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Abstract
The large penetration and continued growth in ownership of

personal electronic devices represents a freely available and

largely untapped source of computing power. Moreover, the

large environmental and social impact of producing these

devices suggests we should better use those that already

exist. We aim to make these devices available for parallel

computations to both scientists and other programmers of

the general public, for their personal projects, and in the

simplest way possible to program and to deploy. We named

our approach to distributed computing personal volunteer
computing.
We designed, implemented, and tested Pando, a new dis-

tributed computing tool based on a declarative concurrent

programming model, organized around the pull-stream de-

sign pattern, and implemented using JavaScript, WebRTC,

and WebSockets. This tool enables a dynamically varying

number of failure-prone personal devices contributed by

volunteers to parallelize the application of a function on a

stream of values, by using the devices’ browsers.

To illustrate Pando’s capabilities, to show its benefits as

well as its limitations, we implemented a variety of applica-

tions including crypto-currency mining, hyper-parameter

optimization in machine learning, crowd computing, and

open data processing and tested it using diverse devices we

have accumulated over the years. Pando, both as a tool and a

reference design, should therefore be a useful addition to the

parallel toolbox of a multitude of users and a complemen-

tary approach to existing parallel and distributed computing

alternatives.

1 Introduction
More than 1.5 billion cell phones were sold in the world

in 2017 [21] and the computing power of the highest-end

devices today rivals that of desktops and laptops [60]. They

collectively represent an immense source of largely untapped
computing power. At the same time, the large environmental

and social impact of producing these devices suggests we
should better use those that already exist. It is now common

to own many unused laptops, tablets, and cell phones, many

of which could still make useful computing contributions.

Technical, financial, and administrative barriers in exist-

ing systems prevent a large part of the general programmer
population, especially in humanities and developing coun-

tries, from using these resources for parallelizing the execu-

tion of many possible personal projects. This suggests a vast
under-explored design space for various personal tools that
use alternative computing resources. In parallel, the wide

popularity of social applications makes it easier than ever for

individual users to leverage their personal social network for

help, but this possibility has little been used so far to meet

their computing needs. Personal devices, personal projects, per-
sonal tools, and personal social networks form together a new

viewpoint from which new tools may be developed, which

we call personal volunteer computing.
The major challenges in designing personal volunteer com-

puting tools for general programmers are analogous to those

that have prompted the articulation of intermediate technolo-
gies [94] in the 1970s for promoting economic development in

developing countries. Then, the limited access to high-speed

reliable infrastructure, specialists, capital, and world-wide

resources had promoted a development vision based on local
knowledge, local resources, and simple reliable designs that
may be implemented, maintained, and improved by their
users for their personal needs. Translated to the design of dis-

tributed computing tools for today, the major challenges are

to find simple designs that are applicable for a wide range of

applications with minimum needs for hosted infrastructure

or dedicated hardware, and explain them in a way to foster

local appropriation and replication in many programming

environments.

The declarative concurrent programming paradigm [101]

greatly simplifies reasoning about concurrent processes: it

abstracts the non-determinism in the execution by making

it non-observable. This paradigm has already enjoyed great

practical successes with the popular MapReduce [44] and

Unix pipelining [64] programming models. Could it also be

useful for building personal volunteer computing tools? This
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paper answers positively through the design of Pando, a tool

that enables a dynamically varying number of failure-prone

personal devices contributed by volunteers to parallelize the

application of a function on a stream of values by using the

devices’ browsers.

This paper makes the following contributions: (1) it in-

troduces and articulates the personal volunteer computing

viewpoint within the context of other parallel and distributed

computing approaches; (2) it presents the design of Pando

through both high-level design principles and a concrete

working implementation, itself organized around the pull-

stream design pattern and based on JavaScript [25], Web-

Sockets [7], and WebRTC [17] to enable its execution inside

browsers; (3) it presents our novel StreamLender abstrac-

tion that encapsulates the key properties of Pando’s pro-

gramming model necessary to distribute a single stream to

a dynamically varying number of failure-prone processing

devices; (4) it reports on the application of Pando to 7 appli-

cations, including crypto-currency mining, crowd comput-

ing, machine learning hyper-parameter optimization, and

open data processing in combination with other peer-to-

peer data distribution protocols; (5) it presents real-world

measurements on the benefits that can be obtained showing

that both Pando and personal volunteer computing are a

useful and complementary addition to existing parallel and

distributed computing approaches. The implementation of

Pando is open source [32] and its individual components

may be repurposed in many different applications.

The rest of this paper is organized as follows.We introduce

personal volunteer computing by studying the limitations

of other approaches for our intended context in Section 2.

We present the overall design of Pando in Section 3. We pro-

vide the key properties and behaviour of the StreamLender

abstraction in Section 4. We present the different applica-

tions in Section 5 and evaluate the benefits and limitations

of parallelizing them in real-world deployments in Section 6.

We compare the specificities of our design to related work

in Section 7. We conclude with a brief recapitulation of the

paper and future work in Section 8.

2 Personal Volunteer Computing
Personal volunteer computing aims to address the needs of

scientists and programmers of the general population, for

their personal project, using personal tools, leveraging their
personal devices and those of their personal social network. In
contrast, past parallel and distributed computing approaches

have typically focused on addressing themost pressing needs

of industry and research groups world-wide by producing

efficient and scalable solutions that are unfortunately often

too complex, expensive, and time consuming to use in a

more personal context. We quickly survey the most represen-

tative approaches to highlight their limitations, which will

motivate our design principles in the next section.

Previous parallelism approaches such as GPU program-

ming and heterogeneous computing [78] have typically fo-

cused on maximizing the performance on newer hardware

architectures. Acquiring the targeted devices may be too

expensive for many use cases, the newer techniques may

not work on the devices most people already own, and are

usually sufficiently complicated to implement to require ded-

icated experts for the task. Most of the parallelism solutions

are therefore better suited as reusable libraries and runtime

systems rather than general-purpose coordination tools.

Cloud computing platforms [36, 40] introduce a financial
barrier for those that do not have access to financial instru-

ments, such as a bank account or a credit card. Existing open

source cloud solutions such as Open Compute [6], Open

Stack [4], and Hadoop [9] are designed for making avail-

able co-located dedicated devices to many users in a shared

platform, with a complexity and resource requirements that

limits their deployment on an ad hoc set of personal devices.

