse static
analysis tools for web security vulnerabilities based
on development scenarios

Paulo Nunes ¢ . Ibéria Medeiros? -
José Fonseca'* - Nuno Neves? - Miguel
Correia® - Marco Vieira*

Received: date / Accepted: date

Abstract Automated Static Analysis Tools (ASATSs) are one of the best ways
to search for vulnerabilities in applications, so they are a resource widely used
by developers to improve their applications. However, it is well-known that
the performance of such tools is limited, and their detection capabilities may
not meet the requirements of the project regarding the criticality of the appli-
cation. Diversity is an obvious direction to take to improve the true positives,
as different tools usually report distinct vulnerabilities, however with the cost
of also increasing the false positives, which may be unacceptable in some sce-
narios. In this paper, we study the problem of combining diverse ASATS to
improve the overall detection of vulnerabilities in web applications, consider-
ing four development scenarios with different criticality goals and constraints.

This work extends a preliminary version presented at the 13th European Dependable Com-
puting Conference (EDCC 2017).

Paulo Nunes
E-mail: pnunes@ipg.pt

Ibéria Medeiros
E-mail: imedeiros@di.fc.ul.pt

José Fonseca
E-mail: josefonseca@ipg.pt

Nuno Neves
E-mail: nuno@di.fc.ul.pt

Miguel Correia
E-mail: miguel.p.correia@ist.utl.pt

Marco Vieira
E-mail: mvieiraQdei.uc.pt

1 Unidade de Investigacio para o Desenvolvimento do Interior, Guarda, Portugal
2 LASIGE, Faculdade de Ciéncias, Universidade de Lisboa, Lisboa, Portugal

3 INESC-ID, Instituto Superior Tcnico, Universidade de Lisboa, Lisboa, Portugal
4 CISUC, University of Coimbra, Coimbra, Portugal

2 Paulo Nunes el al.

These scenarios range from low budget to high-end (e.g., business critical) web
applications.

We tested with five ASATs under two datasets, one with real WordPress
plugins and another with synthetic test cases. Our findings revealed that com-
bining the outputs of several ASAT's does not always improve the vulnerability
detection performance over a single ASAT. By using our procedure a developer
is able to choose which is the best combination of ASATs that fits better in
the project requirements.

Keywords static analysis - vulnerability detection - XSS - SQLi

1 Introduction

Web applications have experienced a rapid growth over the last years and
become one of the most prevalent technologies in the Web. They when in-
stalled in a single host server become immediately accessible to users anytime,
anywhere via an Internet connection through a range of different devices.

A security vulnerability is a flaw or a weakness in system security proce-
dures, design, implementation, or internal controls that can be exercised (ac-
cidentally triggered or intentionally exploited) and result in a security breach
or a violation of the system’s security policy. However, applications, even de-
veloped by skilled programmers, have security vulnerabilities [1]. In fact, the
number of attacks reported by different entities exploiting vulnerabilities has
been growing in the past years [19]. The attacks can have a devastating impact
including financial cost and loss of market share [20].

ASATSs are a key piece in the security chain as they inspect the source code
of software, without executing it, to discover potential bugs early in the Soft-
ware Development Life-cycle (SDLC) that lead to security vulnerabilities [24].
However, ASATSs have limitations, such as missing some of the vulnerabilities
(False Negative (FN)) and generating many false alarms (False Positive (FP))
[23]. These limitations arise from conceptual constraints of the Static Analy-
sis (SA) process that mainly checks the structure of a program based on fixed
rules and does not consider the user input data or the dynamic characteris-
tics of the application [35]. Therefore, it is known that different ASATS report
distinct sets of security vulnerabilities, with some overlap [14] [26] [30].

The state-of-the art of ASATSs is, on average, able to detect about half
of the existing security vulnerabilities [17]. To improve their overall detection
capabilities, some researchers have proposed combining the results of diverse
ASATS [33] [36] [27]. Of particular interest is the work of Diaz et al. [15], which
compares the performance of nine ASATSs, most of them commercial tools,
against the Software Assurance Reference Dataset (SARD) from the Software
Assurance Metrics and Tool Evaluation (SAMATE) [28] at NIST. Based on the
results, the authors recommended the use of several tools with different detec-
tion algorithms/heuristics to improve the analysis results. On the other hand,
Beller et al. [13] investigated how common is the use of ASATs in real-world,
taking as reference the 122 most popular Open-Source Software projects. The

An empirical study on combining diverse static analysis tools for web security ... 3

results showed that a single ASAT was used in 41% of the projects, two ASATs
in 22%, and three ASATSs in 14% of the projects. This suggests that develop-
ers might not be aware of the benefits of using multiple tools and/or that the
increase of FPs reported may lead developers to avoid using multiple ASATs
[21]. However, existing works are limited in several aspects: the used datasets
are synthetic or composed of small sets of applications (each work presents its
own selection of test applications), the evaluation metrics used are too simple
(e.g., number of True Positives (TPs)), and the analysis does not consider the
specificities of the development scenarios were the tools can be used, which
may vary both in terms of development time and resources.

In this paper, we argue that the use of multiple ASATs might be helpful,
as more vulnerabilities may be reported, however, the drawback is that the
number of FPs may at the same time increase. Furthermore, we also claim
that the acceptable/expected outcome of the SA process (in terms of TPs and
FPs) depends on the development scenario. A scenario is a realistic situation of
vulnerability detection that depends on the criticality of the application being
developed and on the security budget available. Thus, it is no longer evident
that combining more ASATS is better in every case. Moreover, datasets com-
posed of real world applications fully characterized in terms of vulnerabilities
and non-vulnerabilities are missing.

The goal of our work is studying the potential of combining the outputs
of multiple ASATs with a 1-out-of-n strategy as a way to improve the perfor-
mance of vulnerability detection across different realistic development scenar-
ios. In practice, we formulate the following seven hypotheses: H;: The number
of vulnerabilities detected always increases as the number of combined ASATSs
increases. Ho: The number of FPs always increases as the number of combined
ASATSs increases. Hs: The best combination of ASATS is the same across de-
velopment scenarios. Hy: The best combination of ASATSs is the same across
different classes of vulnerabilities. Hs: The best combination of ASATS is the
same regardless the classes of vulnerabilities. Hg: The methodology adopted
can be used for other kind of applications. H7: The results for Hy to Hs are
the same for any kind of application.

Although the response to the hypotheses H; to Hs may seem obvious,
empirical evidences are missing in the literature to better understand the ad-
vantages and limitations of different combinations of ASATSs, when considering
representative vulnerability detection scenarios. For example, a less informed
researcher or developer could easily state that the number of vulnerabilities de-
tected increases as the number of combined ASATSs increases, however, know-
ing in which scenarios that is true, to which amount that happens for different
types of vulnerabilities, and what is the impact in terms of FPs, are aspects
that require more detailed studies, as the one presented in [31].

The contributions of this work are: (1) A general approach for creating
datasets fully characterized in terms of Vulnerable LOCs (VLOCs) and Non-
Vulnerable LOCs (NVLOCs), which can be applied to any kind of applications
(real or synthetic); (2) An approach for combining and ranking the results of
diverse ASATS; (3) An experimental campaign with five free ASATSs to detect

4 Paulo Nunes el al.

vulnerabilities in about 20,000 synthetic test cases from the National Institute
of Standards and Technology (NIST); (4) A comparative experimental study
combining the outputs of multiple ASAT's using datasets with real applications
versus synthetic test cases.

