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Abstract—State machine replication is a form of active replica-
tion commonly used to create fault-tolerant distributed services.
In a nutshell, the approach consists in ensuring that a set of
replicas receive and execute the same sequence of deterministic
requests, returning the same results. This approach handles all
requests evenly, but for some services it is important to consider
that some requests have priority over others, i.e., that whenever
two or more requests are ready to be executed, the one with
higher priority is executed first. Paxos is perhaps the best known
protocol to order requests in asynchronous environments, but
Paxos has no notion of priority. In this paper we introduce
the notion of priority-based state machine replication and modify
Paxos to take request priorities into account. The proposed
algorithm, PRaxos, works in three steps and satisfies Paxos’ safety
properties in asynchronous systems, while enforcing priorities
when the system behaves synchronously.

I. INTRODUCTION

Computer systems are frequently subject to faults, so de-
pendable systems have to handle such faults, avoiding that they
become errors and eventually lead to failures. Fault masking
is a common fault tolerance approach. The approach consists
in adding redundant processes that may take the job of one
another when a process fault happens.

State machine replication (SMR) is a well-known technique
to design fault-tolerant distributed services [1]. In SMR a
service is implemented by a set of processes called replicas.
Replicas implement the same service and execute the same
sequence of deterministic operations requested by clients,
following the same sequence of consistent states and returning
identical results. If a few replicas deviate from this behavior,
these faults are masked, i.e., concealed from the clients.

For all replicas to execute the same sequence of requests,
these requests have to be ordered using a total order broadcast
protocol. At the heart of this protocol lies the consensus
problem, i.e., the problem of a group of processes agreeing
on a single value among a set of proposals. Total order can
be trivially achieved by chaining multiple consensus instances,
each one deciding on one request [2]. It has been shown that
there is no deterministic fault-tolerant algorithm that solves
the consensus problem under the assumption of asynchronous
communication [3]. To circumvent this result, algorithms to
solve the consensus problem usually guarantee that some
safety properties always hold, while termination properties
hold only if some extension is made to the assumption of

asynchrony. A common extension is a weak timing assump-
tion, such as the existence of some point in time from which
failures can be reliably detected [4]. Many algorithms have
been proposed to solve this problem for both the crash [5],
[6], [7], [8] and Byzantine fault models [9], [10]. One of the
best known consensus algorithms is the Synod protocol [6].
Its generalization for total ordering requests, Paxos, guarantees
safety while tolerating f faults in a system with 2f+1 replicas
[5].

Dependable systems may have real-time requirements, i.e.,
they may need that operations are executed before certain
rigid deadlines [11]. Solving this problem requires using
specialized infrastructures that allow making communication
and processing predictable. That is hardly the case in general
distributed systems in which unreliable communication may
cause messages to be delayed or not delivered. However, in
such scenarios it is still possible to attain less strict – soft –
real-time requirements [12].

Many services may benefit from soft real-time guarantees
expressed in terms of different levels of request urgency, i.e.,
of priority. For instance, different priorities may be assigned
to users with distinct service level agreements in cloud storage
services [13], [14]. Some examples of services that have been
made dependable using SMR and could benefit from priorities
are network file systems [9], [10], cooperative backup services
[15], and relational database management systems [16].

There have been a few works on the subject of priority-
based total order broadcast algorithms [17], [18], [19].The
subject first appeared in [17], but the algorithm that work
presents is synchronous and not fault-tolerant. Other works
consider an asynchronous time model, but depend on an agree-
ment framework based on failure detectors. The algorithm
of [18] uses view atomic multicast [20], and the algorithm
of [19] relies on the general agreement framework [21].
These approaches result in a considerable number of messages
exchanged between replicas, and as result, they have O(n3)
and O(n2) message complexity, respectively.

This paper deals with the problem of extending SMR with
priorities, letting higher priority be executed before lower pri-
ority ones. We call this problem priority-based state machine
replication – PB-SMR. Regular SMR can be solved by em-
ploying a total order broadcast protocol like Paxos to deliver
the same sequence of requests to all processes. Likewise, PB-



SMR can be solved using a total ordering protocol that delivers
higher priority messages before lower priority ones.