Edge [95] and gray [85] computing platforms extend ex-

isting clouds to use personal devices for computation and

therefore inherit their financial and technical barriers for

usage and deployment. Moreover, they require trust in the

operator of the platforms that sensitive personal data from

participating users will be correctly managed.

Grid computing platforms [51, 55, 56] are designed to

make available devices from many collaborating organiza-

tions available to researchers with a unified interface. Access

to the existing platforms requires administrative permissions,

which are typically reserved to researchers from public insti-

tutions and not available to programmers from the general

public. The tools themselves include facilities to manage

complex access control policies that are not necessary when

using personal devices for computations.

Previous peer-to-peer computing solutions [27, 46, 59, 66,

67, 82, 88, 99, 107] have typically focused on building global

platforms, shared by many users, This introduces the need

for load-balancing and multiplexing multiple tasks on the

same set of participating devices, which complicates their

implementation. Moreover, in a volunteer context, maintain-

ing the system while no tasks are being executed has a cost

in time and attention, with no immediate benefit, which

disincentivises voluntary contributions.

Volunteer computing tools [30, 93] have historically fo-

cused on high-profile scientific projects with large compu-

tation needs. They require dedicated servers, a significant

deployment effort, and are complicated to implement be-

cause of the necessity to deal with large scale issues, such

as invalid results by malicious contributors. This limits their

deployment on personal devices for smaller projects.

Previous browser-based computing solutions [48, 50, 102]

have typically been developed as extensions of volunteer

computing tools for similar tasks, inheriting their technical

limitations. Moreover, the quick deprecation of past Web

technologies, such as Java Applets on which the first tools
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relied [37, 43, 52, 63, 79, 92], in combination with the lim-

ited funding available to maintain them resulted in many

previous tools being now unusable.

The collective computing power and proliferation of per-

sonal devices has created an opportunity for edge computing
and peer-to-peer systems to flourish. Both have aimed at

building global platforms to answer the needs of all users

within a single platform. There was however no clearly ar-

ticulated approach to answer the needs of users at a personal
scale, at the level of a single individual and their personal

social network.

Compared to previous approaches, personal volunteer

computing therefore strives to make tools for the parallel

execution of workloads useful to the largest number of pro-

grammers by executing them on their personal devices. The

major challenge in creating such tools is to make them useful

for a wide range of applications while keeping them simple

to program and to implement, within the limited resources

available for their development, maintenance, and opera-

tion. These challenges had not previously been identified

as a research direction; our first contribution with this pa-

per is therefore to have articulated this personal volunteer
computing approach.

3 Pando
Pando is the first tool explicitly designed for the purpose

of personal volunteer computing. We first explain how to

use it and its concrete benefits using one of our supported

application (Section 3.1). We then articulate the design prin-

ciples that enable those benefits (Section 3.2). We continue

with a more detailed explanation of Pando’s programming

model (Section 3.3) and finally present an overview of how

it is implemented in a concrete system (Section 3.4).

3.1 Usage Example
Suppose a user is working on a personal project involving a

3D animation, as illustrated in Figure 1, and the rendering

uses raytracing [106], which is a computationally expensive

technique. To accelerate the rendering of the entire anima-

tion, they want to parallelize the rendering of individual

frames, while still obtaining them in the correct order.

Figure 1. Rotation animation around a 3D scene.

If this were a professional project, our user could have

relied on professional solutions [20, 26]. However, these are

often too expensive for personal projects and do not easily

leverage the computing power of personal devices users

already own. Instead, they can use Pando through a simple
programming interface and a quick deployment solution.

3.1.1 Programming Interface
Pando’s distribution of computation is organized around a

processing function which is applied to a stream of input val-
ues to produce a stream of outputs. In this particular example,

the processing function performs the raytracing of the scene
from a particular camera position and outputs an array of
pixels. The animation consists in a sequence of positions of

the camera rotating around the scene.

Pando’s implementation parallelizes the execution of code

in JavaScript by using the Web browsers of personal de-

vices. To leverage those capabilities, a user writes a minimal

amount of glue code to make the processing function compat-

ible with Pando’s interface, as illustrated in Figure 2. In this

example, the raytracing operation is provided by an external

library, taken unmodified from the Web, which is first im-

ported. Then a processing function using the required library

is exposed on the module with the ’/pando/1.0.0’ prop-

erty, which indicates it is intended for the first version of the

Pando protocol. The function takes two inputs: cameraPos,
the camera position for the current frame and cb, a callback
to return the result. The body of the function first converts

the camera position, which was received as a string, into a

float value, then renders the scene. The pixels of the ren-
dered image are then saved in a buffer, compressed with

gzip, and output as a base64 encoded string [2], which sim-

plifies its transmission on the network.
1
The result is then

returned to Pando through the callback cb. In case an er-

ror occurred in any of those steps, an error is caught then

returned through the same callback.

1 // Import existing function

2 var render = require('raytracer ')

3 // Import compressing module

4 var zlib = require('zlib')

5 module.exports['/pando /1.0.0 '] = function(

cameraPos , cb) {

6 try {

7 var pixels = render(parseFloat(cameraPos))

8 cb(null , zlib.gzipSync(new Buffer(pixels)).

toString('base64 '))

9 } catch (err) {

10 cb(err)

11 }

12 }

Figure 2. JavaScript programming interface example for

rendering with raytracing.

1
Those last three operations take a negligible amount of time compared to

rendering the image.
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The glue code should then be saved in a file, render.js
in this example, and all library dependencies should be ac-

cessible using the Node Package Manager (NPM) conven-

tions [23], typically in a node_modules sub-directory. Pando
will automatically bundle all the dependencies on startup

and adapt the code for the browser context by internally

using browserify [13].

Pando is compatible with the Unix standard process inter-

face, i.e. it can either receive its inputs on the standard input
or as command-line arguments and it produces outputs on

the standard output. In Figure 3, we connect Pando with other
tools using bash scripting. The camera positions are provided

as strings on the standard input by generate-angles.js,
the rendered images are produced on the standard output

as strings by Pando, and the assembly of the frames into

a GIF animation is done by gif-encoder.js. All tools in
the sequence are connected through Unix streams using

the pipe operator (’|’). Pando could also be scripted from

any other programming environment that supports the cre-

ation of Unix processes; the creation of inputs and the post-

processing of outputs therefore need not be in JavaScript.