The rest of the paper is organized as follows. The next section details our
approach for generating datasets, combining and ranking the outputs of several
ASATSs. Section 3 and 4 present two instances of our approach in different tar-
get application domains. Section 5 presents and discusses the results. Section
6 discusses related work and Section 7 concludes the paper.

2 Methodology

In this section we propose a general approach for evaluating the performance
of combining the results of several ASATs. Therefore, we need a dataset (i.e.,
applications) with the results of ASATSs searching vulnerabilities in applica-
tions. For evaluating and comparing the effectiveness of the combinations of
the ASATS, first we need to define a set of metrics and a method for com-
bining the results, next computing the metrics and ranking the combination
of ASATSs. Moreover, to calculate the metrics, we have to know the VLOCs
(i.e., Positive instances (P)) and the NVLOC:s (i.e., Negative instances (N)) of
the applications. However, such datasets are not publicly available. Therefore,
our methodology includes a process for creating datasets (section 2.1) and a
method for combining and ranking the results of diverse ASATSs (section 2.3).

2.1 Creating datasets

Fig. 1 illustrates our overall process for creating datasets organized in sce-
narios and fully characterized in term of VLOCs and NVLOCs. The process
is composed by four phases: (1) defining scenarios, (2) selecting applications,
(3) assigning applications to scenarios, and (4) characterizing VLOCs and
NVLOCs .

2.1.1 Defining scenarios

Our scenarios are adapted from Antunes et al. [10]. They proposed four scenar-
ios based on the business criticality of having applications with vulnerabilities

Definil?g Assingning Applications
Scenarios applications »| by scenario
to scenarios __—~
< =
Applications —
Characterizing VLOC
VLOC »i NVLOC
ASATs NVLOC __—

Fig. 1 Overall process for creating datasets characterized in term of VLOCs and NVLOCs.

An empirical study on combining diverse static analysis tools for web security ... 5

and the impact severity that such vulnerabilities cause when exploited. To
minimize such severity based on the criticality, they defined the four business
scenarios with increasing requirements, and efforts needed to satisfy them (see
Table 1). For example, in a business-critical scenario the objective is to de-
tect as many vulnerabilities as possible, even if that requires spending budget
analyzing FPs. Four criticality levels representing realistic scenarios were con-
sidered (we changed the names of the scenarios defined by them to better
represent their requirements, but maintained their scope): (1) Highest-quality
— every vulnerability missed may be a big problem due to the high criticality
of the application; (2) High-quality — a few non-trivial vulnerabilities may be
missed given that there are not many FPs; (3) Medium-quality — vulnerabil-
ities may be missed at the cost of reducing the FPs; (4) Low-quality — every
FP is an important cause of concern due to budget restrictions.

Table 1 Goals of vulnerability detection by scenario [31]

Scenario TP FP Resources to fix (manual effort)
1 - Highest-quality highest many all that are needed

2 - High-quality highest not many balanced appropriately

3 - Medium-quality high low limit, redirected to fix

4 - Low-quality high lowest very low

2.1.2 Selecting applications

The demand for new web applications will increase exponentially over the
next decade [16]. In fact, most companies and millions of people relies on the
Internet and web applications. The complexity and interactivity of applications
has been increased tremendous. Therefore, are emerging with great speed many
tools, frameworks (e.g., Laravel) and Content Management Systems (CMS)
(e.g., WordPress (WP)) for developing applications in a short frame time.
The applications that compose the dataset have to be representative of all
applications. Unfortunately, this is very hard to attain. To reduce this prob-
lem, the dataset is specifically built for a particular domain (e.g., WP plugins).
However, the selection of a set of representative applications in a particular do-
main is yet a difficult task. Thus, our approach to select applications is based on
vulnerability’s repositories (e.g., National Vulnerability Database) that pub-
licly confirmed vulnerabilities in real software. Thus, for the chosen domain,
we collect applications with at least one vulnerability in the target classes of
vulnerabilities (e.g., SQL Injection (SQLi), Cross-Site Scripting (XSS)). The
LOC where the vulnerabilities are located become our initial set of VLOCs.

2.1.8 Assigning applications to scenarios

To organize the dataset, we need to assign a representative group of applica-
tions to each scenario. Since this is very hard to achieve (e.g., real business-

6 Paulo Nunes el al.

Table 2 Mapping of SPPs to ISO/IEC Sub-Characteristics of Maintainability and an Example

Software Product Properties

Sub-characteristics D ucC US MC CcC Ul CIS uT Average
Ratings example 5.0 4.0 3.0 4.0 3.0 3.0 2.0 3.0
Analyzability X X X 4.0
Changeability X X X X 4.0
Stability X X X 2.6
Testability X X X X 3.5

Maintainability rating (average: * x x %) 3.5

D - Duplication, UC - Unit Complexity, US - Unit size, MC - Module Coupling.
CC - Class Complexity, UI - Unit Interface, CIS - Class Interface Size, UT - Unit Testing

critical software is often kept secret) and has an associated level of subjectivity
(e.g., there are different interpretations of what constitutes critical software),
we propose a general procedure to classify applications based on code quality.
Generically, the assumption is that scenarios that are more stringent normally
the software developed is with better quality. Therefore, we should assign ap-
plications with better quality to scenarios with higher criticality. In practice,
this means that a given set of applications can be used in a scenario if their
source code has a sufficient level of quality and admissible artefacts.

Our process for assigning applications to scenarios has two steps [31]. The
first is based on the approach proposed by Baggen et al. [12] for rating the
maintainability of the source code of applications (from 0.5 to 5.5 stars).
The Baggens approach uses a standardized measurement model based on the
ISO/IEC 9126 definition of maintainability and a small set of Source Code
Metrics (SCMs) (e.g., Cyclomatic Complexity Number (CCN) [32]). These
SCMs are used to measure the SPPs (e.g., Unit Complexity) of the software.
Table 2 shows the SPPs and their relationship with the sub-characteristics
of maintainability and includes an example. The second step of the process
is based on a simple schema for mapping the ratings in scenarios. We used
the following mapping the rating to scenarios: [4.5, 5.5 - Scenario 1; [3.5, 4.5]
- Scenario 2; [2.5, 3.5] - Scenario 3; and [0.5, 2.5[- Scenario 4. As shown,
we used intervals of 1 for mapping the ratings into the scenarios, trying to
respect Baggens’s approach, except for the less stringent scenario(4), which
accommodates all the ratings below 2.5.

