
Anticipating Requests to Improve Performance and
Reduce Costs in Cloud Storage

Hylson Vescovi Netto
Universidade Federal de
Santa Catarina, Instituto

Federal Catarinense, Brazil

Lau Cheuk Lung
Universidade Federal de

Santa Catarina
Florianópolis, Brazil

Tulio Alberton Ribeiro
Universidade Federal de

Santa Catarina
Florianópolis, Brazil

Miguel Correia
INESC-ID, Instituto Superior

Técnico, Universidade de
Lisboa, Portugal

Aldelir Fernando Luiz
Instituto Federal Catarinense,

Campus Blumenau,
Brazil

ABSTRACT

Clouds are a suitable place to store data with scalability
and financial flexibility. However, it is difficult to ensure the
reliability of the data stored in a cloud. Byzantine fault tol-
erance can improve reliability, but at a high cost. This paper
presents a technique that anticipates requests in order to re-
duce that cost. We show that this technique improves the
performance in comparison with related works and main-
tains the desired data reliability.

Keywords

Cloud Storage, Quorums, Byzantine Fault Tolerance

1. INTRODUCTION
The Cloud Computing paradigm is making available many

services in the Internet. Among those services, storage is one
of the most used. Features like elasticity and pay-per-use
have attracted an increasing number of consumers and the
number of public clouds has followed the growth in demand.
Passive storage services like Amazon S3, Azure Storage, and
HP Object Storage are a cheap and flexible option.

Problem statement: when consumers want to store
data in clouds, the following issues arise1: a) clouds can
fail; b) using a single cloud can lead to vendor lock-in (diffi-
cult to change of cloud, e.g., when they fail or costs vary); c)
bad choice of cloud data centers may lead to reduced perfor-
mance or survivability; d) data shared using the cloud may
lead to integrity issues.

Byzantine fault tolerance (BFT) [4] can contribute to solve
these issues but existing works have some limitations: need
of active clouds [8, 3]; use of timeouts [6]; high costs [2].
Active clouds (e.g., Amazon EC2 and Google Computer En-
gine) can run algorithm code, unlike passive storage services
(S3), but they require additional management. Timeouts
are hard to setup in large networks such as the Internet.
High costs are obviously undesirable.

Our approach: we modify Byzantine quorum algorithms
to allow the anticipation of certain communication phases,

1Examples of real cases: www.hylson.com/cnews.html

Copyright is held by author/owner(s).

i.e., their execution before the conclusion of the previous
phases. With the early activation of subsequent phases it is
possible to obtain better performance and to use less re-
sources. We validate this technique in a storage system
named RafeStore, which deals with multi-version data whose
new values can be saved with blind writes [1]. Applications
as forums and RSS can be modeled in this way.

Contribution: this paper presents a novel technique
named anticipation of requests, which aims to improve per-
formance and reduce resource usage in systems that use
Byzantine quorum algorithms.

2. RELATED WORK
Research on reliable storage in clouds is fairly recent.

Some works concern replication in multi-clouds. DepSky [2]
stores data in multiple clouds using Byzantine quorum al-
gorithms [7]; f faults are tolerated using 3f + 1 clouds. Al-
though DepSky uses erasure codes to reduce the amount
of data stored in each cloud, its costs are around the dou-
ble of systems that use a single cloud without replication.
SPANStore [8] aims at reducing costs, allowing the clients
to relax the consistency of data or to increase latencies of
operation. SPANStore, however, requires active clouds to
find the set of clouds that will comply with the restrictions
of latency, consistency and cost. Active clouds have pay-
ment models based on how many hours the virtual machines
are turned on, or how many hours the processing instances
are working, while costs in passive clouds are oriented to
data manipulation (read, write, store). Therefore, in passive
clouds storage costs are only proportional to the amount of
data used. MDStore [3] tolerates Byzantine faults and re-
duces the number of data clouds to 2f + 1, but it requires
active clouds and runs an atomic metadata service. Hy-
bris [6] reduces the data clouds to f + 1 and uses a timeout
to decide if f more clouds should be contacted to ensure that
f+1 clouds will store the data. Timeouts can be safely used
in synchronous networks, however the Internet can be char-
acterized as a partial synchronous environment. Moreover,
real contracts with clouds consider average demand [5], but
peak values can generate higher latencies than the expected
timeouts. It means that when a peak value happens the sys-
tem will break operations due to time restrictions instead of
treating the event only as a higher transmission time.