In this paper we propose to modify the Paxos algorithm in
order to deal with request priorities, without any assumption
stronger than eventual synchrony [22]. The resulting protocol,
PRaxos, enforces the ordering of requests satisfying the same
safety properties of Paxos, while ensuring priority is respected
when the system behaves synchronously. PRaxos aims at
solving the priority based total order broadcast in the eventual
asynchronous model with linear message complexity and three
communication steps.

II. RELATED WORK

Not many works concerning priority-based agreement prob-
lems have appeared in literature. The earliest seems to be
[17], which proposes two algorithms. One of these algorithms
(PriTO) is a priority-based total order broadcast in which
messages are delivered according to their priorities. This algo-
rithm depends, however, in a synchronous timing assumption,
and is not fault-tolerant. Differently, our approach considers
an eventually synchronous model in which there is an un-
known global stabilization time after which the system behaves
synchronously. Moreover, even if our algorithm requires the
global stabilization time to ensure progress, it never violates
the safety properties and may even progress before such time
arrives.

Another paper proposes an algorithm that is fault-tolerant
and considers a failure detector [18]. In that protocol, low-
priority client requests are added to each replica sequence at
the bottom, assuming requests are ordered from top (high) to
bottom (low). High priority requests are inserted in the middle
of the sequence, in a position based on the progress of the
fastest replica. All replicas have to execute the lower priority
requests that the fastest replica had executed so far before they
start executing the incoming high-priority request. For that
reason, the algorithm does not preempt requests, i.e., it does
not interrupt the execution of a low-priority request in order
to execute a high-priority one that is ready. The algorithm
assumes the existence of a virtual synchrony group commu-
nication service that takes care of message transmission, view
management, fault-tolerance and atomic broadcast [20]. The
absence of preemption capability, resulting in high priority
incoming requests having to wait until all replicas finish lower
priority requests executed by some replicas before, is the main
difference from our approach.

A third work proposes another fault-tolerant algorithm [19].
To achieve this, the system depends on the general agreement
framework of [21], which uses a �S failure detector [4]
to solve consensus. Each time the system receives a client
request c, the consensus service is called to define the new
request sequence. Requests that are lower priority than c are
reallocated to a position after it, and processes must interrupt
c and rollback to the previous state in their execution; thus,
the algorithm is preemptive. When a replica finishes the
execution of a request, the consensus service is called to define
the execution progress of the system. When the majority of

replicas has finished the execution of a request, that request is
irreversible. An irreversible request cannot be rolled back by
a higher priority incoming request, and that way the algorithm
may terminate.

The main difference between [19] and PRaxos, and the main
motivation for this work, is not using the generic agreement
framework that causes the algorithm to exchange more mes-
sages than PRaxos. In [19], if the system has to execute n
requests, the consensus algorithm of the agreement framework
will be invoked once for each request plus at least f+1 times
for each request, in order for the processors to update the group
execution progress and commit the executions. In PRaxos, the
agreement is invoked only once for each request, and at the end
requests are committed. The reason is that priority handling is
done along with the agreement protocol.

III. MODEL AND PROBLEM

The system is composed of a set Π of processes, out of
which a maximum of f < ‖Π‖/2 may fail. Each process
p maintain a sequence p.S of requests, a current proposal
number p.n and a current executing request p.π. A request
r in sequence number i is denoted p.S[1] = r.

Priority is denoted as P (r), and a request r has higher
priority than r′ if P (r) > P (r′).

The following predicates express states of a request. If
process p has accepted request r, then Accepted(r, p) is true.
If p learned r, then Learned(r, p) is true, and r ∈ learnedp.

We assume a failure model in which failed processes do not
recover. A more realistic failure model, in which process may
recover after failing, could be assumed, but we do not do so
in this paper to keep the presentation simple.

Inter-replica communication is performed only by message
passing. Messages may be lost but if the source and the des-
tination are correct, the message will be eventually delivered.
Messages are delivered at most once and are never corrupted.