2.1.4 Characterizing VLOCs and NVLOCs

The applications selected for the dataset have at least one VLOC (section
2.1.2). However, the real number of VLOCs is unknown. For large code bases,
identifying all VLOCs is a hard task that requires a thorough review by
security experts. The upper bound for the number of VLOCs for a given
class of vulnerability in an application is limited to the number of Lines of
Codes (LOCs) with a related security-critical function calls (i.e., Sensitive
Sinks (SSs), e.g., echo for XSS and mysql_query for SQLi) with at least one
variable [11]. In fact, these LOCs are potentially vulnerable because they are
the gateways by which threats are manifested. In addition, a SS is considered

© W N oA W N e

An empirical study on combining diverse static analysis tools for web security ... 7

$name = $_GET[’name’]; // EP, User

print ("<hl1>Your search for: $name</hi>"); // S8S,VLOC, XSS

$sql="SELECT * FROM Contacts where name like ’%$name?’";

$result=mysql_query ($sql); // SS,VLOC,SQLi

echo ’<table><tr><th>Name</th><th>Phone</th></tr>’; // No SS

while($data = mysql_fetch_array($result)) { // EP, Database
echo ’<tr><td>’.$datal[name].’</td>’; // 8S,VLOC
echo ’<td>’.htmlspecialchars($data[’phone’],ENT_QUOTES); // SS,NVLOC,XSS
echo ’</td><tr>’; // No SS

Listing 1 PHP vulnerable code (SQLi and XSS) for searching contacts in a database.

Table 3 Summary of metrics by scenario [31]

Scenario Antunes et al. Scenario [10] Main Metric Tiebreaker Metric
1 - Highest-quality Business-critical Recall Precision

2 - High-quality Heightened-critical Informedness Recall

3 - Medium-quality = Best-effort F-Measure Recall

4 - Low-quality Min-effort Markedness Precision

a function from the language that can output an unexpected result if some of
its parameters is malicious data, which was provided by an attacker through
application Entry Points (EPs) (e.g., $_GET in PHP that receives user inputs).
Therefore, a VLOC is a LOC with at least one SS for which there exists at
least one data flow from untrusted data sources (EPs). On the other hand,
we consider a NVLOC as being data flows that are not vulnerable, i.e., LOCs
with all SSs function calls without any variable [11] or with variables or EPs
previously sanitized by some Sanitization Function (SF) (e.g., htmlentities
function to invalidate XSS vulnerabilities) that invalidates malicious data. The
listing 1 illustrates examples of VLOCs, one NVLOC, EPs, SFs and SSs.
Our approach to find more VLOCs in the dataset is based on running
ASATSs searching vulnerabilities in the dataset and on a manual review to
confirm if each SS is a TP or a FP. The union of all TPs with the initial list of
vulnerabilities (section 2.1.2) become the list of VLOCs. The list of NVLOCs
is obtained from all LOCs potentially vulnerable, i.e., with a SS but are FP.

2.2 Metrics

For evaluating the combinations of ASATSs we propose the metrics defined by
Antunes et al. [10]. Therefore, for each scenario there is one main metric to
rank the combinations of ASATs and a tiebreaker metric used only when there
is a tie among combinations of ASATSs (see Table 3).

In practice, the metrics depend on the goals of the detection, which are
related with the amount of available resources to fix the vulnerabilities (see
Table 1). For example, for the highest-quality scenario the goal is to find the
highest number of vulnerabilities at any cost. The metric recall is used to
measure this global information. However, it ignores the precision (FPs) of
the results. Thus, in the case of a tie among combinations of ASATS, the
precision metric is used to rank first the combination reporting less FPs. The

8 Paulo Nunes el al.

metrics recall = TP/(TP+ FN), precision = TP/(TP+ FP) and F-Measure
=2xTP/(2x TP+ FP + FN) are well known and widely used. Next, we
define the remaining ones:

— Informedness = Recall+Inverse Recall-1. Requires knowing the overall num-
ber of P (P =TP+FN)and N (N = FP+TN) instances. Therefore, every
TP increases the metric in the proportion 1/P and every FP decreases the
metric in the proportion 1/N. Since the prevalence of P instances (for the
plugins) is less than the prevalence of N instances, the metric prioritizes
ASATS reporting more vulnerabilities and at the same time not too many
FPs, which is the goal of the high-quality scenario.

informedness = TP/(TP+ FN)+TN/(FP+TN) -1 (1)

— Markedness = Precision+Inverse Precision-1. Considers only the number
of TPs and True Negatives (TNs) reported. The metric sums the propor-
tions of the P and the N instances that are correctly identified as such.
For the Precision (1! part of the formula 2) a TP increases the metric
while a FP decreases the metric in the same proportion. For the Inverse
Precision (2"? part of formula 2) a FP also decreases the metric but at the
inverse proportion of the N instances reported (i.e., low value). Therefore,
the metric portrays the required goal for the low-quality scenario because
severely penalizes ASATSs reporting FPs.

markedness = TP/(TP + FP)+TN/(FN+TN) -1 (2)

2.3 Combining the results of multiple ASAT

Our method for combining the results of the ASATs is based on all possible
combinations of the ASATs. Multiple strategies (e.g., majority voting, N-out-
of-N, 1-out-of-N) could be considered for combining the results of multiple
ASATs. However, since the dataset is characterized in terms of VLOCs and
NVLOCs, we use the l-out-of-N strategy for combining the results of the
ASATSs. The process proposed to calculate the combined results for two or
more tools is based on a set of automated steps (see Fig. 2):

1. Calculate the number of P and N in the dataset — using the lists of VLOCs,
NVLOCs, and the list of the applications per scenario, calculate the values
of P and N for each scenario and for each class of vulnerability.

2. Combine results of ASATs — for each scenario, class of vulnerability and
combination of the ASATSs, merge the TPs and the FPs of the tools.

3. Calculate the combined confusion matrices — with the outputs of steps 1
and 2, calculate, for each scenario, class of vulnerability and combination
of ASATS, the corresponding confusion matrix (i.e., TP, FP, FN, and TN).

4. Calculate the metrics and rank — with the results from step 3, compute the
metrics for each scenario (see Table 3) and rank the combinations of tools.

An empirical study on combining diverse static analysis tools for web security ... 9

3 WordPress plugins dataset

In this section, we apply our process for creating datasets to the domain of
WP plugins. WP is by far the most prominent CMS [9] [19]. There are over
52,042 WP plugins that have been downloaded more than 1.3M times [6].
However, probably most of these plugins have vulnerabilities and, since a single
plugin may be used in thousands of websites, they are an attractive target for
hackers. For instance, Sucuri reported that, in Q1 2016, 89,000 WP sites were
compromised by exploiting vulnerable plugins [5].

The target classes of vulnerabilities we analyzed are SQLi and XSS, and
the target ASATSs are free tools. In fact, according to WhiteSecurity statistics,
from 42,000+ WP Websites in Alexa Top 1 Million, more than 73% of the
installations have vulnerabilities, which could be potentially detected using
free automated tools [8]. SQLi and XSS are vulnerabilities that are on the
Open Web Application Security Project (OWASP) Top 10 [2], and are also
quite common in WP plugins [4]. Both vulnerabilities occur when input data
are not properly validated. A SQLi attack is based on the injection of code
that changes the SQL query sent to the database and an XSS attack consists
in the injection of malicious JavaScript in the input of a vulnerable web page.

3.1 Selecting the plugins

The online WordPress Vulnerability Database (WPVD) [4] provides a list of
WP plugins with known vulnerabilities including proofs of concept (PoC) and
other details (e.g., CVE identifier). From this list, we selected all the plugins
with SQLi and/or XSS vulnerabilities, resulting in a list of 134 plugins with
152 SQLi (84 with PoC) and 67 XSS (13 with PoC) vulnerabilities registered.
In practice, the dataset consists of 103 Object-Oriented Programming (OOP)
plugins and 31 Procedure Oriented Programming (POP) plugins having a total
of 4,990 files and 1,023,081 LOC (57% is OOP, 32% is POP, and 11% are mix
of both). The dataset contains 466,164 Logical Lines of Code (LLOC), where
39.5% are POP, 47.8% are OOP, and 12.7% is a mix of both (see Table 4).