1 $ ./generate -angles.js | pando render.js --stdin |

./gif -encoder.js

2 Serving volunteer code at http ://10.10.14.119:5000

Figure 3. Unix programming interface example for render-

ing inputs and processing outputs. After starting, Pando lists

the URL necessary for deployment on the standard error.

3.1.2 Deployment
A user deploys Pando by starting it on the command-line

2
,

as illustrated in Figure 3. Then they should wait for URL

messages to appear.When displayed, thosemessages indicate

that Pando is ready for other devices to join.

Upon joining, additional devices will process individual

frames in parallel. In one possible example execution, illus-

trated in Figure 4, a tablet joins by opening the volunteer

URL, then renders an image, then a faster phone joins, also

renders an image, then the tablet crashes, and the phone

takes over for the missing image. Communications happen

over a choice of WebRTC [17], a recent peer-to-peer protocol

for browsers, or WebSocket [7].

A user can invite friends to add their devices, even if they

are outside the local network. To do so, the user deploys a

small micro-server we built for Pando [33] on a platform

that provides a public IP address, such as Heroku [22]. Being

publicly accessible, the URL can then be shared to friends

on existing social media. After opening the URL, a WebRTC

connection will directly connect joining devices.

2
After installing, ex: npm install --global pando-computing [31].

As illustrated in this deployment example, Pando dynam-
ically scaled to accommodate the number of participating

devices and gracefully tolerated failures with no particular

programming effort from the user beyond specifying a func-

tion to process a single value. Moreover, the user did not

need to (1) buy new devices, (2) create an account or obtain

administrative permissions, (3) use financial instruments, (4)

accommodate device specificities, or (5) wait for resources to

be freed. The user could also (1) combine Pando with exist-

ing Unix tools, (2) use social media to request for help, and

(3) know their data has only been shared between trusted

devices.

3.2 Design Principles
The previous usage example provided significant benefits

because we designed Pando around the following design

principles (DPs), which we derived from the limitations of

previous approaches (Section 2).

Specific deployment (DP1): the deployment of the tool that

connects the different volunteers is specific to: (1) a single

project, (2) a single known user with an existing social pres-

ence, either through the contacts of volunteers, or an identity

in a social platform, and (3) the lifetime of the corresponding

tasks, after which it shuts down.

Compatible with a wide variety of existing personal devices
(DP2): the tool should leverage desktops, laptops, tablets,

phones, embedded devices, and personal appliances that

people already own.

Easy to program (DP3): the implementation of tasks should

be done with a minimum of programming effort for use in a

distributed setting. Ideally, it should be as easy to program

in a distributed setting as in a local one.

Quick to deploy (DP4): the tool should require little instal-

lation effort, should start processing quickly after launch,

and then should dynamically scale up to benefit from help

obtained through social networks.

Composable and modular (DP5): the tool should focus on

coordinating contributing volunteers’ devices but otherwise

should rely on other tools and technologies for the rest of

the needs of users. The core abstractions used in particular

tools should be applicable to other uses. Tools should also

combine with high-performance libraries, when available,

to leverage the latest results of parallelism research without

making the tools themselves more complicated.

3.3 Programming Model
In effect, Pando’s programming model corresponds to a

streaming version of the functional map operation: Pando

applies a function f on a series of input values xi to obtain

a serie of results f (xi ). Its implementation is free to process

inputs in any order but outputs results in the order of their

corresponding inputs.

We chose a streaming programming model because it is

simple to program (DP3) yet powerful enough to coordinate
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Figure 4. Deployment example.

the usage of multiple devices in parallel (DP2). The reason is

that it belongs to the declarative concurrency paradigm [101]

which abstracts the non-determinism of executions by making
it non-observable to the programmer. In other words, a declar-

ative concurrent program outputs the same result regardless

of the order in which the various threads that compose the

execution complete their tasks. That makes Pando as simple

to program in a sequential setting with a single participat-

ing processor as for a parallel case with dozens. While it is

implied by the definition of the map operation, it is worth

noting that the ordering of outputs is important to preserve

the declarative concurrency property; otherwise the relative

speed of processors could influence the order of the results

and make the non-determinism observable.

We initially chose the streaming map programming model

because it fits more problems than the bag-of-tasks model of

typical volunteer computing problems, which usually have

independent inputs with no ordering requirement. Some

applications however, such as the sequence of images that

compose the animation of our previous example (Section 3.1),

do require a particular order. Problems with unordered inputs
can be reduced to a streaming version simply by incremen-

tally traversing the values in an arbitrary order, making the

streaming model more general. The streaming version also

enables working with an infinite number of values and ap-

plications requiring feedback loops (Section 5).

We also chose a number of additional distributed proper-

ties for Pando to make it easy to program (DP3) and fast to

deploy (DP4).

First, participating devices may join dynamically, at any
time during execution. Pando’s computing power will grow

automatically. This removes the overhead of registering com-

puting resources in advance and simplifies scaling for quick

deployment.

Second, The potential number of participating devices is

unbounded. Pando strives to provide the illusion of infinite

scalability so its actual performance grows automatically as

users adopt new devices with more capabilities.

Third, Pando is also lazy: i.e. it reads inputs only when

computing resources become available. This adjusts the flow

of values to the available computing power to avoid over-

loading Pando’s memory with pending values. It also makes

the implementation compatible with infinite streams with

no additional implementation effort on our part. Users get

support for laziness with no additional programming effort.

Last, Pando also tolerates failures of participating devices,

making those failures transparent to the programmer. We

chose a crash-stop failure mode
3
, in which participating de-

vices will always faithfully carry their assigned task without

deviating from their prescribed behaviour until they either

suddenly crash or disconnect. This model corresponds to

failures in which a browser tab, that executes computations,

is suddenly closed or to a loss of network connectivity. In the

presence of such failures, Pando guarantees liveness: once
an input xi has been read, if there are active participating

devices, Pando will eventually provide f (xi ).
The crash-stop failures of participating devices can be

detected because we assume a partially synchronous execu-
tion

4
: most of the time, messages will be delivered within

a specified time bound. This corresponds to the ability of

communication channels such as TCP [1] and WebRTC [17]

to suspect failures by failing to receive the acknowledgment

of a heartbeat message within a specified time bound.