Finally, we consider an asynchronous model extended with
a global stabilization time (GST). This timing assumption is
called eventual synchrony [23], [24]. The system may behave
in an asynchronous manner, in which messages may take
arbitrarily long time to be transmitted. The system will even-
tually enter a stable period in which messages are transmitted
synchronously and requests executed in a timely manner.
Though progress and ordering may be achieved before the
system enters GST, this model is necessary in order to ensure
progress. GST periods are long enough for the algorithm to
finish, and happen very often in actual systems.

We assume that the execution time of the requests are
significantly long, in comparison with the execution time of the
protocol. If low priority requests are long, waiting for them to
execute may be counterproductive to the system when high
priority requests that demand immediate attention are kept
delayed.

In order to define the PB-SMR problem we have first
to define Local Priority Inversion (LPI) and Global Priority
Inversion (GPI), following [19]. We say that a request r is
locally (priority) inverted in a process p if r is ready for



execution and p is currently executing a request with lower
priority than r. A request r is globally (priority) inverted if
each process p among all processes that had executed and
output the result for r had r locally inverted. This means that
if at least one process had not r locally inverted, then r cannot
be globally inverted.

In PB-SMR the goal is to broadcast requests to processes
that execute them and then respond to the requesting client.
To adhere to the nomenclature of the Paxos algorithm, which
we use as a basis for our own protocol (see Section IV),
we say that a process broadcasts a message m by invoking
Propose(m) and a process p delivers a message by appending
it to the learnedp sequence, initially empty. The i’th learned
element is denoted as learnedp[i].

Our PB-SMR algorithm satisfies the following properties:
• Non-triviality: If request r ∈ learnedp for any process
p ∈ Π, then r has been proposed.

• Agreement: If any two processes p and q in Π learned
requests in sequence number i, then learnedp[i] =
learnedq[i].

• Priority order: Ready requests are chosen according to
their priorities.

IV. PAXOS

This section presents the Paxos algorithm. The first sub-
section introduces the consensus algorithm, which we call
Synod following [6]. The second introduces the total ordering
broacast algorithm, which we call Paxos following [5]. Other
authors call these algorithms respectively Paxos and Multi-
Paxos, but we prefer to use Lamport’s original designations.

A. The Synod protocol

The Synod protocol is a crash fault tolerant consensus
protocol that is part of the total order broadcast protocol Paxos.
It is defined as a set of proposers, acceptors, and learners. Pro-
posers propose values, acceptors choose one proposed value,
and learners learn the chosen value. The requirements are that
only one value that had been proposed may be learned (non
triviality), and at most one value is learned (consistency). We
ensure these safety properties by requiring that the proposer
propose a value only if the majority of acceptors had not
previously accepted a different value.

The minimum number n of acceptors has a relation with
the total number f of faults that the algorithm tolerates among
them: n = 2f+1. So, being the majority of acceptors f+1, if
a value v was chosen, then at least one acceptor that accepted
it is guaranteed not to fail. While failure is an important aspect
among acceptors, it is not so among proposers and learners,
because one correct proposer and learner suffice.

The algorithm begins with a proposer p sending a
〈Propose, n〉 message to all acceptors, where n is a proposal
number, used to identify different proposals.

An acceptor a compares n with its own version of a.n.
If a.n < n, then a sets a.n = n and responds sending a
〈Promise, n, a.v〉 to the proposer, where a.v is the value that
a had accepted in a previous proposal numbered a.v.n, or

a.v = Null if it has not accepted any value at all. By this
message the acceptor is saying that it promises not to accept
any proposal numbered less than n.

The proposer waits until it has responses from the majority
of acceptors. Then it must choose the highest numbered value
from the responses. It is done by setting p.v as the value
a.v, whose a.v.n is greater than any other value among the
responses. If all values a.v = Null, then the proposer is
free to set p.v with any value. Then the proposer then sends
〈Accept, n, p.v〉 to all acceptors.

Acceptor a receives the accept message from the proposer,
and, if a.n is still equal to n, then a accepts the value by
setting a.v = p.v and sends a 〈Learn, a.v〉 to all learners.