Performance Evaluation Review, Vol. 43, No. 3, December 2015 21



������

�	

�


��

��

���������


(a)

������

�	

�


��

��

���������


� �

(b)

Figure 1: Contacting clouds with Byzantine quorum
algorithms (a) without anticipation of requests and
(b) with anticipation of requests.

3. PROPOSAL
Byzantine quorum algorithms are based on the idea that a

minimum number of servers (clouds in our case) will always
reply to a request [7]. Quorums algorithms aim to toler-
ate faults by masking them: the intersection among subsets
of servers (quorums) has always enough correct servers to
ensure the consistency of the replicated data. Figure 1(a)
shows a protocol that uses quorums. The scenario has four
clouds (n = 4) and tolerates one Byzantine fault (f = 1),
following the usual relation of Byzantine quorum algorithms:
n = 3f + 1. In the first phase, three clouds are contacted;
when two replies return from clouds p0 and p1, the request
to the third cloud p2 is cancelled, i.e., becomes useless. In
phase 2, four clouds are contacted; when there are three
replies, the request to cloud p3 is cancelled. These cancelled
requests involve additional costs, bandwidth and latency.

In this paper we propose to reduce the waste caused by
cancelled requests by anticipating communication phases in
scenarios where continuous phases occur. Anticipation in
this paper means to start requests earlier, before they would
be started in Byzantine quorum algorithms. Figure 1(b)
shows a quorum protocol in which two phases also require
two and three replies in phases 1 and 2, respectively, as in
Figure 1(a). However, we anticipate phases as follows: when
the first reply of phase1 arrives, phase2 starts running as in
a Byzantine quorum algorithm. When phase2 finishes, a
crucial verification happens: did the remaining reply from
phase1 arrive? If so, the protocol terminates; otherwise,
extra actions will be required to ensure the amount of replies
in the quorum. Note that we could appeal to a timeout
mechanism for verifying if the required replies did arrive, but
we do not specify time bounds as they could be problematic
(see Section 2).

We can anticipate requests when storing data in multiple
passive cloud providers in wide-area networks, e.g., to store
data in clouds on the Internet. Passive clouds have standard
storage interfaces, e.g., key-value storage with interfaces like
write(key, value) and read(key). There is a specific type of
storage application where data has multiple version and the
content of new values is not related to previous ones. Many
applications can make use of this approach. An example
could be a panel with the name of the next person to be
called in a waiting queue. The name that appears on the
panel can be considered a variable with multi-version val-
ues, in which the name of the next person is not related to
the name of the last person in the queue; the queue can be
represented as a list of values for a variable Name with dif-

������

��

��

�	

�


����������� �����

(a)

������

��

��

�	

�


����������� �����

�

�������

(b)

Figure 2: Write operation in (a) optimized opera-
tion and (b) with extra action required.

ferent versions. Another example can be a forum, in which a
topic can be defined as the initial value of a variable X and
sequential posts to the topic can be considered the next val-
ues of X. To list the discussion, we can show all values of X.
We define this kind of data as having independent content.
This means that new values of X can be saved like blind
writes [1] or write-only operations; only metadata, which
controls the version of the data, needs to be updated.

