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Abstract

Despite the large amount of Byzantine fault-tolerant al-
gorithms for message-passing systems designed through
the years, only recently algorithms for the coordination of
processes subject to Byzantine failures using shared mem-
ory have appeared. This paper presents a new computing
model in which shared memory objects are protected by
fine-grained access policies, and a new shared memory ob-
ject, the policy-enforced augmented tuple space (PEATS).
We show the benefits of this model by providing simple and
efficient consensus algorithms. These algorithms are much
simpler and use less memory bits than previous algorithms
based on ACLs and sticky bits. We also prove that PEATSs
are universal (they can be used to implement any shared
memory object), and present an universal construction.

1. Introduction

Despite the large amount of Byzantine fault-tolerant al-
gorithms for message-passing systems designed through the
years [4, 8, 9, 10, 16], only recently algorithms for thecoor-
dination of processes subject to Byzantine failures using
shared memoryhave appeared [1, 3, 15]. The motivation
for this line of research is the current availability of sev-
eral solutions for the emulation of dependable shared mem-
ory objects on message-passing distributed systems subject
to Byzantine failures [7, 8, 9, 10, 16]. The fundamental
question regarding this research is: what is the power of
shared memory objects to coordinate processes that can fail
in a Byzantine way, i.e., arbitrarily [15]? The question is
specially relevant since this kind of failures can be used
to model the behavior of malicious hackers and malware
[9, 8, 10]. In a nutshell, the objective is to mask these fail-
ures using shared memory objects.

The first works in this area have made several important

theoretical contributions. They have shown that simple ob-
jects like registers and sticky bits [19] when combined with
access control lists (ACLs) are enough to implement con-
sensus [15], that the optimal resilience for strong consensus
is n� 3t+1 in this model [1, 15] (t is an upper bound on the
number of faulty processes andn the total number of pro-
cesses), and that sticky bits with ACLs are universal, i.e.,
they can be used to implement any shared memory object
[15], to state only some of those contributions.

Despite the undeniable importance of these theoretical
results, on the practical side these works also show the lim-
itations of combining simple objects like sticky bits with
ACLs: the amount of objects required and the amount of
operations requested in these objects is enormous, making
the developed algorithms impractical for real systems. The
reason for this is that the algorithms fall in a combinatorial
problem. There aren processes andk shared memory ob-
jects for which we have to setup ACLs associating objects
with processes in such way that faulty processes cannot in-
validate the actions of correct processes.

The present paper contributes to this area by modifying
this model in two aspects. First, the paper proposes the use
of fine-grained security policiesto control the access to
shared memory objects. These policies allow us to spec-
ify when an invocation to an operation in a shared memory
object is to be allowed or denied in terms of who invokes
the operation, what are the parameters of the invocation and
what is the state of the object. We call the objects protected
by these policiespolicy-enforced objects(PEOs).

Second, the paper uses only one type of shared mem-
ory object: anaugmented tuple space[5, 21]. This ob-
ject, which is an extension of the tuple space introduced in
L INDA [11], stores generic data structures called tuples. It
provides operations for the inclusion, removal, reading and
conditional inclusion of tuples.

The paper shows thatpolicy-enforced augmented tuple
spaces(PEATSs) are an attractive solution for the coordi-



nation of Byzantine processes. The paper provides algo-
rithms for consensus and an universal construction that are
much simpler than previous ones based on sticky bits and
ACLs [1, 15]. They are also more efficient in terms of num-
ber of bits and objects needed to solve a certain problem.
This comparison of apparently simple objects like sticky
bits with apparently complex objects like tuple spaces may
seem unfair but in reality the implementation of lineariz-
able versions of both (the case we consider here) involves
similar protocols with similar complexities. For instance,
both can be implemented similarly using the above men-
tioned Byzantine fault-tolerant systems based on state ma-
chine replication [8, 9, 10].