3.2 Assigning plugins to scenarios

The results of applying our process for assigning applications to scenarios (see
section 2.1.3) are presented in Table 4, which shows the number of plugins

Dataset
: ---------- _ Metrics
h Tools reports Combining by scenario
1 in common format result Calculating
: combined \/r\
. —_— confusion Calculating
' ul nler a‘;an Caculaing matrices [metricsand
1 .
! non-vulnerable LOC PandN ranking
1

Fig. 2 Overall process of combining results of multiple tools.

10 Paulo Nunes el al.

Table 4 Plugin background information [31]

Scenarios OOP POP Total %Tot. Files LLOC %LLOC
1 - Highest-quality 10 2 12 9.0 352 19,542 4.2
2 - High-quality 39 17 56 41.8 1,687 122,835 26.4
3 - Medium-quality 40 11 51 38.1 2,223 211,297 45.3
4 - Low-quality 14 1 15 11.2 728 112,490 24.1
Total 103 31 134 100.0 4,990 466,164 100.0

that compose the dataset, distributed over the four scenarios. Scenarios 1 and
2 have lower number of plugins compared with the scenarios 2 and 3. This is
realistic as finding code with very high quality is not trivial and due to the
popularity of the plugins considered it is expected to not find plugins with
low-quality. In terms of LLOCs, we observed a “normal” distribution around
the medium-quality scenario with a small tail for the highest-quality scenario.

3.3 Characterizing VLOC and NVLOC for the WordPress plugins dataset

For detecting the SQLi and XSS vulnerabilities in the WordPress Plugins
Dataset (WPD) we used the following ASATs: RIPS v0.55 [14], Pixy v3.03
[22], phpSAFE [30], WAP v2.0.1 [26], and WeVerca v20150804 [18]. RIPS
performs static taint analysis and string analysis. RIPS and Pixy are the two
most referenced PHP ASATSs in the literature, but they are not ready for OOP
analysis. RIPS has only been developed as open source until 2014. RIPS has
recently released a commercial version able to fully analyze OOP code. WAP,
phpSAFE, and WeVerca are recent tools under active development, and they
are prepared for OOP code.

To obtain the list of VLOCs, we ran the five ASATSs to search SQLi and
XSS vulnerabilities in the dataset. All tools, but WeVerca, were configured
by default for PHP EPs, SSs and SFs (e.g., htmlentities for preventing
XSS and mysql_real escape_string for preventing SQLi). WeVerca does not
allow configuration and includes a list of EPs, SSs and SF's. Overall, phpSAFE
was unable to analyze 18 plugins. WAP analyzed all plugins, but seven of

Table 5 Distribution of VLOCs and NVLOCs by scenarios for the WordPress Dataset [31]

Seenario Tools | VD |NVLOC Total (P+N)/ | FSA
TP FP| P| -FP P N P% N% |KLLOC| %
SQLi 1 - Highest-quality 65 5| 17 82| 75 87 46 54 0.16| 8.3
2 - High-quality 318 62| 35| 1,053| 346 1,115 24 76 1.46| 6.2
3 - Medium-quality | 251 163| 22| 2,051| 267 2,214 11 89 2.48| 5.2
4 - Low-quality 41 32| 10| 1,005| 50 1,137 04 96 1.19] 2.1
Total 675 262| 84| 4,291| 738 4,553 14 86 5.29 -
XSS 1 - Highest-quality | 165 45| 3 945| 168 990 15 85 1.16| 17.7
2 - High-quality 1,841 224| 1| 5,601|1,842 5,825 24 76 7.67| 16.8
3 - Medium-quality [2,386 680| 4| 9,280(2,389 9,969 19 81| 12.36| 17.1
4 - Low-quality 543 117| 5| 3,477| 545 3,504 13 87 4.14| 10.3
Total 4,935 1,066| 13| 19,312]4,944 20,378 20 80| 25.32 -

Tools: phpSAFE,RIPS,WAP,Pixy,WeVerca. VD - Number of VLOCSs registered in the WPVD.
FSA - Files successfully analyzed by all five tools.

An empirical study on combining diverse static analysis tools for web security ... 11

them only partially. RIPS and Pixy analyzed partially 76 and 103 plugins,
respectively. WeVerca was not able to analyze a total of 20 source files of 14
plugins. In practice, the tools could not to fully analyze some plugin/files,
reporting runtime errors or taking a very long time without any results.

For gathering the list of NVLOCs, we developed a PHP script to select from
the source files all LOCs with a SS function call with at least one variable.
From this list, we removed the items that were already labeled as VLOCs.

Table 5 reports the results of characterizing VLOCs and NVLOCs of the
WPD. The table depicts the number of TPs and FPs reported by the ASATs,
followed by the number of vulnerabilities registered in the WPVD (column
VD). The column NVLOC-FP represents the number of NVLOC not reviewed
manually. The next four columns show the total number /percentage of P (the
distinct VLOCs), and the total number of N (i.e., NVLOCs).

For the low-quality scenario, the ASATSs reported fewer VLOCs than the
high-quality and medium-quality scenarios. However, software with low-quality
does not necessarily means more security vulnerabilities. We also observed that
both the density of (P+N) per KLLOC of code and the percentage of files suc-
cessfully analyzed (FSA) by all tools are low for this scenario, with which may
limit the number of VLOCs found by the tools. In fact, the tools have more
difficulties analyzing software with low quality.

4 Synthetic dataset

The main goal of this experiment is to evaluate the applicability of our ap-
proach for creating Synthetic Datasets (SDs) using synthetic test cases. It
involves three steps.

1) Selecting the synthetic test cases. The SARD at NIST provides a
repository of test cases (datasets) with a set of known security vulnerabilities
[7]. The most significant synthetic dataset for PHP was provided by Stivalet
and Delaitre [34]. They proposed a generic approach for generating safe (i.e.,
non-vulnerable) and unsafe (i.e., vulnerable) test cases and developed a tool for
generating PHP test cases. Therefore, we used the Stivalet’s tool for generating
the test cases for SQLi and XSS vulnerabilities (see Table 6).

2) Assigning test cases to scenarios. Table 7 lists the results of as-
signing the test cases to scenarios. Most of them were assigned to the highest-
quality scenario where almost of the test cases are OOP. The high-quality
scenario accounts for 10%, the medium-quality scenario 19%, and the low-
quality scenario none. This distribution occurred because the test cases are
very small programs (from 3 LLOC to 29 LLOC). Therefore, the values for

Table 6 Summary of the generated synthetic test cases

Safe Unsafe
Vulnerability POP OOP Total %TOTAL | POP OOP Total %TOTAL | TOTAL
SQLi 6,336 2,304 8,640 90 684 228 912 10 9,552
XSS 4,296 1,432 5,728 57 3,264 1,088 4,352 43 10,080

12

Paulo Nunes el al.