Figure 2(a) represents a quorum protocol with this seman-
tic of multi-version values for data with independent content
using the anticipated requests technique. This protocol is
designed to tolerate Byzantine faults. Considering the num-
ber of tolerated faults equals one (f = 1), four clouds are
required to store metadata (as in DepSky [2]) and f + 1
clouds effectively store the data (as in MDStore [3]). How-
ever, in MDStore the usage of Byzantine quorum algorithms
requires contacting 2f+1 clouds to ensure that f+1 clouds
will store the data; using anticipation of requests, only f+1
clouds are contacted to store data, and just in case of faults
extra clouds are contacted. The phase writeDo writes new
values. When the first reply from writeDo arrives, phase
readM starts in order to obtain the last data version. When
phase readM ends, it is verified if the remaining reply from
phase writeDo arrives – this is true in Figure 2(a). As fol-
lows, phase writeM updates metadata with the new data
version. In Figure 2(b) the remaining reply from writeDo
phase does not arrive on time and an extra phase (writeDf)
is required. The third cloud p2 is contacted to store the data
value, and phase writeM cannot start until the reply of p1
or p2 arrives. In Figure 2(b) the reply from p2 is represented
as the one that concludes the phase of data writing.

The round-trip times (RTT) between the client and the
clouds have to be considered in order to establish a rule
about when the use of the anticipating requests technique
is beneficial. The goals of the approach shown in Figure 2
are good performance and geo-replication. So, if p0 and
p1 are the clouds with lowest RTT, this means that cloud
p0 has to have low RTT and cloud p1 has to be far from
p0, which means that p1 should have a greater RTT than
that for p0 (without loss of generality). With this in mind,
Figure 1(b) presents the latencies spent on each phase. It is
possible to conclude that the latency of p1 should be lower
than or equal to L+H, where L is the latency of the fastest
cloud and H is the latency of the slowest cloud in the set
of the 2f + 1 fastest clouds. If HH is the latency of the
slowest cloud (highest RTT), we can describe the favourable
condition for the use of the anticipated request technique in
this distributed storage problem as Condition 1:

Condition 1. Latency of clouds should obey the rule

HH ≤ (L+H)

22 Performance Evaluation Review, Vol. 43, No. 3, December 2015



We named the presented system RafeStore: reliable,
available, fast and economic storage system. Our goals are
to improve performance with the anticipation of requests
and reduce costs by contacting a smaller number of data
clouds than in previous works. We also consider that geo-
replication is desired for data survival and the RTT of clouds
is previously known. Some details about how to link the
written data with the metadata, drivers of clouds and others
can be verified in the source code of the prototype available
at www.hylson.com/rafestore15.

4. EVALUATION
The usage of anticipation of requests will be validated with

the RafeStore storage system. Using this technique and sat-
isfying Condition 1, a better performance is expected and
only f + 1 clouds should be contacted. The first hypothesis
to be checked can be stated as:

Hypothesis 1. If latencies of data clouds obey Condi-
tion 1, RafeStore will perform faster than Byzantine quo-
rum algorithms, and no more than f +1 data clouds will be
contacted to store the data.

The use of hybrid clouds is becoming common practice2.
Moreover, it is fair to assume that the consumer can store
some data in a local storage, increasing performance and
maintaining complete control over his own provider. With
this in mind, a consumer can use RafeStore with a local
storage acting as a data cloud, if the consumer needs to
store much data, or only to store metadata if consumer has
a local storage with relatively limited capacity. We believe
that RafeStore can be benefited by the use of a local storage,
and the second hypothesis can be declared as:

Hypothesis 2. RafeStore can perform better than Byzan-
tine quorum algorithms if there is a local storage to store
data and metadata, or only metadata.

Scenarios where Condition 1 is not satisfied could benefit
from the fact that less clouds will be contacted in comparison
to Byzantine quorum algorithms. Thus, it is possible that
RafeStore can perform well even when Condition 1 is false.
The third hypothesis is:

Hypothesis 3. RafeStore can perform as well as Byzan-
tine quorum algorithms even in configurations where Condi-
tion 1 is violated.

To test the hypotheses, experiments were conducted in a
real distributed system. Table 1 shows details about the
cloud providers: the region of the cloud data center and the
estimated RTT3. The local provider was a computer with an
Intel i7 3.5Ghz CPU with a 7200RPM HD in a local network
Ethernet 10/100MBits, running the Redis database4. The
cloud storage services were Amazon S3, Azure Storage, and
HP Object Storage. The clients run in a computer with
the same configuration as the local provider, on the same
network. The experiments were executed in February 2015.