A learner that received learn messages with the same value
from the majority of acceptors learns the value, and the
algorithm is done.

B. Paxos

The atomic broadcast problem is that in which all broadcast
messages need to be delivered in the same order to all
processes. Paxos is an algorithm that solves this problem by
assigning each message a unique sequence number agreed by
all processes via a consensus protocol.

Each process p maintains a sequence p.S of requests. An
element p.S[i] is a request r in position i, that was accepted
in a proposal number r.n.

All processes play the role of proposer, acceptor and learner,
but only one proposer may propose at a time. An elected
leader l plays as the distinguished proposer, and as soon as l
is elected, it sends a 〈Propose, n〉 message to all processes,
with n as proposal number. If process p, upon receiving the
proposal message, has p.n < n, then it sets p.n = n and
responds to l sending 〈Promise, n, p.S〉.

The leader gathers promise messages from the majority
of processes with proposal number n. At that point, it has
the requests accepted by the majority of processes for each
sequence number, and for each sequence number i, l will apply
the Synod protocol: it will set l.S[i] as the request r that has
the highest proposal number r.n in sequence number i among
all sequences received in promise messages. Then, it will send
an 〈Accept, n, l.S[i], i〉 message to all processes.

When the processing is done at all occupied sequence num-
bers, then the leader starts using vacant sequence numbers to
broadcast new processes that it receives from clients. For each
of these new requests, the leader sends the accept message like
previously described.

A process p that receives the accept message from the leader
and still has p.n = n, accepts the request by setting p.S[i] =
l.S[i], and then sends a 〈Learn, n, p.S[i], i〉 to the leader.

When the leader receives learn messages with the same n
and p.S[i] from the majority of processes, it learns the request
and sends learn messages to all processes. The process that
receives this message learns the request.

In a state machine replication system, requests are executed
in order. When a process p learns a request p.S[i], it may



execute it only if for all j < i, p has previously executed
p.S[j].

V. PRAXOS

Adding priorities to the replicated state machine creates the
need of adapting the protocol to deal with the characteristics
of the new constraint. As high-priority requests come to the
system, previously received low-priority requests need to be
put behind the incoming request in the execution sequence. In
PRaxos, a request is only accepted after it has been executed
by the majority of processes, while other requests are ready,
and their position may change as higher priority requests come
in. Learners will eventually learn chosen values, being the
leader the first to learn.

Requests are ordered according to their priority, and exe-
cuted in that order by processes. When processes are executing
a ready request, and receive a higher priority request r, then
the system enters in priority inversion. Processes interrupt all
ready lower priority requests and roll back to the state previous
to their computing. Then they reorder the request sequence,
putting r before the others, and resume operation.

As an example, suppose a process has sequence
{α1, β4, γ2, δ2}. Requests α is chosen, β’s and γ’s execution is
complete, and δ is under execution. Their priority is subscript.
Then comes a new request ε3. The process interrupts δ
and rolls back to the state before the execution of γ. After
reordering, the resulting sequence is {α1, β4, ε3, γ2, δ2}.

Fig. 1 presents how the protocol looks like when the classes
are distributed to the processors. Processor p1 is the leader and
acts as distinguished proposer and learner, and all processes
are acceptors and learners. The PRaxos algorithm takes three
steps. Processors execute processes after receiving the Accept
message and the return value is sent to the requesting client
by p1, after it learned the request. Learning may be achieved
by receiving Learn messages from the majority of learners,
or by checking the request sequences of each acceptor sent
with the Promise messages.

A. Algorithm

All processes in the system, including the leader, act as
acceptor and learner, so the sequence p.S in both are the
same, but for ease of explanation, their roles shall be treated
separately.

1) The Leader: Algorithm 1 describes how the leader
works. The leader begins by sending 〈Propose, n〉 with a
proposal number n to all acceptors. A process p with the
role of acceptor that receives this message responds if the
last proposal number p.n < n. The acceptor sets p.n = n
and responds by sending 〈Promise, p.S, n〉, with its requests
sequence, to the leader.