2. Model and Definitions

2.1. System Model

The model of computation consists of an asynchronous
set ofn processesP = fp1; p2; :::; png that communicate
via a set ofk shared memory objectsO = fo1; :::;okg (e.g.,
registers, sticky bits, tuple spaces). Each of these processes
may be eitherfaulty or correct. A correct process is con-
strained to obey its specification, while a faulty process, also
called aByzantine process, can deviate arbitrarily from its
specification. We assume that a malicious process cannot
impersonate a correct process when invoking an operation
on a shared memory object. This limitation is important in
our model since we will use a reference monitor [2] to en-
force the access policy. This monitor must know the correct
identity of the process invoking operations on the object in
order to grant or deny access to the operation.

A configuration of a shared memory distributed system
with n processes communicating usingk shared memory
objects is a vectorC = hq1; :::;qn; r1; :::; rki whereqi is the
state of the processpi andr i is the state of the objectoi . A
step of a process is an action of this process that changes
the system configuration (the state of a process and/or ob-
ject). An execution of a distributed system is an infinite
sequenceC0;a0;C1;a1; ::: whereC0 is an initial configura-
tion and eachai is the step that changes the system state
from Ci to Ci+1.

Each shared memory object is accessed through a set of
operations made available through its interface. An object
operation is executed by a process when it makes aninvoca-
tion to that operation. An operation ends when the process
receives areply for the corresponding invocation. An op-
eration that has been invoked but not replied to is called a
pending operation. We assume that all processes (even the
faulty ones) invoke an operation on a shared memory object
only after receiving the reply for its last operation on this
object. This condition is sometimes calledwell formedness

or correct interaction [4]1.
The shared memory objects used in this paper are as-

sumed to be dependable (they do not fail) and to satisfy
the linearizability correctness condition [13]: although
they are accessed concurrently, every operation executed on
them appears to take effect instantaneously at some point
between its invocation and reply, in such a way that they
appear to have been accessed sequentially.

In term of liveness, all operations provided by the shared
memory objects used in this paper satisfy one of the follow-
ing termination conditions (x is a shared memory object):

� lock-freedom: an operationx:op is lock-free if, when
invoked by a correct process at any point in an execu-
tion in which there are pending operations invoked by
correct processes, some operation (eitherx:op or any
of the pending operations) will be completed;

� t-resilience [15]: an operationx:op is t-resilient if,
when executed by a correct process, it eventually com-
pletes in any execution in which at leastn� t correct
processes infinitely often have a pending invocation for
some operation ofx;

� t-threshold [15]: an operationx:op is t-threshold if,
when executed by a correct process, it eventually com-
pletes in any execution in which at leastn� t correct
processes invokex:op;

� wait-freedom [12]: an operationx:op is wait-free if,
when executed by a correct process, it eventually com-
pletes in any execution (despite the failures of other
processes).

The difference betweent-threshold andt-resilience, is
the fact that in the first an operation completes only ifn� t
correct processes invoke thesameoperation, and in the sec-
ond an operation completes only ifn� t correct processes
keep invoking some operation on the object. Notice that
t-threshold impliest-resilience, but not vice-versa.

For any of these liveness conditions, we say that an ob-
ject satisfies the condition if all its operations satisfy the
condition.

2.2. Augmented Tuple Space

The tuple spacecoordination model, originally intro-
duced in the LINDA programming language [11], allows
distributed processes to interact through a shared memory
object called a tuple space, where generic data structures
calledtuplesare stored and retrieved.

1This is just a simplification to improve the presentation of the algo-
rithms. This assumption can be easily enforced by making the objects
ignore invocations made by processes that have pending invocations.



Each tuple is a sequence of typed fields. A tuple in which
all fields have their values defined is called anentry. A
tuple that has one or more fields with undefined values is
called atemplate (indicated by a bar, e.g.,t). An undefined
value can be represented by the wildcard symbol ‘�’ (mean-
ing “any value”) or by aformal field , denoted by a variable
name preceded by the character ‘?’ (e.g., ?v).