RafeStore is compared with the protocols of DepSky [2],
which use Byzantine quorum algorithms to write and read

2hylson.com/cnews.html, items 13 to 15
3RTT estimates were obtained by writing a few bytes in the
clouds 10 times.
4www.redis.io

Table 1: Information about Cloud Providers
id provider region RTT
p0 Local south of Brazil (SC state) 5ms
p1 Azure west of Europe (Netherlands) 315ms
p2 HP east of US (District of Columbia) 750ms
p3 AWS west of USA (Oregon) 1200ms

Table 2: Arrangement of Cloud Providers
config. data extra data only metadata

1 p0 and p1 p2 p3
2 p1 and p2 p3 p0
3 p0 and p3 p1 p2

data and metadata and to provide the same semantics of-
fered by the clouds. The protocol DepSky-A replicates data
completely, while the protocol DepSky-CA creates fragments
using erasure codes and ciphers the data. DepSky’s proto-
cols contact 3f + 1 clouds to store data and metadata in at
least 2f+1 clouds. All protocols were implemented in Java;
the erasure codes were taken from the JEC library, from
the DepSky code5. The privacy (encryption) of DepSky-CA
was not implemented since our goal was to evaluate the per-
formance improvement using the anticipated requests tech-
nique in comparison to Byzantine quorum algorithms. The
size of data was varied from 1KB (the size of a text para-
graph) up to 16MB (the size of a high-res photo), with a
multiplicative factor of 4 between the sizes. Clouds that
store metadata are named p0...p3; p0 and p1 also store data.
This system tolerates one Byzantine fault. Table 2 shows the
Configurations designed to test the hypotheses. Configura-
tion 1 defines cloud providers in increasing order of laten-
cies, which is expected to provide the best performance for
RafeStore; Configuration 2 assumes that local storage acts
as a cloud that store only metadata. Configurations 1 and
2 will test hypothesis 1 and 2. Configuration 3 breaks the
Condition 1 in order to test hypothesis 3.

Results: Figure 3 presents latencies of write operations
with RafeStore and the protocols of DepSky, using Config-
uration 1. RafeStore performs better than the other proto-
cols. However, unexpectedly Condition 1 stayed true only
for data of sizes up to 64KB. For the remaining data sizes,
2f + 1 data clouds have to be contacted in order to ensure
a quorum of f + 1 replies from data clouds. Table 3 shows
how many times only f +1 data clouds were contacted dur-
ing the execution of the experiment with Configuration 1.
Analyzing this behaviour, we can see that the time between
the upload of data in local storage and the end of phase
readM was not enough to upload the data in p1, provided
that the latency of p1 is much bigger than the latency of
p0; this happened for data larger than 64KB. One possible
solution to this issue is to upload data in a multi-part way
– it is really possible in clouds like Amazon S3 – when data
is bigger than some specific value. In our experiment, that
value was 64KB. The number of parts into which the data
should be divided for a multi-part upload is a point of fu-
ture investigation. Considering hypothesis 1, it is possible to
conclude that, although RafeStore had better latencies than
the other protocols for all data sizes, there is not enough
evidence that RafeStore contacts only f + 1 data clouds for
all data sizes considered in the experiment.

5https://code.google.com/p/depsky

Performance Evaluation Review, Vol. 43, No. 3, December 2015 23



1 4 16 64 256 1024 4096 16384

Data size (KB)

L
a

te
n

c
y 

(s
)

0
5

1
0

1
5

2
0

RafeStore

DepSky−A

DepSky−CA

Figure 3: Latencies and data sizes, Configuration 1.