The leader waits for the response of all processes (lines 3-
6). When the leader receives responses from f + 1 acceptors,
it waits until a timeout expires for the responses of the rest.
Then, the next phase begins.

At this point, the leader has a set Q that consists of the
sequence p.S from each acceptor in the quorum. It gives the

Algorithm 1 Leader Proposal
1: n← n+ 1
2: Send 〈Propose, n〉 to acceptors
3: repeat
4: Receive 〈Accept, p.S, n〉 from acceptor process p
5: Q← Q ∪ {p.S}
6: until time out and |Q| = f + 1
7: if |Q| ≥ f + 1 then
8: for i = 0 do
9: if (∃R ⊆ Q, |R| ≥ f + 1 ∧ ∃r∀S ∈ R,S[i] = r) ∨

(∃p.S ∈ R,Learned(p.S[i], p)) then
10: Learn learned request in (Q, i)
11: Send 〈Learn, n, r, i〉 to other learners
12: else if ∃R ⊆ Q, (|R| ≥ f + 2∧¬(∃S, S′ ∈ R,S[i] =

S′[i]))∨ (|R| ≥ f + 1∧∀S ∈ R,S[i] = Null) then
13: µ← i
14: break for-loop
15: else
16: r ← S[i] ∈ Q where ¬(∃S′[i] ∈ Q,S′[i].n >

S[i].n)
17: Send 〈Accept, n, r, i〉 to acceptors
18: end if
19: i← j + 1
20: end for
21: Create a sequence Ready with requests in Q from µ

up, and requests in Buffer.
22: Order Ready according to request priority.
23: for i = µ do
24: l.S[i]← Ready[i]
25: end for
26: end if

leader knowledge about the requests replicas have received,
accepted and learned. The next step is to determinate which
requests are chosen and which are ready, which is done as
follows.

For each sequence number i (line 8), a request r is chosen
in i if there are f + 1 sequences S in Q where S[i] = r, or
one of the processes had learned r in i (line 9). This case is
denoted as Chosen(i). If no request was chosen in i, then
one of two cases apply: either there are f + 1 sequences S in
Q where S[i] = Null or there are f + 2 sequences S in Q
where S[i] is set to different requests (line 12). Either way, this
case is denoted as Free(i). In spite of the apparent opposition
between the two expressions, ¬Chosen(i) is not the same as
Free(i), as there is a case in which a sequence number i is
both ¬Chosen(i) and ¬Free(i).

The leader takes the following actions according to the state
of the sequence number:

1) If Chosen(i), then the leader learns the chosen request
(line 10).

2) If both ¬Chosen(i) and ¬Free(i), then the leader sends
〈Accept, n, r, i〉 to all acceptors, where r is the highest
numbered request in S[i] among the sequences in Q,
that is, with highest S[i].n (lines 16, 17).



Fig. 1. PRaxos viewed as processors.

Fig. 2. The leader determines Chosen and Free requests. Bold requests are
executed. The capital L besides a request means that it is learned.

3) If Free(i), then the leader stops the iteration (lines 13,
14).

When a leader Learns a request r in position i, then
Learned(r, i) is true and the leader sends the message
〈Learn, n, r, i〉 to the rest of the learners. A learner process
that receives this message also learns r in i.

When the leader stops the iteration, a mark µ = i is
set on the sequence (line 13). The sequence from S[0] to
S[µ − 1] is called the Processed section, and the sequence
from S[µ] onward is called the Ready section. Requests in
the Processed section do not suffer priority inversion, since
no position i in Processed is Free(i), and thus may be
Chosen(i). Since no position i in Ready is Chosen(i), then
requests in this section may cause priority inversion.

The leader gathers all requests in the Ready section of
each S in Q and sequences them along with requests received
from clients, ordering them according to priority (lines 21,
22). Then, the leader sends 〈Accept, r, i, n〉 to all acceptors
for each of these requests, starting in position i = µ (lines
23-25).