The type of a tuple t is the sequence of types of each
field of t. An entryt and a templatet match, denotedm(t; t),
iff (i.) they have the same type and(ii.) all defined field
values oft are equal to the corresponding field values of
t. The variable in a formal field (e.g.,v in ?v) is set to the
value in the corresponding field of the entry matched to the
template.

There are three basic operations on a tuple space [11]:
out(t), which outputs the entryt in the tuple space (write);
in(t), which removes a tuple that matchest from the tu-
ple space (destructive read); andrd(t), which is similar to
in(t) but does not remove the tuple from the space (non-
destructive read). Thein and rd operations are blocking,
i.e., if there is no tuple in the space that matches the speci-
fied template, the invoking process will wait until a match-
ing tuple becomes available.

A common extension to this model, which we adopt in
this paper, is the inclusion of non-blocking variants of these
read operations, calledinpandrdp respectively. These oper-
ations work in the same way as their blocking versions but
return even if there is no matching tuple for the specified
template in the space (signaling the operation’s result with
a boolean value). Notice that according to the definitions
above, the tuple space works just like an associative mem-
ory: tuples are accessed through their contents, not through
their address. This programming model allows expressive
interactions to be described with few lines of code [11].

In Herlihy’s hierarchy of shared memory objects [12],
the tuple space object has consensus number 2 [21], i.e., it
can be used to solve consensus between at most two pro-
cesses. In this paper we want to present algorithms to solve
consensus and build universal constructions for any number
of processes, so we need universal shared memory objects
(consensus numbern) [4, 12]. Therefore, we use anaug-
mented tuple space[5, 21] which provides an extracondi-
tional atomic swapoperation. This operation, denoted by
cas(t; t) for a templatet and an entryt, works like an atomic
(indivisible) execution of the instruction:

if :rdp(t) then out(t)
The meaning of this instruction is “if the reading oft

fails, insert the entryt in the space”2. This operation returns
true if the tuple is inserted in the space andfalseotherwise.

2Notice thatcasis similar to the register compare&swap operation [4]
but in some sense does the opposite, because compare&swap modifies the
register if its value isequal to the value compared.

The augmented tuple space is a universal shared memory
object, since it can solve wait-free consensus trivially in the
crash fault model [5, 21] as well as in the Byzantine model
(as will show in this paper) for any number of processes.

All algorithms proposed in this paper are based on a sin-
gle linearizable wait-free augmented tuple space.

3. Policy-Enforced Objects

Previous works on objects shared by Byzantine pro-
cesses consider that the access to operations in these objects
is protected by ACLs [1, 3, 15]. In that model, each oper-
ation provided by an object is associated to a list of pro-
cesses that have access to that operation. Only processes
that have access to an operation can execute it. Notice that
this model requires a kind of reference monitor [2] to pro-
tects the objects from unauthorized access. The implemen-
tation of this monitor is not problematic since, in general, it
is assumed that the shared memory objects are implemented
using replicated servers [8, 9, 10, 16], which have process-
ing power.

In this paper, we also assume this kind of implementa-
tion but extend the notion of protection to more powerful
security polices than access control based on ACLs. We
definepolicy-enforced objects(PEOs), which are objects
whose access is governed by a fine-grained security policy.
Later, we argue that the use of these policies make possible
the implementation of simple and efficient algorithms that
solve several important distributed problems, for instance,
consensus.

A reference monitor permits the execution of an opera-
tion on a PEO if the corresponding invocation satisfies the
access policy of the object. Theaccess policyis composed
by a set of rules. Each rule is composed by an invocation
pattern and a logical expression. An execution is allowed
(predicateexecute(op) set totrue) only if its associated log-
ical expression is satisfied by the invocation pattern. Fol-
lowing the principle of fail-safe defaults, any invocation that
does not fit in any rule is always denied [20]. A logical value
falseis returned by the operation whenever the access is de-
nied.