In terms of performance goals, we decided to focus on

maximizing throughput with the additional following two

properties. Pando distributes values to participating devices

conservatively: a value is sent to at most one device for pro-

cessing. The device will either produce a result or will crash,

in which case the value will be sent to another device. This

ensures participating devices process a maximum number of

values simultaneously. Moreover, the rate at which values are

submitted to participating devices adapts to their processing

3
Failure modes can range from crash-stop, in which a process follows its

instructions then may crash and stop sending messages forever, passing by

crash-recovery, in which a process may fail then recover and try participating

again, to byzantine, in which a process may deviate arbitrarily from its

instructions including intentionally sending messages to hamper progress.

4
Timing assumptions may range from fully synchronous, in which there is an
upper time bound onmessage delivery, passing by partially synchronous [49],
in which there is a time bound on message delivery that it will apply only

eventually after an unknown delay, and culminating in asynchronous, in
which there are no time bound on message delivery.
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speed. Devices with a faster processing speed will receive

more values to process, maximizing resource utilization.

This combination of programmingmodel properties, which

is summarized in Table 1, provides a powerful yet easy-to-use

programming model as shown by the breath of applications

categories supported (Section 5).

Streaming Map x1,x2, ... → f (x1), f (x2), ....
Ordered Outputs provided in order.

Dynamic New devices may join any time.

Unbounded No a priori limit on participants nb.

Lazy Inputs read when resources are avail.

Fault-tolerant Crash-stop failures are tolerated.

Conservative A single copy submitted at a time.

Adaptive Faster devices receive more inputs.

Table 1. Summary of the programming model properties.

3.4 Implementation Overview
Our implementation was first based on our choice between

available Web technologies (Section 3.4.1). We then orga-

nized it around a declarative concurrent paradigm to sim-

plify both its usage and implementation effort (Section 3.4.2).

We finally designed a reusable architecture by decompos-

ing it into modules and communication technologies (Sec-

tion 3.4.3).

3.4.1 Technology Choices
We based our implementation on Web technologies because

they are compatible with a wide number of personal de-

vices, from smartphones and embedded devices to tablets,

laptop, and desktops computers (DP2). In addition, they have

a number of interesting characteristics. Virtual machines

in modern browsers execute JavaScript at a speed within a

factor of 3 of equivalent numerical code written in C [60, 65],

making the performance sufficiently close to C to benefit

from executing tasks inside multiple parallel Web pages.

Browsers also provide a security sandbox that prevents code

executing within a web page from tampering with the host

operating system. WebRTC [17], enables direct communica-

tion between browsers, in many cases even in the presence

of Network Address Translation (NAT), which removes the

need for a server to relay all communications between the

tool and the volunteers’ devices. Links shared on social me-

dia platforms enable their users to quickly mobilize their

social networks, opening the possibility to make volunteer

computing projects go viral.

3.4.2 Declarative Concurrency With Pull-Streams
Pando provides a declarative concurrent abstraction [101] of

the parallel execution of the different participating proces-

sors (Section 3.3). Mainstream languages, such as JavaScript,

have not yet integrated features that make that style of pro-

gramming widely accessible. We therefore instead based our

design and implementation on the pull-stream design pat-

tern [98], a functional code pattern that enables streaming

modules to be built by following a simple callback protocol.

It only requires support for higher-order functions from the

base language. Implementations of abstractions built by fol-

lowing the pattern should therefore be straight-forward to

port to many programming languages of today.

The pull-stream design pattern has originally been pro-

posed byDominic Tarr [98] as a simpler alternative toNode.js

streams, that were plagued with design issues that had to be

maintained for backward-compatibility. A community has

grown around the pattern and more than a hundred modules

have been contributed so far [15].

Perhaps, the simplest example of pull-stream modules

is a source that lazily counts from 1 to n, connected to a

sink that consumes all values and then stops, as illustrated

in Figure 5. The callback protocol essentially consists in a

request followed by an answer. The request may be used to

ask for a value, abort the stream normally, or fail because

of an error. Symmetrically, the answer may then produce a

value, signify the end of the stream, or stop because of an

error. A module may also both consume and produce values,

in which case it can be used between a source and a sink.

This is illustrated in Figure 6.

1 function source (n) {

2 var i = 1

3 return function output (abort , cb) {

4 if (abort)

5 return cb(abort , undefined)

6 else if (i<=n)

7 return cb(false , i++)

8 else

9 return cb(true , undefined)

10 }

11 }

12

13 function sink (request) {

14 request(false , function answer (done , v) {

15 if (done) return

16 else request(false , answer)

17 })

18 }

19

20 sink(source (10))

21 var pull = require('pull -stream ')

22 pull(source (10), sink) // equivalent to line 20

Figure 5. Pull-stream example.

While the pattern does not simplify the task of implement-

ing pull-stream modules, once implemented, the modules

provide clear semantics and are easy to combine because
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Figure 6. Pull-stream design pattern: callback protocol on

top and pipeline of composable modules at the bottom.

they can provide declarative concurrent abstractions. Using

the pull-stream design pattern therefore makes the rest of

the implementation of Pando easier to reason about.

3.4.3 Architecture
The core modules of Pando and the way they are connected

is illustrated in Figure 7. They work together to implement

a distributed map that processes a stream of values xi with
a function f . Our implementation uses Node.js but could

also work as a hosted Web application. Deployment consists

in executing the tool on the command-line, which starts

the Master process. HTTP connections from volunteers’ de-

vices may then be made directly to the Master, if on the

same local area network (not shown), or through a Public

Server, if direct connectivity is not possible. The HTTP con-

nection is used to obtain the Worker code including the f
function and eventually establish either a WebSocket [7]

or WebRTC [17] connection. The bootstrap of the WebRTC

connection, which requires signalling of possible connection

endpoints between peers, is done through a Public Server

using a separate WebSocket connection. That connection

closes after the WebRTC connection is established. Since

signalling requires little resources, the Public Server could

be executed on a small personal server such as a Raspberry

Pi board [24] or the free tier of a cloud such as Heroku [22].