Figure 2 shows an example of the procedure. Suppose the
system has the total of three processes, which makes f = 1,
and the leader gathered responses from all of them. In the first
iteration, i = 1, all processes had executed and learned α, so
sequence number 1 is Chosen(1). Similarly, all processes had
executed β in sequence number 2, which is also Chosen(2).
In sequence number 3, f+1 sequences have not executed any
request, which makes it Free(3), and µ = 3. The leader stops
the iteration here.

To get the resulting sequence, suppose that P (δ) = 5,
P (γ) = 3 and that the leader had buffered the client re-
quest ε, with priority 4. The resulting sequence would be
S = {α, β, δ, ε, γ}.

Figure 3 illustrates another case. Suppose that the system

Fig. 3. Example of how Chosen and Free are not equal when not all correct
replicas respond to the proposal. Bold requests are executed.

has three processes, and the total tolerated faults are f = 1.
Processes p1 and p2 responded to the proposal by sending
promise messages, whereas the response sent by p3 was lost in
transmission. According to the received sequences, α, β and
δ are chosen, but δ is not considered chosen by the leader.
The predicates Chosen(1) and Chosen(2) are true because
α and β were executed and accepted by f + 1 replicas in Q.
Requests δ and γ were not, however, and since there are no
f + 1 null accepts or f + 2 different accepts in Q for either
sequence numbers 3 and 4, Free(3) and Free(4) are false.
The leader sends 〈δ, 3, n〉 and 〈γ, 4, n〉 to the acceptors and
considers them chosen. The Free sequence number in this
example is 5, and consequently µ = 5.

Algorithm 2 describes how the leader treats client requests.
The leader keeps buffering client requests. If the leader re-
ceives a request r whose priority is not greater than that of
any request in the Ready section of the sequence, then the
leader sends 〈Accept, r, i, n〉 to the acceptors, where i is the
first vacant position in the back of the sequence (lines 6, 7).

When the leader receives a request r that has priority higher
than that of any request in Ready, then it inserts r in a buffer
(lines 3, 4). At a timeout, the leader will start a new proposal
by sending 〈Propose, n+ 1〉 .

Algorithm 2 Leader main loop
1: loop
2: Receive request r from client c.
3: if P (r) > P (End(l.S)) then
4: Buffer ← Buffer ∪ {r}
5: else
6: append r to l.S
7: i← size of l.S
8: send 〈Accept, n, r, i〉 to acceptors
9: end if

10: end loop



2) The Replica: Replicas receive both Accept and Learn
messages from the leader, as they play both roles of acceptor
and learner.

An acceptor replica p executes requests in its sequence
p.S in the order they appear. When p finishes the execution
of request r = p.S[i], it accepts r and sends the leader
a message 〈Learn, p.n, r, i〉. At this point, the request is
Accepted(r, i, p). Then p starts executing the request in posi-
tion p.S[i+ 1].

The leader buffers Learn messages from the replicas. When
it receives f + 1 〈Learn, r, i, n〉 with the same parameters, it
learns r and sends 〈Learn, r, i, n〉 to the rest of the learners.

If acceptor p reaches a point in which p.S[i] has no request,
but there is a p.S[i+k], k positions further, that has a request,
then p sends a message to the leader asking for the missing
request in sequence number i.

Algorithm 3 describes how an acceptor accepts requests.
When acceptor p receives an 〈Accept, r, i, n〉 from the leader,
it moves all requests in p.S[j] to p.S[j + 1], for j starting
in i, up to the end of the sequence (lines 3, 4), to open
space to include r in the sequence (line 10). All moved
requests that were executed and accepted roll back and become
¬Accepted(r, i, p) (line 8). If p was executing any request that
had been moved, then it interrupts the execution (lines 5, 6),
rolls back the progress and starts the execution of p.S[i] (lines
11, 12).