The reference monitor has access to three pieces of in-
formation in order to evaluate if an invocationinvoke(p;op)
to a protected objectx can be executed:

� the invoker process identifierp;

� the operation op and its arguments;

� the current state ofx.

An example is a policy-enforced numeric atomic register
r in which only values greater than the current value can be
written and in which only processesp1, p2 andp3 can write.



The access policy for that PEO is represented in Figure 1.
We use the symbol ‘:- ’ taken from the PROLOG program-
ming language to state that the predicate in the left hand
side is true if the condition in the right hand side is true.
Theexecutepredicate (left hand side) indicates if the oper-
ation is to be executed, and the predicateinvoke(right hand
size) indicates if the operation was invoked.

Object Stater
Rread: execute(read()) :- invoke(p; read())
Rwrite: execute(write(v)) :- invoke(p;write(v))^

p2 fp1; p2; p3g^v> r

Figure 1. An example of access policy for an
atomic register.

In the access policy in Figure 1, we initially define the el-
ements of the object’s state that can be used in the rules. In
this case, the register state is specified by its current value,
denotedr. Then, one or more access rules are defined. The
first rule (Rread) says that all register readings are allowed.
The second rule (Rwrite) states that awrite(v) operation in-
voked by a processp, can only be executed if(i.) p is one
of the processes in the setfp1; p2; p3g and (ii.) the value
v being written is greater than the current value of the reg-
ister r. Notice that condition(i.) is nothing more than a
straightforward implementation of an ACL in our model.

The algorithms presented in the paper are based on a
policy-enforced augmented tuple spaceobject (PEATS).
The implementation of this kind of object (or another PEO
in general) on distributed message-passing systems could be
based on interceptors [14], that would grant or deny access
to the operations according to the access policy of the ob-
ject. A straightforward implementation would be to repli-
cate the PEATS in a set of servers. There would be one
interceptor in each replica, which would be in charge of en-
forcing the policy in that replica. The access policy could
be hard-coded in the interceptor, or a more generic policy
enforcer like the one in [18] might be used. Notice that the
policy is enforced strictly locally; there is no need for com-
munication between the interceptors. All the interceptors in
correct replicas always take the same decision to grant/deny
an operation because policies are deterministic and evaluate
the same data in all correct replicas. A complete implemen-
tation of a dependable PEATS is described in [6].

4. Solving Consensus

In this section we illustrate the benefits of using a PEATS
to solve two variants of the consensus problem. This prob-
lem concerns a set ofn processes proposing values from
a set of possible valuesV and trying to reach agreement

about a single decision value. A consensus object is a
shared memory object that encapsulates a consensus algo-
rithm. Next, we present algorithms to implement two kinds
of consensus objects:

� Weak Consensus[15]: A weak consensus objectx
is a shared memory object with a single operation
x:propose(v), with v 2 V , satisfying the properties:
(Agreement) in any execution,x:propose returns the
same value, called theconsensus value, to every cor-
rect process that invokes it; (Validity ) in any finite exe-
cution in which all participating processes are correct,
if the consensus value isv, then some process invoked
x:propose(v).

� Strong Consensus[15]: A strong consensus objectx
is defined by a stronger Validity condition than weak
consensus objects: (Strong Validity ) if the consen-
sus value isv, then some correct process invoked
x:propose(v).

Both objects have also to satisfy one of the termination
conditions given in Section 2.1.

4.1. Weak Consensus Object

In a weak consensus object, the consensus value can be
any of the proposed values. With this validity condition it
is perfectly legal that a value proposed by a faulty process
becomes the consensus value.