The pull-stream abstractions we designed and reused are

shown as modules within the different processes, respec-

tively in white and grey. The core coordination is performed

by our novel StreamLender abstraction (Section 4), which

creates multiple concurrent bi-directional sub-streams, one

for each worker. A sub-stream continuously borrows val-

ues from the input of StreamLender and return results that

are eventually returned on its output. The sub-streams are

dynamically created as Workers join. We use existing li-

braries that expose WebRTC and WebSocket channels as

pull-streams. Since their implementation eagerly reads all
available values on the sending side, we bound the total num-

ber of values that can be borrowed before a result is returned

using our new Limiter module. The bound can be parame-

terized using an argument passed to Pando on startup. The

actual processing of values is done inside Workers using the

existing AsyncMap [15] module that applies the function f
on the different inputs.

Pando trivially enables parallel processing on multicore

architectures on a single machine while enabling dynami-

cally scaling up to other devices if necessary, making the tool

useful in many contexts. Our design should also work with

other technology choices, which could be mandated because

users require specific libraries and technologies that are not

available for the Web yet. For example, users may depend

on specific numerical libraries available in Python/Numpy,

MATLAB, or R. In that case, it should be straightforward to

adapt the design by relying on TCP for communication and

porting our modules to a different language.

f(x2), f(x1), f(x0), …
StreamLender

x2, x1, x0, …

Master
(Node.js)

Legend
OS Process

Bi-directional 
data stream

Uni-directional 
data stream

module Contributed
JavaScript module

Network boundary 
(with possible 
Network Address Translation)

Protocol Network protocol

Bi-directional control 
stream

Pando 
Server

Public Server
(Node.js)

WebSocket

LimiterLimiter
Volunteer

(Candidate)

Worker
(Browser Tab)

Worker
(Browser Tab)

AsyncMap(f)

Volunteer
(Processor)

WebRTCWorker
(Browser Tab)

AsyncMap(f)

Volunteer
(Processor)

WebSocket

DistributedMap

module Existing
JavaScript module

Figure 7. Architecture of Pando.

4 StreamLender
StreamLender is our novel abstraction that splits an input

stream intomultiple concurrent sub-streams and thenmerges

back the results in a single output stream. The actual process-

ing of the values is done using other transformer modules,

as illustrated in Figure 8. We provide a usage example in

Figure 9.

StreamLender encapsulates the streaming, ordered, dy-
namic, fault-tolerant, conservative, and adaptive properties of
Pando’s programming model (Section 3.3), independently of

a particular communication protocol or other input-output

libraries. To the best of our knowledge, StreamLender is the

first articulation of those properties in a reusable abstraction

for distributed stream processing.

The complete and tested JavaScript implementation that

we built and used in Pando is available as an independent

pull-stream module [34]. The synchronization of events hap-

pening through callbacks initiated by multiple concurrent
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Input Output

In2Out2

StreamLender

Sub-Streams

T2

In1Out1 T1

Figure 8. StreamLender and its sub-streams. External trans-

former(s) modules connected to the sub-streams are greyed.

They represent modules such as the Limiter of Figure 7.

1 var pull = require('pull -stream ')

2 // StreamLender

3 var lender = require('pull -lend -stream ')

4 var limit = require('pull -limit ') // Limiter

5 pull(

6 pull.count (10),

7 lender ,

8 pull.drain ()

9 )

10 var duplex = ... // On webrtc connection opened

11 lender.lendStream(function (err , subStream)) {

12 if (err) return

13 pull(

14 subStream.source , // output

15 limit(duplex),

16 subStream.sink // input

17 )

18 })

Figure 9. StreamLender usage example.

streams was tricky to correctly implement and is rather cum-

bersome to decipher through the source code. We therefore

derived a more readable pseudo-code version that uses ex-

plicit waiting primitives and events that correspond to the

invocation of callbacks to help reimplementations, avail-

able in the supplemental material. As a sample, Algorithm 1

shows how the requests made on a sub-stream output are

answered, either with a value from another sub-stream that

failed, a new value requested on the StreamLender Input , or
a done if no more values are left to process. The ordering

and synchronization of outputs is done through a priority

queue ordered by the index of the values in the stream.

5 Applications
Pando can be applied to a wide range of applications. In

this section, we present some examples according to their

dataflow pattern, i.e. how data flows between Pando and

Algorithm 1 Sub-stream output ask request.

1: upon Outi :ask⟨⟩
2: if f ailed , ∅ then
3: answerWithFailedValue(Outi )
4: else if Input has terminated (done or err ) then
5: waitOnOthers(Outi )
6: else ▷ Lazily read a new value

7: trigger Input:ask⟨⟩
8: wait Input answer
9: if answer = Input:value⟨v⟩ then
10: remember v
11: trigger Outi :value⟨v⟩
12: else
13: WaitOnOthers(Outi )

14:

15: procedure answerWithFailedValue(Outi )
16: let v be the oldest value of failed
17: remember v
18: failed← failed\{v}
19: trigger Outi :value⟨v⟩
20: procedure waitOnOthers(Outi )
21: wait until last result received or failed , ∅
22: if last result received then
23: trigger Outi :done⟨⟩
24: else
25: answerWithFailedValue(Outi )

other tools and protocols. We implemented each applica-

tion using components built as separate Unix tools but the

same components could be implemented as pull-stream mod-

ules and combined into a single application as well, either

as a standalone webpage or a smartphone application. We

summarize key aspects of each application.

5.1 Pipeline Processing
Pipeline processing is a sequence of independent processing

stages applied to a stream of inputs, as illustrated in Figure 10.

Traditional bag-of-tasks problems, typically associated with

volunteer computing, can also be solved with this approach,

by listing each individual task in sequence.

Pando Post-Processing

App. Inputs Pando Post
Collatz Ints Nb of steps Max

Raytrace Camera pos. Raytracing Anim. gif

Arxiv Meta-info Human tagging None

SL test RNG seeds Rand. exec. Monitor fail.