Table 3: Number of successful write operations (in
RafeStore) contacting only f + 1 data clouds.

data KB MB
size 1 4 16 64 256 1 4 16

config. 1 60 59 60 52 0 0 0 0
config. 2 52 54 47 58 60 53 59 46

Configurations 2 and 3 presented latency graphics quite
similar to Figure 3, so they are not presented. For Config-
uration 2, the overall latency increased in comparison with
Configuration 1; this was expected since all data clouds have
high RTT (in comparison with the local storage). Neverthe-
less, RafeStore performs as well as the DepSky protocols
for all data sizes. Additionally, the majority of requests
contacted only f + 1 data clouds, as Table 3 shows. We
can declare hypothesis 2 as true. Also, in Configuration
2 the dominating time concerns the write data phase, as
shows Figure 4. In DepSky’s protocols the phase of writing
data also dominates. Details about latencies are available
in www.hylson.com/rafestore15.

1K 4K 16K 64K 256K 1M 4M 16M

Data size (bytes)

%
 o

f 
ta

s
k

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

writeDo

readM

writeM
writeDf

Figure 4: Task distribution in RafeStore, Config. 2.

In Configuration 3, RafeStore presented latencies higher
than other protocols for the data sizes 256KB, 1MB and
4MB. However, data with 16MB performs better than the
other protocols. Some assertions can clarify this behavior:
DepSky protocols do not distinguish between clouds to store
data and metadata, and the performance of these proto-
cols maintained similar performances in all configurations.
Although costs are directly related to the amount of data
stored in clouds, maybe performance is more related to how
many clouds have to store the data than just the size of the
data. Considering these conjectures and the results of up-
loading 16MB, we can make some questions to be verified
in future works: i) what option could present better perfor-
mance: send an integral data to one cloud or send fragments
to multiple clouds? ii) is there a data size threshold from
which the answer of the previous question changes? iii) to
consider the latencies of clouds – instead of making them
transparent – and also considering data size could modify
these decisions? Based on the results and considering hy-
pothesis 3, it is not possible to conclude that RafeStore can
perform as well as in Byzantine quorum algorithms when
Condition 1 is broken. However, as expected, every execu-
tion had to contact extra clouds.

5. CONCLUSION
In this paper we presented a technique to anticipate re-

quests in Byzantine quorum algorithms in order to improve
performance and use less resources. The latencies of clouds
must be considered in the process of choosing which clouds
will store data and metadata, but a condition was defined
to guide the consumer in this task. A storage system named
RafeStore was implemented to validate the proposal, and
we found that the technique is effective for cloud storage
applications that use data with independent content.

Acknowledgment: Miguel Correia is bolsista CAPES/Brasil (pro-
ject LEAD CLOUDS). This work was supported by national
funds through Fundação para a Ciência e a Tecnologia (FCT)
with reference UID/CEC/50021/2013 and CNPq 455303/2014-2.

6. REFERENCES
[1] D. Agrawal and V. Krishnaswamy. Using multiversion

data for non-interfering execution of write-only
transactions. SIGMOD Record, 20(2):98–107, 1991.

[2] A. Bessani, M. Correia, B. Quaresma, F. André, and
P. Sousa. DepSky: Dependable and secure storage in a
cloud-of-clouds. ACM TOS, 9(4):12:1–12:33, 2013.

[3] C. Cachin, D. Dobre, and M. Vukoli. Separating data
and control: Asynchronous BFT storage with 2t+1
data replicas. In SSS, pages 1–17, 2014.

[4] M. Castro, B. Liskov, et al. Practical byzantine fault
tolerance. In OSDI, volume 99, pages 173–186, 1999.

[5] B. Cho and M. K. Aguilera. Surviving congestion in
geo-distributed storage systems. In USENIX ATC,
pages 439–451, 2012.

[6] D. Dobre, P. Viotti, and M. Vukolić. Hybris: Robust
hybrid cloud storage. In ACM SoCC, pages 1–14, 2014.

[7] D. Malkhi and M. Reiter. Byzantine quorum systems.
Distributed Computing, 11(4):203–213, 1998.

[8] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett,
and H. V. Madhyastha. Spanstore: Cost-effective
geo-replicated storage spanning multiple cloud services.
In ACM SOSP, pages 292–308, 2013.

24 Performance Evaluation Review, Vol. 43, No. 3, December 2015