Algorithm 1 Weak Byzantine consensus (processpi).
Shared variables:

1: ts= /0 fPEATS objectg
procedurex:propose(v)

2: if ts:cas(hDECISION;?di;hDECISION;vi) then
3: d v fdecision value(v) insertedg
4: end if
5: return d

Algorithm 1 presents the algorithm that implements
weak consensus using a PEATS. The algorithm is very sim-
ple: a process tries to insert its proposal in the PEATS object
using thecasoperation. It succeeds only if there is no deci-
sion tuple in the space. If there is already a decision tuple,
this is the value to be decided and it is returned.

Object StateTS
Rcas: execute(cas(hDECISION;xi;hDECISION;yi)) :-

invoke(p;cas(hDECISION;xi;hDECISION;yi))
^formal(x)

Figure 2. Access policy for Algorithm 1.



The access policy for the PEATS used in Algorithm 1
is presented in Figure 2. The predicateformal(x) is true if
x is a formal field, otherwise it isfalse. This access pol-
icy permits only executions of thecasoperation. The tuple
must have two fields, the first with a constant DECISION
and the second must be formal. Only one decision tuple can
be inserted in the PEATS.

Besides its simplicity and elegance, this algorithm has
several interesting properties: first it isuniform [4], i.e.,
it works for any number of processes and the processes do
not need to know how many other processes are participat-
ing. Second, it can solvemulti-valued consensus, since
the range of values proposed can be arbitrary. Finally, the
algorithm iswait-free, i.e., it always terminates despite the
failure of any number of processes. An interesting point
about this algorithm is that our PEATS with the access pol-
icy specified in Figure 2 behaves like a persistent object, so
our result is in accordance with Theorem 4.1 of [15].

Theorem 1 Algorithm 1 provides a wait-free weak consen-
sus object.

Proof: Omitted due to lack of space.

4.2. Strong Consensus Object

A strong consensus object enforces the validity condition
by requiring that the consensus value be proposed by a cor-
rect process even in the presence of faulty ones. This strict
condition results in a more complex (but still simple) algo-
rithm. However, this algorithm does not share some of the
benefits of the algorithm presented in the previous section:
(i.) it is not uniform since a process has to know who are the
other processes in order to read their input values and de-
cide a consensus value proposed by some correct process;
(ii.) it solves onlybinary consensus, also due to the fact
that a process needs to know if a value has been proposed
by one correct process before deciding it;(iii.) it is not
wait-free since it requiresn� t processes to take part in the
algorithm. Nevertheless, the number of processes needed is
optimal: n� 3t+1.

Algorithm 2 presents the strong binary consensus pro-
tocol. The algorithm works as follows: a processpi first
inserts its proposal in the augmented tuple spacets using a
PROPOSE tuple (line 2). Then,pi queriests continuously
trying to read proposals (line 7) until it finds that some value
has been proposed by at leastt+1 processes (loop of lines
5-11). The rationale for the amount oft +1 is that at least
one correct process must have proposed this value, since
there are at mostt failed processes. The first value that
satisfies this condition is then inserted in the tuple space
using thecasoperation. This commitment phase is impor-
tant since different processes can collectt+1 proposals for

Algorithm 2 Strong Byzantine consensus (processpi).
Shared variables:

1: ts= /0 fPEATS objectg
procedurex:propose(v)

2: ts:out(hPROPOSE; pi ;vi)
3: S0 /0 fset of processes that proposed 0g
4: S1 /0 fset of processes that proposed 1g
5: while jS0j< t+1^jS1j< t+1 do
6: for all p j 2P n (S0[S1) do
7: if ts:rdp(hPROPOSE; p j ;?vi) then
8: Sv Sv[fp jg fp j proposedvg
9: end if

10: end for
11: end while
12: if ts:cas(hDECISION;?d;�i;hDECISION;v;Svi) then
13: d v fdecision value(v) insertedg
14: end if
15: return d

different values and we must ensure that there is a single de-
cision value. All further invocations ofcasreturn this value
(lines 12-14).