Table 7 Synthetic test cases background information by scenario

Scenario

SQLi

XSS

POP OOP Total

POP OOP Total

N P N P N P

N P N P N P

1 - Highest-quality

1,008 213 228 2,208 2,136 2,421

3,880 2,940 1,432 1,088 5,312 4,028

324 236 0 0 324 236
92 88 0 0 92 88

2 - High-quality
3 - Medium-quality

1,143 195 0 96 1,143 291
3,285 276 0 0 3,285 276

some SPPs (e.g., Module Coupling) of the test cases are zero, meaning that
for these SPPs the test cases have the maximum quality (5.5 stars).

3) Characterizing VLOCs and NVLOCs of synthetic test cases.
An advantage of SDs is that the test cases indicate where vulnerabilities occur.
Since, each test case has just one target SS, the number of NVLOC is equal
to the number of safe test cases (column N of Table 7) and the number of
VLOC:s is equal to the number of unsafe test cases (column P of Table 7).

5 Results and Discussion

For studying the potential of combining the outputs of diverse ASATSs as a
way to improve the performance of vulnerability detection, we used the results
of five ASATs searching for vulnerabilities in two datasets: WPD and a SD.
For the WPD we used the same results of characterizing the VLOCs and
the NVLOCs of the dataset. For the SD we ran the same ASATSs to detect
vulnerabilities in the synthetic test cases with the same configurations used
for detecting the vulnerabilities in the WPD, to avoid bias.

Tables 8 and 9 list the results organized by scenario, class of vulnerability
and together SQLi and XSS vulnerabilities for the WPD and the SD, respec-
tively. The tables only show the TOP 5 (of 31) combinations of ASATSs for
each scenario, due to space limitations. The tables for all scenarios include the
metrics Recall and Precision to facilitate the determination of the scenario-
specific impact. The tables also include the ranking of the individual ASATs,
as reference. The results of all combinations can be consulted online at [29].

5.1 Comparing the results of the WPD and the SD

For both datasets and considering the SQLi and XSS vulnerabilities together,
the best solution includes the ASATSs of the best solution for each class of
vulnerability, with two exceptions. First, for the WPD and for the low-quality
scenario, the best solution excludes RIPS because it reported many FPs for
XSS and only one TP for SQLi. Second, for the SD and for the medium-quality
scenario the best solution is the same as for XSS which excludes the ASAT of
the best solution for SQLA.

The best solutions for both datasets are very different. For the WPD most
of the solutions are composed by several tools, while for the SD most of the
solutions consist of a single tool, excepted for the highest-quality scenario.

An empirical study on combining diverse static analysis tools for web security ... 13

Table 8 Best Solutions for the WordPress plugins: SQLi, XSS and SQLi + XSS

SQLi XSS SQLi + XSS
Tools TP FP Pg MM TM P/R|Tools TP FP PgMM TM P/R| Tools MM TM
Highest-quality Recall Prec. Recall Prec. Rec. Prec.
ac 65 5 9 .867 .929 -l ab 165 43 11 .982 .793 -| abc 947 .821
ace 65 5 9 .867 .929 -| abe 165 43 11 .982 .793 -| abed .947 .821
abce 65 5 9 .867 .929 -| abc 165 45 11 .982 .786 -| abcde .947 .821
acde 65 5 9 .867 .929 -| abd 165 45 11 .982 .786 -| abce .947 .821
abc 65 5 9 .867 .929 -| abce 165 45 11 .982 .786 -| acde .844 .869
c 49 4 7 653 .925 -l b 113 29 10 .673 .796 - a .539 .851
a 29 5 5 .387 .853 -l a 102 18 8 .607 .850 - b 465 .796
e 0 0 O 0 - -l d 69 14 7 .411 .831 - c 296 .878
b 0 0 0 0 - -l e 44 5 7.262 .898 - d .284 .831
d 0 0 O 0 - -l ¢ 23 6 3.137 .793 - e .181 .898
High-quality Informedness Rec. Prec. Informedness Rec. Prec.|Informedness Rec.

acde 318 59 36 .866 .919 .844| abce 1841 224 51 .961 1.0 .892| abce .946 .987
abce 318 60 36 .865 .919 .841|abcde 1841 224 51 .961 1.0 .892| abcde .946 .987
abcde 318 60 36 .865 .919 .841| abe 1838 223 51 .960 .998 .892| abde .930 .971
ace 316 59 36 .860 .913 .843| abde 1838 223 51 .960 .998 .892| abe .930 .971
acd 311 58 35 .847 .899 .843| abc 1770 224 51 .923 .961 .888| abc 910 .951

a 274 58 30 740 792 .825| a 1164 90 46 .617 .632 .928 a .636 .657
c 44 4 12 124 .127 917 b 1013 194 46 .517 .550 .839 b 454 .483
b 43 2 8 123 124 .956| e 436 50 25 .228 .237 .897 e .200 .207
e 18 1 6 .051 .052 .947| d 453 148 28 .221 .246 .754 d 193 .214
d 16 0 7 .046 .046 1.0 c 219 55 18 .110 .119 .799 c 112,120
Medium-quality F-Measure Rec. Prec. F-Measure Rec. Prec. F-Measure Rec.

abce 251 163 21 .737 0.940 .606| abce 2386 652 46 .879 .999 .785| abce .863 .993
abcde 251 163 21 .737 0.940 .606|abcde 2386 652 46 .879 .999 .785| abcde .863 .993
abc 250 163 21 .735 0.936 .605| abc 2383 652 46 .879 .998 .785| abc .863 .991
abcd 250 163 21 .735 0.936 .605| abcd 2383 652 46 .879 .998 .785| abcd .863 .991
abde 237 163 19 .711 0.888 .593| abde 2359 652 46 .874 .987 .783| abde .856 .977

b 153113 6 574 573 575 b 1812 490 43 .773 .759 .787 b 752 .740
a 99 50 15 476 371 .664| a 970 267 41 .535 .406 .784 a .529 .402
c 72 011 425 .27 1.0l d 717 56 23 .454 .300 .928 d 441 .290
d 54 13 4 .323 .202 .806| e 621 21 19 .410 .260 .967 e .383 .242
e 21 34 3 130 .079 .382| ¢ 344 13 18 .251 .144 .964 c 270 157
Low-quality Markedness Prec. Rec. Markedness Prec. Rec.| Markedness Prec.
bc 6 0 2 963 1.0 .120| c¢ 62 3 6.835 .954 .114 c .857 .957
bce 6 0 2 963 1.0 .120| abce 543 117 12 .822 .823 .996| cde .835 .925
bcde 6 0 2 963 1.0 .120|abcde 543 117 12 .822 .823 .996| ce 832 .925
bed 6 0 2 963 1.0 .120| abc 542 117 12 .822 .823 .994| cd .819 .916
[5 0 2 962 1.0 .100| abcd 542 117 12 .822 .823 994| de 815 911
c 5 0 2 962 1.0 .100| ¢ 62 3 6.835 .954 .114 c .857 957
b 1 0 1 959 1.0 .020] a 244 33 10 .803 .881 .448 e .802 .901
a 36 32 7 517 .529 .720| e 73 8 7.785 .901 .134 d 776 .879
e 0 0 O - - .000f b 377 91 10 .760 .806 .692 b .761 .806
d 0 0 O - .000| d 51 7 9.758 .879 .094 a 748 .812

abce® 675260 - - 7227 915%[abce* 4935 1038 - - .826' .998%|abcde® .812T 9877

Tools: a - phpSAFE, b - RIPS, ¢ - WAP, d Pixy, e - WeVerca.