Algorithm 3 Acceptor acceptance
1: Receive 〈Accept, r, i, n〉 from the leader
2: if p.n = n then
3: for j = |p.S| down to i do
4: p.S[j + 1]← p.S[j]
5: if Executing p.S[j] then
6: Interrupt p.S[j]
7: end if
8: Rollback p.S[j]
9: end for

10: p.S[i]← r
11: if p.π >= i then
12: p.π ← i
13: end if
14: end if

When an acceptor p receives 〈Learn, n, r, i〉 message from
the leader, it learns r in i. If p.S[i] 6= r, then p sends a message
to the leader asking for the request. It will receive an Accept
message and should act as previously stated. Then it learns
the request.

3) Leader election: The leader is the only process that has
the buffered client requests, and if it crashes, these requests
are lost. A process has a time limit to communicate with the
leader. If it times out, it starts an election protocol. The new
leader then starts receiving requests from clients and operates
the protocol as specified.

VI. CORRECTNESS

This section sketches a proof of correctness of algorithm.
We prove that PRaxos satisfies Non-triviality, Agreement and
Priority Order properties.

In order to prove Non-triviality and Agreement, we demon-
strate two lemmas that are related to the safety properties of
the consensus problem.

Lemma 1: Only chosen requests are learned.
It is demonstrated that if a request is learned by any learner,

then it was previously chosen by the acceptors. There are four
ways a learner process may learn a request r in sequence
number i:

1) when it receives 〈Learn, r, i, n〉 messages from f + 1
acceptors;

2) when it receives a 〈Learn, r, i, n〉 message from the
leader;

3) when it is a leader that just proposed and either request
r was accepted in i in the sequence of f + 1 processes
that responded with promise messages,

4) or there was a learned request r in i in the sequence of
one process that responded with the promise message.

In the first case, a request executes and accepts r before
sending the learn message to the leader. If the leader received
this message from f + 1 acceptors, then f + 1 acceptors had
previously executed and accepted it, thus r is chosen.

In the second case, the leader sends Learn(r, i, n) message
after it has learned r, and, as demonstrated in the first case,
this implies that r is chosen.

In the third case, r is accepted by f + 1 acceptors, and is
thus chosen.

In the fourth case, r was learned by the majority of
processes by the means of the three previous cases, and is
therefore chosen.�

Lemma 2: For each sequence position, only one proposed
request is chosen.

It is demonstrated by showing that no requests in Free(i)
sequence numbers are chosen, and that requests in ¬Free(i)
sequence numbers are guaranteed not to be substituted by other
requests.

As in Paxos, if the majority of acceptors accept r, the r is
chosen. Before sending any proposal, the proposer has to ask
the majority of acceptor processes for the requests they had
accepted so far. Since at least one acceptor that has accepted
a chosen request is included in the majority, the proposer
is guaranteed to receive all chosen requests in the promise
messages, and must thus propose the chosen requests in their
respective sequence numbers. In order to propose a different
request in sequence number i, the majority gathered by the
proposer must not include any acceptor that had previously
accepted a request in i. This guarantees that only one request
is chosen.

In PRaxos, the leader sends Accept messages for each new
request when the request does not suffer priority inversion
from any ready request, behaving exactly as Paxos. However,
if a request that suffers priority inversion is received, the leader



starts a new proposal by sending Propose to the acceptors. In
that case, for each sequence number i in the sequence that was
Chosen(i), at least one acceptor in the quorum has accepted
the chosen request, and the leader has to propose that request
in sequence number i. Ready requests are only proposed in
sequence number i if Free(i). Thus, requests in Free(i) are
not chosen.

There are instances in which the proposer gathered re-
sponses from the majority of acceptors in which less than the
majority of the acceptors have accepted r in sequence number
i, which means that r is not chosen in i. The proposer could
make the distinction whether r is chosen or not if:

1) the majority included f + 1 acceptors that had accepted
no request,

2) or if the majority included f+2 acceptors that accepted
different requests.

In the first case, since the system is composed of 2f + 1
acceptors, if f + 1 acceptors had accepted no request, the
other f would not constitute a majority, and thus no request
could have been chosen in i.

In the second case, if f + 2 acceptors accepted different
requests, being one of them r, then even if the rest f − 1
acceptors had accepted r, the sum f would not constitute a
majority, and thus no request had been chosen in i.