ML agent Hyperparams Simulation None

Figure 10. Pipeline processing dataflow and examples.
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This approach is straight-forward to use with Pando and

easiest to combine with other Unix tools. We implemented

five applications that show diverse use cases. Collatz im-

plements the Collatz Conjecture [16], an ongoing BOINC

project, to find an integer that results in the largest number of

computation steps. Our implementation was compiled from

Matlab to JavaScript using the Matjuice compiler [14, 54] and

then adapted to use a BigNumber library. Other languages

with a JavaScript compiler may therefore benefit from Pando

without having to implement a distribution strategy. Raytrace
distributes the rendering of individual frames of a 3D anima-

tion and assembles them in an animated gif (Section 3.1). A

similar strategy could be useful to integrate in open source

animation tools for artists that do not have access to a render-

ing farm. Arxiv distributes the tagging of interesting papers

to a group of collaborators, a form of crowdprocessing, by
using the browser as a user interface rather than a processing

environment. A similar approach could be used to quickly

launch an online rescue search using satellite or aerial images

in times of disasters. StreamLender test performs random ex-

ecutions of StreamLender to find cases where the invariants

of the pull-stream protocol are violated. It helped us fix three

bugs in corner cases that were not found with manually

written tests and then scale up the testing strategy to per-

form millions of executions quickly without finding errors,

increasing confidence that our implementation is correct.

Machine learning agent searches for the optimal learning

rate, an hyperparameter, that helps an autonomous agent in

a simulated environment quickly learn sequences of steps

that result in rewards. This approach could be beneficial to

train deep neural networks in browsers. In this particular

example, the training phase is interactive: the user can see

the behaviour of the agent as it is learning and early-abort a

particular hyper-parameter case if the agent fails to learn, a

form a hybrid human-machine learning collaboration.

5.2 Synchronous Parallel Search
The structure of blockchains in crypto-currencies such as

Bitcoin [81] mandates a synchronous parallel search organi-

zation: all miners compete to find a random value, or nonce,
such that the hash of the nonce and the block of transactions

combined is inferior to a difficulty threshold, itself control-

ling the probability of finding a nonce in the first place. Once

a valid nonce has been found, the list of blocks is extended,

and all miners move on to work on the next block.

In the case of Bitcoin, there is no upper bound on the

amount of computational power required to mine the next

block because the difficulty is automatically adjusted such

that the time between each successful block is roughly ten

minutes. The increasing difficulty, and therefore computa-

tional requirements to mine a new block, makes it increas-

ingly costly for malicious actors to generate a fork of the

chain of blocks at arbitrary places, preserving the integrity of

the longest chain of blocks. This results in a global consensus

on the history of transactions.

A synchronous parallel search introduces a feedback loop
in the flow of data, as illustrated in Figure 11, because the

next input to process is determined by the last valid result

obtained. In our implementation, a monitor therefore lazily

provides mining attempts to Pando, including the current

block and a range of integers to test. It generates as many

as there are participating workers. Each worker tests all in-

tegers in the range and answers either with a valid nonce

or a failure and then requests a new mining attempt. The

monitor keeps providing new mining attempts until a valid

nonce is found and then moves on to the next block. In this

example, both the list of inputs, as blocks, and the computa-

tional requirements are potentially infinite, making a lazy

streaming approach quite natural to use.

Pando

Monitor

App. Inputs Monitor Pando
Crypto-curr. Blocks Block + Range Mine nonce

Figure 11. Synchronous parallel search dataflow and exam-

ple.

Bitcoin miners nowadays use dedicated hardware that is

several orders of magnitude faster than the performance that

can be achieved with an equivalent implementation execut-

ing in JavaScript. There is therefore limited practicality in

mining Bitcoins in browsers, even with the gains obtained by

parallelizing the task. Nonetheless, proof-of-work algorithms

have been designed to work better on regular CPUs [80].

There may therefore be potential applications in mining

those emerging crypto-currencies with Pando to support

charities and fund open source software.

5.3 Stubborn Processing with Failure-Prone
External Data Distribution

Our focus in the design of Pando has been on the coordina-

tion aspects of distributing work. Otherwise we rely on exter-

nal data distribution protocols for managing large data. We

implemented distributed blurring of Landsat-8 open satellite

dataset [90] by distributing the data with the DAT proto-

col [19], itself accessible in the Beaker browser [18], a fork

of Chromium [3]. A similar approach could also work with

WebTorrent [10] running in browsers that support WebRTC.

Managing data outside of Pando introduces an additional

failure mode: it is possible to receive a successful result but

the worker may still crash before the results’ data have been
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fully downloaded. To address the issue our application out-

puts a result only after a successful download. Otherwise,

the input is resubmitted for computation. The monitoring to

implement that feedback loop has been factored into our new

stubborn pull-stream module [35] which can be combined

with sharing and downloading modules that are specific to a

particular protocol, as illustrated in Figure 12.

Pando

StubbornShare

Download

App. Inputs Share/Down. Pando
Batch proc. Landsat-8 imgs DAT protocol Blur filter

Figure 12. Stubborn processing with external data distribu-

tion dataflow and example.

This use of Pando could be especially appropriate in cases

where there is a growing availability of open datasets com-

bined with limited funding and resources available to process

them, as is the case for many citizen initiatives.

6 Evaluation
Pando enables many personal devices to jointly execute a

task in parallel. However, the speedup benefits depend on

their actual capabilities. The difference in performance be-

tween older and newer devices is sometimes sufficiently

large that it obviates the contributions of the former. In this

section, we therefore first quantify the performance avail-

able in common and less common devices to select the most

useful ones. We then quantify the performance we obtained

in using them in parallel with Pando to show there are in-

deed benefits in our approach, both in improving on the

performance available on a single device and by using a com-

bination of other, possibly older, devices as a replacement

for a recent and more powerful device.

From the applications in Section 5 we used collatz, crypto-
mining, random-testing, and raytracer. We left out arxiv be-

cause it performs no computation and batch-processing of

photos because the Beaker browser we rely on is not sup-

ported on mobiles and requires an explicit user interaction

to save the resulting image making it harder to be consistent

between experiments. All applications are compute-bound,

as is typical of volunteer computing, and we evaluate their

average throughput over a six minute execution.

We selected a diverse set of devices from our own personal

collection and that of our friends. For phones, we evaluated

the iPhone 4S (2 cores 1.0 Ghz ARM 32-bit), released in 2011,

the Samsung Galaxy S4 (4 cores 1.9 Ghz ARMv7), released

in 2013, and the iPhone SE (2 cores 1.85 Ghz ARMv8 64-bit),

released in 2016. For laptops, we evaluated a Macbook Air

mid-2011 (2 cores i7 1.8 Ghz x86 64-bit), the Novena [12], a

linux laptop based on a Freescale iMX6 CPU (4 cores 1.2 Ghz

ARMv7 32-bit) produced in a small batch in 2015, an Asus

Windows laptop based on a Pentium N3540 (4 cores 2.16 Ghz

x86 64-bit) processor, and a Macbook Pro 2016 (4 cores i5 2.9

Ghz x86 64-bit).