MM - Main Metric, TM - Tiebreaker Metric, Rec. - Recall(R)(?), Prec.(P)(*) - Precision.
Pg - Number of plugins where the combination of ASATSs reports vulnerabilities.
*Solution with best recall regardless the scenarios.

The overall results show that the values of the main metrics of all best
solutions for the SD are lower than for the WPD, meaning that the individual
effectiveness of the ASATSs is much lower for the SD.

For instance, in several cases the worst individual tool (e.g., Pixy) for the
WPD is the best individual tool for the SD. The inverse occurred for other

14 Paulo Nunes el al.

Table 9 Best Solutions for the synthetic dataset: SQLi / XSS

SQLi XSS SQLi + XSS
Tools TP FP MM TM P/R|Tools TP FP MM TM P/R|Tools MM TM
Highest-quality Recall Prec. Recall Prec. Recall Prec.
bde 355 2072 .805 .146 -| abde 3290 4192 .817 .440 -labde .816 .368
abde 355 2072 .805 .146 -|abcde 3290 4232 .817 .437 -labcde .816 .364
bcde 355 2132 .805 .143 -| ade 3286 4142 .816 .442 -|ade .812 .378
abcde 355 2132 .805 .143 -| acde 3286 4182 .816 .440 -lacde 812 .374
de 342 1607 776 176 bde 3226 4176 .801 .436 -|bde .801 .364
e 234 1086 531 177 -| e 2336 3209 .580 .421 -le 575 374
d 156 609 .354 .204 -l d 1958 1783 .486 .523 -|d 473 .469
b 126 885 .286 .125 -| b 1048 1436 .260 .422 -|b .263 .336
a 75 468 170 .138 -l a 656 864 .163 .432 -la .164 .354
c 63 430 143 128 -l ¢ 408 712 .101 .364 -|c 105 .292
High-quality Informedness Rec. Prec. Informedness Rec. Prec. Inf. Prec.
d 150 222 590 .769 .403 d 121 107 .183 .513 .531|d 418 .629
de 190 498 572 974 .276| cd 121 107 .183 .513 .531|de 387 .877
bd 183 504 532 939 .266| ad 121 107 .183 .513 .531|bd .367 .861
cde 190 597 493 974 .241| acd 121 107 .183 .513 .531|bcd 332 .861
bed 183 558 488 939 .247| ¢ 0 0 .000 .000 -|cd .332 .629
d 150 222 590 .769 .403| d 121 107 .183 .513 .531|d 418 .629
e 128 376 .363 .656 .254| a 0 0 .000 .000 -le .260 .657
b 81 372 115 415 .179| ¢ 0 0 .000 .000 -|b 215 .624
a 81 438 .062 .415 .156| b 188 268 -.031 .797 .412|c -.037 .084
c 36 188 .033 .185 .161| e 155 244 -.096 .657 .388|a -.092 .188
Medium-quality =~ F-Measure Rec. Prec. F-Measure Rec. Prec.| F-Measure Rec.
e 132 882 .205 .478 .130 d 81 90 .626 .921 .474|e 243 484
ce 132 882 205 .478 .130| ad 81 90 .626 .921 .474|ce 243 484
ae 132 948 195 478 .122| bd 81 90 .626 .921 .474|ace 232 484
ace 132 948 195 478 .122| cd 81 90 .626 .921 .474|ae 232 484
de 265 2588 169 .96 .093| de 81 90 .626 .921 .474|cde .204 951
e 132 882 .205 .478 .130 d 81 90 .626 .921 .474|e 243 484
d 225 2310 160 .815 .089| e 44 28 .550 .500 .611|d 199 841
b 105 1155 .137 .380 .083| a 0 0 .000 .000 .000|b 129 .288
a 0 66 .000 .000 .000| b 0 0 .000 .000 .000|c - .000
c 0 0 .000 .000 -l ¢ 0 0 .000 .000 .000|a - .000
*bde 824 5621 - 128" .904%[*abde 3559 4588 - 437" 8187["de 447" 5737

MM - Main Metric, TM - Tiebreaker Metric, Rec. - Recall (R)(?), Prec.(P)(?) - Precision
Tools: a - phpSAFE, b - RIPS, ¢ - WAP, d Pixy, e - WeVerca. Inf. - Informedness. *See table 8.

tools (e.g., WAP for the highest-quality scenario). Pixy tool is old but was
included in five out of six best solutions using the SD. Moreover, the tool is
the best solution for the SD in three cases. As stated before, the tool is limited
to analyzing OOP. Therefore, the good results of Pixy for these three cases are
due to the presence of POP in most of the test cases. It means that for the SD
plugins, Pixy has a good effectiveness analyzing POP test cases and the other
tools have low effectiveness because they fail analyzing these sample POP test
cases. For example, phpSAFE, RIPS and WAP did not report any vulnerability
in several cases (see Table 9). For the WPD, Pixy was only included in one
out of eight best solutions. This occurred because in this scenario about 1/3
of the plugins are POP and 49% of the LLOC are POP coming both from the
POP plugins and OOP with POP code.

For the WPD, WAP reports the fewest FPs (high precision) and is included
in seven out of eight solutions. However, for the SD, WAP has low precision

An empirical study on combining diverse static analysis tools for web security ... 15

and is never included in the best solutions. A possible reason is that WAP
uses data mining to identify FPs using a machine learning classifier. Perhaps,
the classifier has to be better trained for SDs.

For the WPD, WeVerca is ranked in the middle or below for all cases.
However, for the SD the tool was ranked first or second for all cases, except
for the XSS and for the high-quality scenario where the tool was ranked in the
last position. The tool reported both the highest number of TPs and FPs for
most of the scenarios and class of vulnerability. Therefore, the tool needs to
be improved in order to report less FPs.

For the highest-quality scenario the values of the main metrics are similar
for both datasets. In contrast, the values for the tiebreaker metrics are very
low for the SD (e.g., .146 for SQLi) and high for the WPD (e.g., .929 for SQLI).
Therefore, the tools have better effectiveness for the WPD than for the SD.

5.2 Testing the hypotheses

Based on our findings, the first five hypotheses stated in the introduction are
false. Hypothesis Hy is false because we found many cases where adding a
ASAT to an existing combination of ASATSs, does not increase the number
of vulnerabilities found (e.g., for the highest-quality scenario and XSS: ab,
abe, abce). On the other hand, we also observed that the number of FPs
does not always increase with the number of ASATSs in a combination (e.g.,
for the plugins, the medium-quality scenario and SQLi: ab, abe, abde). The
best solution for vulnerability detection depends on the chosen scenario and
on class of vulnerability. Therefore, hypotheses H; and Hy are both false.
In fact, the detection capabilities of the ASATSs are not uniform across the
two classes of vulnerabilities. The same occurs for combinations of ASATs.
Moreover, in almost all cases the values of the metrics for XSS vulnerabilities
are better than for the SQLi vulnerabilities [31]. The best combination of
ASATSs regardless the classes of vulnerabilities is different in several cases.
Therefore, the hypothesis Hs is false. The approach was successfully applied
to other kind of dataset with similar number of P and N instances but with
applications (test cases) with very small sizes (i.e., LLOC). Therefore, the
hypothesis Hg is not false. The results for the SD show that we can derive
similar conclusions for the hypotheses H; to Hs. Therefore, the hypothesis
H7 (The results for the hypotheses H; to Hy are the same for other kind of
applications) is not false.