The access policy for the PEATS used in Algorithm 2 is
presented in Figure 3. This access policy specifies that any
process can read any tuple; that each process can introduce
only one PROPOSE entry in the space; that the second field
of the template used in thecasoperation must be a formal
field; and that the decision valuev must appear in propos-
als of at leastt +1 processes. These simple rules, that can
easily be implemented in practice, effectively constrain the
power of Byzantine processes, thus allowing the simplicity
of the consensus presented in Algorithm 2.

Object StateTS
Rrdp: execute(rdp(t)) :- invoke(p; rdp(t))
Rout: execute(out(hPROPOSE; p;xi)) :-

invoke(p;out(hPROPOSE; p;xi))^
@y : hPROPOSE; p;yi 2 TS

Rcas: execute(cas(hDECISION;x;�i;hDECISION;v;Pi)) :-
invoke(p;cas(hDECISION;x;�i;hDECISION;v;Pi))^
formal(x)^jPj � t+1^
8q2 P : hPROPOSE;q;vi 2 TS

Figure 3. Access policy for Algorithm 2.

Our algorithm requires onlyn(dlogne+ 1) + (1+ (t +
1)dlogne) bits in the PEATS object3 (n PROPOSE tuples
plus one DECISION tuple). The consensus algorithm with
the same resilience presented in [1] requires(n+1)�2t+1

t

�
sticky bits4.

3E.g., only 68 bits are needed fort = 4 andn= 13.
4It is a lot of memory. For example, if we want to toleratet = 4 faulty

processes, we need at leastn= 13 processes and 1764 sticky bits.



Theorem 2 Algorithm 2 provides a t-threshold strong bi-
nary consensus object.

Proof: Omitted due to lack of space.

5. A Lock-free Universal Construction

A fundamental problem in shared memory distributed
computing is to find out if an objectX can be used to im-
plement (oremulate) another objectY. This section proves
that PEATSs areuniversal objects[12], i.e., that they can
be used to emulate any other shared memory object. Her-
lihy has shown that an object is universal in a system withn
processes if and only if it hasconsensus numbern, i.e., if
it can solve consensus forn processes [12].

The proof that PEATSs are universal is made by provid-
ing one universal construction based on this kind of object.
A universal construction is an algorithm that uses one or
more universal objects to emulate any other shared mem-
ory object [12]. There are several wait-free universal con-
structions for the crash fault model, using consensus objects
[12], sticky bits [19], compare and swap registers [4] and
several other universal objects. A universal construction
for the Byzantine fault model using sticky bits was defined
in [15]. However, this construction is not wait-free butt-
resilient, which is a more appropriate termination condition
for Byzantine fault-tolerant algorithms. The possibility of
algorithms with stronger liveness properties is still an open
problem [15].

In order to define a universal construction that emulates
a deterministic objecto of a certain type, we have to start
by defining the type of the object. A typeT is defined
by the tuple hSTATET ;ST ; INVOKET ;REPLYT ;applyTi
whereSTATET is the set of possible states of objects of
type T, ST 2 STATET is an initial state for objects of this
type, INVOKET is the set of possible invocations of oper-
ations provided by objects of typeT, REPLYT is the set of
possible replies for these invocations, andapplyT is a func-
tion defined as:

applyT : STATET � INVOKET ! STATET �REPLYT :
The functionapplyT represents the state transitions of

the object. Given a stateSi and an invocationinv for an
operationop, applyT(Si ; inv) gives a new stateSj (the result
of the execution of operationop in stateSi) and a replyrep
for the invocation. This definition is enough for showing
the universality of tuple spaces, although Malkhi et al. have
shown that a (trivial) generalization is needed for emulating
non-deterministic types and some objects that satisfy weak
liveness guarantees [15].

Our lock-free universal construction follows previous
constructions [4, 12, 15]. The idea is to make all correct
processes execute the sequence of operations invoked in the

emulated object in the same order. Each process keeps a
replica of the state of the emulated objectSi . An invocation
inv is executed by applying the functionapplyT(Si ; inv) to
that state. The problem boils down essentially to define a
total order for the execution of the operations.