For browsers, we used the native ones on the phones

(Safari and Samsung) and Firefox (63.0.1 on x86 and 60.3.0

ESR on ARM) on laptops for consistency and because it is

the fastest on numerical benchmarks [60].

We used Pando version 0.14.0 [32] with the version of

application examples in Pando’s handbook [31] at commit

6e8d0335.
We first compare the performance of theMacBookAirmid-

2011, the main work computer of the first author, to a single

core of other devices to determine which are beneficial to

accelerate tasks, with the results listed in Table 2. For phones,

the performance of an iPhone 4S and a Samsung Galaxy S4

was too small to be significant; we therefore left them out

of further tests. The Novena and Asus laptops performed

closer to the Macbook Air, and when using 4 cores would

approach or surpass that of a single core on the Macbook

Air. The iPhone SE had similar or better performance than

the Macbook Air in 3 applications. The Macbook Pro had

almost a factor of 2 better performance. We therefore used

those last four devices in two combinations to determine the

benefits of using them with Pando.

Using these devices together with Pando brings perfor-

mance benefits. We have chosen the first set of devices to

have similar performance levels and span three different op-

erating systems and two different instruction sets: we com-

bined 1 worker on each of the Macbook Air and iPhone SE,

to leave one core for Pando’s master on the Macbook Air and

avoid pauses in computation introduced by iOS when a page

is in the background, with 4 workers on each of the Novena

and Asus laptops. This resulted in a 2.88-3.80 speedup, about

twice faster than using two workers on the Macbook Air

(not shown). For the second set of devices, we added the

Macbook Pro with 4 workers. This approximately doubled

the performance making the performance of the first set of

devices about the same as that of the Macbook Pro.

Using Pando with multiple and diverse devices therefore

definitely provides a benefit over only using the cores on

the Macbook Air. Moreover, the performance obtained with

the Novena, Asus, Macbook Air, and iPhone SE together

also shows that these devices can be used in combination

as an alternative to the Macbook Pro for a similar level of

performance.

Moreover, Table 2 also yields a few interesting illustrations

of the evolution of computing performance over multiple

generations of devices and trends for the future. First, even

if the Macbook Air and Macbook Pro have been released five

years apart, the latter is only about twice faster on a single
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Collatz Ratio Crypto- Ratio Random- Ratio Raytracer Ratio
Mining Testing

BigNum/s Hashes/s Tests/s Frames/s
Single Worker
(1) iPhone 4S 15.0 0.07x 6,078 0.09x 36 0.08x 0.04 0.03x

(2) Samsung Galaxy S4 18.4 0.09x 12,615 0.18x 61 0.13x 0.11 0.07x

(3) Novena Laptop (Linux ARM) 34.3 0.16x 9,867 0.14x 72 0.15x 0,22 0.13x

(4) Asus Laptop (Windows x86) 85.5 0.41x 26,275 0.38x 214 0.45x 0.68 0.41x

(5) Macbook Air mid-2011 210.2 1.00x 69,180 1.00x 475 1.00x 1,65 1.00x
(6) iPhone SE 319.1 1.52x 55,246 0.80x 499 1.05x 1.72 1.04x

(7) Macbook Pro 2016 404.8 1.93x 129,933 1.88x 788 1.66x 2.84 1.72x

Multiple Workers
4x(3) + 4x(4) + 1x(5) + 1x(6) 798.0 3.80x 202,606 2.93x 1438 3.03x 4.76 2.88x

4x(3) + 4x(4) + 1x(5) + 1x(6) + 4x(7) 1636.2 7.78x 418,344 6.05x 3274 6.90x 8.80 5.33x

Table 2. Average throughput with Pando’s master running on a Macbook Air 2011 and workers on various devices.

core, providing an example of the slow scaling of single-core

performance in the last years. And second, the performance

difference between the iPhone 4S and the Macbook Air, both

released in 2011, is larger than that of the iPhone SE and the

Macbook Pro, both released in 2016, which now are within

a factor of two of each other. It therefore seems we can

expect smartphones in the next years to have performance

increasingly close to our work devices, which could make

them increasingly interesting for accelerating distributed

computations.

7 Related Work
As far as we know, Pando is the first tool explicitly designed

for the purpose of personal volunteer computing. In this sec-

tion we provide more detail on the declarative concurrency
work it was inspired from and other systems that share simi-

lar technology choices. While Pando shares some technology

choices with previous platforms, it combines them for dif-
ferent aims. Pando therefore represents a novel volunteer

computing tool for a personal technology environment in

which individuals and their social network own multiple

increasingly powerful personal devices

7.1 Declarative Concurrency
Declarative concurrency has been studied in the context of

dataflow programming, with languages such as Lucid [104]

and Oz [96]. In the Oz language, the declarative program-

ming model can be used directly to implement concurrent

modules [101, Chapter 4]; it is based on using single-assignment

variables that enable multiple threads to implicitly synchro-

nize on the availability of data, on top of which higher-level

abstractions such as streams can be built. The declarative

concurrency paradigm has also been experienced by a large

number of programmers and researchers through the popu-

lar MapReduce [44] framework and Unix pipeline program-

ming [64]. In effect, Pando implements the map operation of

MapReduce; the other filtering and reduction phases can be

performed locally, if necessary, by chaining with other Unix

tools, such as grep and awk for example.

JavaScript, as many other mainstream programming lan-

guages, has not yet integrated features that make declarative

concurrency widely accessible and easy, with good declar-

ative concurrency primitives. We therefore instead based

our design and implementation on the pull-stream design

pattern (Section 3.4.2).

As far as we know, we are the first to develop and docu-

ment systematic abstractions for volunteer computing using

the declarative concurrent paradigm.

7.2 Stream Processing
Stream processing has been widely adopted as a program-

ming model for scalable distributed stream processing [41], for
general purpose programming on CPUs [58], for distributed

GPU programming [108], and for Web-based peer-to-peer

computing based on the WebRTC [17], WebSockets [7], and

ZeroMQ [11] protocols. Those platforms are programmed

using dataflow graphs of computation that combine multiple

operators and complex data flows. They then ensure an effi-

cient and reliable execution on different targeted execution

environments. This level of expressivity is not necessary for

many personal projects and applications (Section 5). To sup-

port our applications with a lower level of implementation

complexity and make our design easier to port to other pro-

gramming environments, Pando therefore concentrates on

distributing the computation that is applied in a single stage

of the streaming pipeline with themap operation. Everything
else is performed locally by leveraging other tools.