In summary, the main advantage of combining the results of several ASATs
is the identification of more vulnerabilities. In fact, for several cases there are
ASATs that individually did not find any vulnerabilities or found few vulnera-
bilities in many plugins. Moreover, even using all the ASATs some vulnerabili-
ties remain undetected. However combining many tools can be counterproduc-
tive in some cases as that will not lead to the detection of more vulnerabilities,
but will increase the number of FPs reported, which then need to be verified
manually by the developers. Finally, identifying the strengths and limitations

16 Paulo Nunes el al.

of ASATsS, helps developers to determinate how such tools can be combined to
provide a more thorough analysis of the software depending on the specificities
of the scenario and on the class of vulnerability being analyzed [31].

5.3 Threats to validity

1) Datasets. The datasets across the various scenarios are unbalanced, which
may affect the results in some cases. For example, the low-quality scenario
for the SD has no test cases. In the same scenario, for the WPDs and for
SQLi, only one ASAT reported vulnerabilities, which may limit our study.
Works using other tools are needed for improving the characterization of the
vulnerable/non-vulnerable LOCs in the dataset.

2) Vulnerabilities. There are limitations regarding the scope of the datasets
in this experiment, since it considers only WordPress plugins and one test suite
of synthetic test cases, SQLi, and XSS vulnerabilities.

3) Characterizing VLOCs and NVLOCs. The number of VLOCs for the
WPD is based on the results of the ASATs and manual inspection in order
to be classified as VLOC or NVLOC. As with any classification there is a
potential for misclassification, that could significantly affect the reliability of
the results. The use of more ASATSs and a larger list of CVE vulnerabilities
may reduce this threat to validity. However, even using several state-of-the-art
and widely used commercial ASATs there are missed vulnerabilities [17].

4) Free ASATs. All ASATSs used in this study are free. Pixy is not updated
since 2007 and RIPS has only been developed as open source until 2014. On
the other hand, WAP, phpSAFE, and WeVerca are recent tools prepared do
analyze OOP code. There are several commercial and other free ASATs, thus,
the results of this study are only valid for the tools used.

5) Tools configuration. The dataset used in this study was collected with
all tools configured by default for PHP entry points, sensitive sinks and sani-
tization functions. The results of the tools may be improved (+TP and -FP)
by adjusting their configuration settings for WordPress built-in database func-
tions, sanitization and escaping routines.

6) Language domains. Both datasets and the tools are for PHP language.
Our choice was deliberate because PHP powers over 82% of web applications
[9]. Works using other languages such as ASP.NET and Java are need.

6 Related Work

Rutar et al. [33] studied five well-known ASATSs on a small set of Java programs
with different sizes from various domains. They concluded that the results of
each tool are highly correlated with the techniques used for finding bugs, and
that no single tool can be considered the best to detect defects. They proposed
a meta-tool for automatically combining and correlating their outputs. This
meta-tool is based on a set of scripts that combine the results of the various

An empirical study on combining diverse static analysis tools for web security ... 17

tools in a common format. The bugs found are not manually reviewed, thus,
there is no distinction between TP and FP. The metric used to evaluate and
compare the tools was the number of bugs found by each tool.

Meng et al. [27] proposed an approach to merge the results of multiple
ASATSs. The user specifies the programs to be analyzed and chooses the classes
of bugs to be scanned. After determined which tools can search for the specified
class of bugs, generated the necessary configurations to run the tools, run the
tools, combined the outputs in a single report, and applied two prioritizing
policies to rank the results. Meng et al. used their approach to conclude that
developers could benefit from more than one ASAT. The results were not
classified as TP and FP and the authors did not propose any metric to evaluate
the approach. The dataset was composed by a small Java program that is not
representative of real applications. Therefore, with such limited validation it
is very difficult to assess the strength and drawbacks of the solution.

Wang et al. [36] proposed an approach that combines multiple ASATSs in
a simple Web Service. The user has the possibility to choose the classes of
bugs to scan and upload the source code and auxiliary information such as
the programming language and the classes of bugs to be scanned. The tools
perform the analysis of the source code and results are merged in a way that
the same defect is only reported once. The combined results are sent back to
the user. The approach was evaluated in terms of running time when combining
two ASATSs, but the experiments were quite limited, having just a single Java
test case. Therefore, the solution lacks the validation of the effectiveness of the
vulnerability detection when using a combination of ASATs.

The National Security Agency (NSA) Center for Assured Software (CAS)
specified a methodology, the CAS Static Analysis Tool Study Methodology,
that measures and rates the effectiveness of ASATs in a standard and re-
peatable manner [25]. The metrics used are precision, recall, F-Score (i.e.,
F-Measure), and discrimination rate (DR). A discrimination occurs if a ASAT
reports a vulnerability in the vulnerable test case (TP) and keeps quiet in the
non-vulnerable test case (TN). The CAS has created a collection over 81,000
synthetic C/C++ and Java programs with known flaws, which is called Juliet
Test Suite [7]. Each test case is a slice of artificial code having exactly one flaw
and at least one non-flaw construct similar to the vulnerability. In 2011, the
CAS conducted a study with the purpose of determining the capabilities of
five ASATs for C/C++ and Java [3]. In this study, they proposed the combi-
nation of two ASATSs to show that adding a second ASAT might complement
the first one. However, the evaluation of the combinations is limited because it
is based on the metrics recall and DR. The metric recall does not consider the
number of FPs reported, and the DR severely penalizes ASATSs that report
many vulnerabilities but also reports FPs. Furthermore, they also evaluated
the overall coverage (recall) of four combinations of ASATs. The ASATSs were
labeled with a number from 1 to 5. Then, the combination of ASATSs: 12, 123,
1234, and 12345, were evaluated across all the test cases. They concluded that
the recall increases as the number of tools increases. However, this evaluation
is limited as there are many combinations that were not considered.

18 Paulo Nunes el al.

Unlike the approaches above, that use a small dataset or synthetic simple
test cases, our approach is based on a considerable number of real plugins and
four representative vulnerability detection scenarios. Moreover, the dataset is
characterized in terms of vulnerable and non-vulnerable LOCs for a more pre-
cise classification of the results produced by the tools with respect to TP and
FP. Another difference is that our study uses a single main metric to evaluate
the combinations of ASAT's in each scenario that takes into consideration the
goals of the vulnerability detection in that scenario. In fact, the approaches
previously referred use a simple metric such as the number of bugs that each
tool founds or several metrics. In this case, the user has the task of choosing
the metric that seem most appropriate and use it for evaluating a single ASAT
or combinations of ASATSs, without any further guidance.

7 Conclusion

In this work, we addressed the problem of combining the output of several
ASATS searching for SQLi and XSS vulnerabilities in two different datasets,
one with WordPress Plugins and another with PHP synthetic test cases. We
proposed a generic methodology, which can be used with any dataset and free
or commercial tools. The dataset is organized in four scenarios of increasing
criticality and each scenario uses different metrics to rank the tools.