The operations to be executed in the emulated object can
be invoked in any of the processes, so the definition of an
order for the operations requires a consensus among all pro-
cesses. Therefore, we need an object with consensus num-
bern, i.e., a universal object.

The solution is to add (to “thread”) the operations to be
executed in the emulated object to a list where each element
has a sequence number. The element with the greater se-
quence number represents the last operation to be executed
on the emulated object. The consistency of the list, i.e., the
property that each of its elements (each operation) is fol-
lowed by one other element, is guaranteed by the universal
object, a PEATS in our case. Given this list, each process
executes the operations of the object emulated in the same
order.

The list of operations is implemented using a PEATS ob-
ject. The key idea is to represent each operation as a SEQ
tuple containing a position field, and to insert each of these
tuples in the space using thecasoperation. When a process
wants to execute an operation, it invokes thecasoperation:
if there is no SEQ tuple with the specified sequence number
in the space, then the tuple is inserted. Algorithm 3 presents
this universal object.

Algorithm 3 Lock-free universal construction (processpi).
Shared variables:

1: ts= /0 fPEATS objectg
Local variables:

2: state= ST fcurrent state of the objectg
3: pos= 0 fposition of the tail of the operations listg

invoked inv

4: loop
5: pos pos+1
6: if ts:cas(hSEQ; pos;?pos invi;hSEQ; pos; invi) then
7: hstate; replyi  applyT(state; inv)
8: return reply
9: end if

10: hstate; replyi  applyT(state; pos inv)
11: end loop

The algorithm assumes that each processpi begins its ex-
ecution with an initial state composed by the initial state of
the emulated object (state= ST , line 2) plus an empty list
(pos= 0, line 3). When an operation is invoked (denoted
by inv), pi iterates through the list updating itsstatevari-
able (loop in lines 4-11) and trying to thread its operation
by appending it to the end of the list using thecasoperation
(line 6). If casis executed successfully bypi , thestatevari-



able is updated and the reply to the invocation is returned
(lines 7 and 8).

The algorithm is lock-free due to thecas operation:
when two processes try concurrently to put tuples at the end
of the list, at least one of them succeeds. However, the algo-
rithm is not wait-free since some processes might succeed
in threading their operations again and again, delaying other
processes forever.

Object StateTS
Rcas: execute(cas(hSEQ; pos;xi;hSEQ; pos; invi)) :-

invoke(p;cas(hSEQ; pos;xi;hSEQ; pos; invi))^
formal(x)^
(pos= 1_9y : hSEQ; pos�1;yi) 2 TS)

Figure 4. Access policy for Algorithm 3.

The access policy for our universal construction (Fig-
ure 4) states that a SEQ tuple with the second fieldposcan
only be inserted in the space (usingcas) if there is a SEQ
tuple with the second field with valuepos�1.

The proof of the correctness of the algorithm is based on
the following lemmas:

Lemma 1 For any execution of the system, the following
properties are invariants of the PEATS used in Algorithm 3:

1. For any pos� 1, there is at most one tuple
hSEQ; pos; invi in the tuple space;

2. For any tuplehSEQ; pos; invi in the tuple space with
pos> 1, there is exactly one tuplehSEQ; pos�1; invi
in the space.

Proof: Omitted due to lack of space.

Lemma 2 The universal construction of Algorithm 3 is
lock-free.