7.3 Browser-Based Volunteer Computing
Fabisiak and al. [50] have surveyed more than 45 different

browser-based volunteer computing systems developed over

more than two decades. They grouped the publications in
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three generations, that followed the evolution of Web tech-

nologies: the first generation [29, 37, 43, 53, 83, 92] was based

on Java applets; the second generation [38, 39, 68, 77] used

JavaScript instead but was somewhat limited by its perfor-

mance; and the third generation [45, 47, 71, 73, 74, 76, 87, 91]

fully emerged once performance issues were solved in mul-

tiple ways: JavaScript became competitive with C [65], Web-

Workers [5], that did not interrupt the main thread, were

introduced, and new technologies, such as WebCL [8], were

proposed to increase the performance beyond what is possi-

ble on a single thread of execution on the CPU.

We further sub-divide Fabisiak and al.’s third generation

into an explicit fourth [70, 72] that incorporates the latest

communication technologies, such asWebSocket [7] andWe-

bRTC [17], because they make fault-tolerance easier. Pando

could be grouped with the fourth generation of systems and,

as far as we know, is the first to leverage WebRTC for the

explicit goal of volunteer computing. However, the key dif-

ference of Pando is in our focus on the personal aspects of
volunteer computing (Section 2) that led to specific design

principles (DPs of Section 3.2) with the following concrete

impacts on its programming model, deployment strategy,

and implementation choices.

Of the systems that have generic programming models,
many focus on batch-processing [39, 45, 68–70, 87] as typ-

ically happens in high-profile long-running applications,

sometimes reusing, in the browser, the MapReduce program-

ming model that has been successful in data centers [38, 57,

71, 76, 91]. In contrast, by using a streaming model, Pando

enables different and more personal applications by support-

ing infinite streams and feedback loops. This simplifies the

combination of Pando with existing Unix tools and other

programming environments (DP5).

While some general purpose projects aim to deploy new

global platforms [28, 29, 37, 43, 45, 69, 71, 83, 86, 92], some-

times on clouds [72, 87], we have chosen to prioritize local

deployments for personal uses. Pando also supports cloud

platforms, if necessary for connectivity, but our common

use cases do not require them. Moreover, by having a de-

ployment that is specific to a single user and project (DP1),

the implementation is simplified. That removes the need

for solutions such as: (1) access restrictions in the form of

random URLs to segregate the computations of different con-

current users [86], (2) brokers/dispatchers/bridges to organize
the tasks submitted [28, 29, 43, 45, 69, 71], (3) dynamic man-

agement of a set of managers [37], and (4) advocates [92] to
represent clients in the server.

Many implementations are organized around a database [38,
39, 42, 45, 69, 87, 91]. Pando’s implementation instead encap-

sulates concurrency aspects in the StreamLender abstraction,

removing the need for a database library. Other implemen-

tations are organized around a request-response API based

on HTTP [38, 42, 45, 47, 68, 69, 71, 74, 77, 87, 91], to distrib-

ute inputs and collect results. Instead, and similar to newer

projects [70, 72], Pando communicates throughWebRTC and

WebSocket. In our case, the heartbeat mechanism of both pro-

tocols enabled our design to encapsulate the fault-tolerance

strategy within StreamLender. These simplifications in turn

hopefully makes it more likely that other programmers will

adapt the design for embedding in other applications or to

reimplement as standalone tools for different programming

environments.

7.3.1 Peer-to-Peer Computing
Peer-to-peer computing, in which participating devices pro-

vide resources and help coordinate the services that are used,

has a rich literature [27, 59, 66, 67, 75, 82, 88, 89, 97, 99, 107].

However, the server-centric model of Web technologies has

historically limited the development of peer-to-peer Web

platforms and applications. The recent introduction of We-

bRTC [17] removed that limitation which lead to the creation

of many new ones [46, 61, 62, 84, 100, 103, 105].

Of all previously mentioned systems, the closest to Pando

is browserCloud.js [46] in its aim to provide a computation

platform powered by the devices of participants. However,

Pando’s implementation approach is quite different and sim-

pler because a deployment is restricted to a single client, its

overlay organization need not make workers communicate

with one another, it does not require maintenance when not

in use for specific tasks, and removes the need for a discovery

algorithm by instead relying on existing social media plat-

forms. In our view, these differences come from a difference

in application context. Using BrowserCloud.js’s approach,

and that of other peer-to-peer systems, is better to create

globally-shared self-sustaining platforms. Ours is better to
quickly obtain a working personal tool when a dependency

on other tools and platforms is acceptable.

8 Conclusion
In this paper, we introduced the personal volunteer comput-
ing approach and derived, from the limitations of other ap-

proaches to parallel and distributed computing in a personal

context, new design principles. We then introduced, along

those principles, the design of Pando, a new and first tool

for personal volunteer computing that enables a dynami-

cally varying number of failure-prone personal devices con-

tributed by volunteers to parallelize the application of a

function on a stream of values using the devices’ browsers.

In doing so, we have explained how the declarative con-

current model made its programming simple and how the

pull-stream design pattern was used to decompose its imple-

mentation in reusablemodules.We then providedmore detail

about the properties and implementation of the new Stream-

Lender abstraction that performs the core coordination work

within Pando, which, by virtue of being independent of par-

ticular communication protocols or input-output libraries,

should be easy to reimplement in many other programming
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environments by following a complete description available

as supplemental material. We followed with a presentation of

a wide variety of novel applications organized along different

dataflow patterns that showed Pando was useful on a wide

number of existing and emerging use cases. We completed

with an evaluation of Pando’s benefits in a real-world setting

and showed throughput speedups on the previous applica-

tions using commonly available devices. The entire paper

made the case that Pando, both as a tool and a reference

design, should be a useful addition to the parallel toolbox of

a multitude of users. In the coming years, personal volunteer
computing could finally help scientists and programmers

of the general public, for many new personal applications,

more effectively tap into the increasing ubiquity of powerful

mobile devices world-wide.
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