Our findings revealed that combining the outputs of several free ASATSs
do not always improve the vulnerability detection performance. Thus, the
best solution can be a single tool or a combination of tools that may not
include all the tools under evaluation. Combining multiple ASATs has benefits
due to the complementarity of the produced results. However, for solutions
including ASATs that report many FPs the overall performance is worse in
some scenarios. Our results highlighted a considerable variance on the rates of
TPs and FPs among the ASATs and the datasets. This means that, overall,
the best combination of ASAT's is highly dependable on the specific situation,
and it should be selected after a properly targeted benchmarking procedure,
such as ours. These results are very useful for software engineers choosing an
ASAT solution for a concrete project with particular criticality and for ASAT
developers improving their tools.

Future work will focus on three main directions. First, we plan to improve
and expand the datasets to include other kinds of applications and classes of
vulnerabilities. Second, we are going to research novel ways to combine the
results regardless classes of vulnerabilities. Finally, we intend to investigate
different strategies of combining the ASATSs such as intersection, majority
voting and N-out-of-N.

References

1. https://freeformdynamics.com/wp-content /uploads/legacy-
pdfs/pdf/insidetrack /2017 /17-03-Managing_Application_Security _Risk.pdf

An empirical study on combining diverse static analysis tools for web security ... 19

o

“

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

S©wN®

https://www.owasp.org/index.php/Top-10_2017-Top_10
https://media.blackhat.com/bh-us-11/Willis/BH_US_11_WillisBritton
_Analyzing_Static_Analysis_Tools_ WP.pdf (2011)

WPScan Vulnerability Database. https://wpvulndb.com/ (2015-10-26)
Website hacked trend report 2016-Q1. https://sucuri.net/website-
security /Reports/Sucuri-Website-Hacked-Report-2016Q1.pdf (2016)
Wordpress plugin directory. https://wordpress.org/plugins/ (2016-12-29)
NIST SARD Project. http://samate.nist.gov/SRD (2017-02-23)
https://colorlib.com/wp/is-wordpress-websites-secure/ (2017-03-09)
https://w3techs.com/technologies (March 2018)

Antunes, N., Vieira, M.: On the metrics for benchmarking vulnerability
detection tools. In: 2015 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pp. 505-516 (2015)

Backes, M., Rieck, K., Skoruppa, M., Stock, B., Yamaguchi, F.: Effi-
cient and Flexible Discovery of PHP Application Vulnerabilities. In:
2017 IEEE European Symposium on Security and Privacy (EuroS&P),
pp. 334-349. IEEE (2017). DOI 10.1109/EuroSP.2017.14. URL
http://ieeexplore.ieee.org/document /7961989 /

Baggen, R., Correia, J.P., Schill, K., Visser, J.: Standardized code quality
benchmarking for improving software maintainability. Software Quality
Journal 20(2), 287-307 (2012)

Beller, M., Bholanath, R., McIntosh, S., Zaidman, A.: Analyzing the state
of static analysis: A large-scale evaluation in open source software. In: 2016
IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering, vol. 1, pp. 470481 (2016)

Dahse, J., Holz, T.: Simulation of Built-in PHP Features for Precise Static
Code Analysis. In: Proceedings 2014 Network and Distributed System
Security Symposium. Internet Society, Reston, VA (2014)

Diaz, G., Bermejo, J.R.: Static analysis of source code security: Assessment
of tools against SAMATE tests. Information and Software Technology
55(8), 1462-1476 (2013)

Forbes: Will The Demand For Developers Continue To Increase?
https://forbes.com/sites/quora/2017/01/20/will-the-demand-for-
developers-continue-to-increase/#7¢502b681¢3f

Goseva-Popstojanova, K., Perhinschi, A.: On the capability of static code
analysis to detect security vulnerabilities. Information and Software Tech-
nology 68, 18 — 33 (2015)

Hauzar, D., Kofron, J.: Framework for Static Analysis of PHP Appli-
cations. In: J.T. Boyland (ed.) 29th European Conference on Object-
Oriented Programming (ECOOP 2015), Leibniz International Proceedings
in Informatics (LIPIcs), vol. 37, pp. 689-711. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany (2015)

Imperva: Imperva web application attack report (WAAR).
http://www.imperva.com/download.asp?id=509 (2015)

Institute, P.: Annual Consumer Studies. http://www.ponemon.org/
(2015)

20

Paulo Nunes el al.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.
33.

34.

35.

36.

Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R.: Why don’t software
developers use static analysis tools to find bugs? In: 35th International
Conference on Software Engineering, pp. 672-681. IEEE (2013)
Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: a static analysis tool for de-
tecting web application vulnerabilities. In: Security and Privacy, 2006
IEEE Symposium on, pp. 6 pp.—263 (2006)

Landi, W.: Undecidability of static analysis. ACM Letters on Program-
ming Languages and Systems (LOPLAS) 1(4), 323-337 (1992)

Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java appli-
cations with static analysis. In: Proceedings of the 14th Conference on
USENIX Security Symposium - Volume 14, SSYM’05, pp. 18-18. USENIX
Association, Berkeley, CA, USA (2005)

Meade, F.G.: https://samate.nist.gov/docs/CAS%202012%20Static
%20Analysis%20Too0l%20Study%20Methodology.pdf

Medeiros, I., Neves, N.F., Correia, M.: Automatic Detection and Correc-
tion of Web Application Vulnerabilities Using Data Mining to Predict
False Positives. In: Proceedings of the 23rd International Conference on
World Wide Web, WWW 14, pp. 63-74. ACM, NY, USA (2014)

Meng, N., Wang, Q., Wu, Q., Mei, H.: An approach to merge results of
multiple static analysis tools (short paper). In: 2008 The Eighth Interna-
tional Conference on Quality Software, pp. 169-174 (2008)

NIST: Software assurance metrics and tool evaluation.
http://samate.nist.gov/ (2016-11-28)

Nunes, P.: https://github.com/pjcnunes/Computing2018 (2018-07-15)
Nunes, P., Fonseca, J., Vieira, M.: phpSAFE: A Security Analysis Tool
for OOP Web Application Plugins. In: 45th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, DSN 2015, Rio
de Janeiro, Brazil, June 22-25, 2015, pp. 299-306 (2015)

Nunes, P., Medeiros, 1., Fonseca, J., Neves, N., Correia, M., Vieira, M.:
On combining diverse static analysis tools for web security: An empiri-
cal study. In: 2017 13th European Dependable Computing Conference
(EDCC), pp. 121-128 (2017)

Pichler, M.: PHP Depend. https://pdepend.org/ (2016-11-03)

Rutar, N., Almazan, C.B., Foster, J.S.: A comparison of bug finding tools
for java. In: Proceedings of the 15th International Symposium on Software
Reliability Engineering, ISSRE 04, pp. 245-256. IEEE Computer Society,
Washington, DC, USA (2004)

Stivalet, B., Fong, E.: Large Scale Generation of Complex and Faulty PHP
Test Cases. In: 2016 IEEE International Conference on Software Testing,
Verification and Validation (ICST), pp. 409-415 (2016)

Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.:
Cross site scripting prevention with dynamic data tainting and static anal-
ysis. In: NDSS, vol. 2007, p. 12 (2007)

Wang, Q., Meng, N., Zhou, Z., Li, J., Mei, H.: Towards soa-based code
defect analysis. In: Service-Oriented System Engineering, 2008. SOSE ’08.
IEEE International Symposium on, pp. 269-274 (2008)