Proof: This lemma is proved by contradiction. Letα be
an execution with only two correct processesp1 and p2

(without loss of generality) which invoke operationsinv1

and inv2, respectively. Suppose that they stay halted for-
ever, not receiving replies. We have to show thatα does not
exist. An inspection of the algorithm shows that the pro-
cesses keep updating their copies of the object state until
they execute the most recent threaded operation (with posi-
tion field value equal topos, without loss of generality). At
this point, p1 and p2 will try to thread their invocations to
the list in positionpos+1 executingcas(line 6). Since the
PEATS is assumed to be linearizable, the twocas invoca-
tions will happen one after another in some order, so either
the inv1 or the inv2 SEQ tuples will be inserted in position
pos+ 1. The process that succeeds in executingcas will
thread its invocation and will return its reply (lines 7 and 8).
This is a contradiction with the definition ofα. �

Theorem 3 Algorithm 3 provides a lock-free universal con-
struction.

Proof: Lemma 1 implies that there is a total order on the
operations executed in the emulated object. Through an in-
spection of the algorithm, it is easy to see that a process
updates its copy of the state of the emulated object by ap-
plying the deterministic functionapplyT to all SEQ tuples
in the order defined by the sequence number. In this way,
all operations are executed in the same order by all correct
processes, and this order is according to the sequential spec-
ification of the object provided by the functionapply. This
proves that the universal construction satisfies linearizabil-
ity. Lemma 2 proves that the construction is lock-free.�

6. Related Work

In this paper we present several shared memory algo-
rithms that tolerate Byzantine faults using an augmented
tuple space. To the best of our knowledge, the only other
works which use this type of object to resolve fundamental
distributed computing problems are [5, 21]. However these
works address only the wait-free consensus problem in fail-
stop systems (no Byzantine failures).

Asynchronous shared memory systems with processes
that can fail in a Byzantine way have been first studied inde-
pendently by Attie [3] and Malkhi et al. [15]. The work in
[3] shows that weak consensus cannot be solved using only
resettable objects5. This result implies that algorithms for
solving consensus in this model must use some kind of per-
sistent (non-resettable) object like sticky bits. The PEATS
used in our algorithms can be viewed as a persistent object
since the specified access policies do not allow processes to
reset the state of the object.

The work presented in [15] uses shared memory objects
with ACLs to define at-threshold strong binary consensus
algorithm and at-resilient universal construction. The for-
mer uses 2t +1 sticky bits and requiresn� (t +1)(2t +1)
processes. The paper also shows that there can be no strong
binary consensus algorithm withn � 3t processes in this
model of computation.

In a more recent work, Alon et al. [1] extend previous
results by presenting a strong binary consensus algorithm
that attains optimal resiliency (n� 3t + 1) using an expo-
nential number of sticky bits and requiring also an expo-
nential number of rounds. That work proves several lower
bounds related to the number of objects required to imple-
ment consensus, including a tight trade-off characterizing
the number of objects required to implement strong consen-
sus: a polynomial number of processes needs an exponen-

5An objecto is resettableif, given any of its reachable states, there is
a sequence of operations that can return the object back to its initial state
[3].



tial number of objects and vice-versa. This result empha-
sizes the power of ACLs in limiting malicious processes but
also shows the limitations of this model, specially in terms
of the large number of objects required to attain optimal re-
silience. The approach proposed in the present paper uses a
different model so this trade-off does not apply.

The type of policy enforcement used in this paper was
inspired by the LGI (Law-Governed Interaction) approach
[18] and its use in protecting centralized tuple spaces [17].

7. Concluding Remarks

The approach for distributed computing with shared
memory accessed by Byzantine processes presented in this
paper differs from the previous model where objects are
protected by access control lists. Our approach is based on
the use of fine-grained access policies that specify rules that
allow or deny an operation invocation to be executed in an
object based on the arguments of the operation, its invoker,
and the state of the object. The constructions presented in
this paper (consensuses and universal object) demonstrate
that this approach allows the development of simple and el-
egant algorithms

An inherent characteristic of the proposed approach is
that its utility is limited when used to implement simple per-
sistent objects like sticky bits (its use would be equivalent
to using ACLs). The full potential of PEOs appears when
more elaborated objects such as augmented tuple spaces are
considered.
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