These two cases are the definition of Free(i). As a corol-
lary, for each position i that is ¬Free(i) there is an acceptor
that accepted a request. In PRaxos, all chosen requests in a
sequence number ¬Free(i) are guaranteed not to be substi-
tuted by another request, and, thus, for each sequence number,
only one proposed request is chosen.�

Lemma 3: Property of Non-triviality: if a request r ∈
learnedp, for any process p ∈ Π, then r has been proposed.
The proof of this property is derived from the previous
lemmas. If a request is learned by a learner, then it was chosen,
and if a request was chosen, then it was proposed. Suppose
that the sequence of learned requests of process p is learnedp,
then, if there is a process p and a request r, where request
r ∈ learnedp, then p has been previously proposed. �

Lemma 4: Property of Agreement: If two processes p and
q in Π learned request r in sequence number i, then r =
learnedp[i] = learnedq[i].

The leader is the first to learn a request, and the other
processes learn it by receiving learn messages from the leader.

Since request r was chosen in a sequence number i, then
it is part of the Processed section of the sequence, and is
guaranteed not to change sequence number. So every process
that learn r will learn it int i: learnedp[i] = r. �

Lemma 5: Property of Priority Order: Ready requests are
chosen in order according to their priorities.

The order in which requests are executed and accepted by
the acceptors is defined by the leader. Each time a priority
inversion occurs because of a high priority request, the leader
reorders the Ready section of the sequence, where sequence
numbers are Free(i), along with incoming requests, in their
appropriate order. Each acceptor process p executes and ac-
cepts requests one at a time, from p.S[0] onward. This way,

if a request r was chosen in i, then p.S[i] was executed and
accepted by f+1 acceptors, and before that, p.S[i−1], and so
on, until the base case p.S[0]. Thus ready requests are chosen
in order according to their priorities.

However, not all positions ¬Free(i) are Chosen(i). This
means that there may be Ready requests, in the Chosen
section of the sequence, that are executed and chosen before
higher priority Ready requests, in the Ready section. This
case may happen if the leader gathers a majority of exactly
f+1 acceptors, one of which has accepted request r in position
i. Position i does not qualify as Free(i), but request r may not
have been chosen, because it may or may not have been ac-
cepted by all f replicas that did not participate in the majority,
either because of message loss or delay. PRaxos treats these
requests as chosen because doing otherwise multiple requests
could be chosen in a position, which breaks one of the safety
requirements.

Figure 3 illustrates this problem. To the leader, δ and γ are
in a similar situation, both have only one accept, but actually, δ
is chosen, and γ is not. The leader cannot consider them Free,
for then δ could cause a priority inversion and change position,
which should not happen to a chosen request. Consequently,
the leader considers them Chosen, but this may lead γ to
cause priority inversion.

Should the system behave in a synchronous way, that is,
with a limit on message delivery time, then all correct replicas
would receive the Propose message from the leader and re-
spond with Promise, successfully delivering their sequences.
In that case, all Chosen(i) positions will be ¬Free(i),
and ready requests are chosen in order according to their
priorities.�

The correctness of the algorithm comes from Lemmata 3,
4 and 5.

VII. EVALUATION

This section evaluates PRaxos and compares it with the
related works. The analytic evaluation of distributed protocols
is usually made in terms of two metrics: number of commu-
nication steps and messages sent. In relation to the latter, we
count a broadcast as n−1 messages, where n is the number of
processes. Moreover, we disregard the messages used by the
client to send a request to the replicas and the messages sent
back by the servers with the replies, as some of the algorithms
do not solve SMR and their cost is always the same (2n
messages, 2 communication steps).

We evaluate the normal case, i.e., the case in a message is
sent, agreed upon, and delivered, without being delayed due to
the arrival of higher priority messages, messages being lost or
failure suspicions in the algorithms that use failure detectors.

PRaxos follows Paxos’ number of communication steps
and number of messages. Messages counted are Accept, and
the two Learn messages. In Paxos, Propose and Promise
messages are exchanged by processes only once after the
election of the leader. This is enough for the leader to know
what requests processes have accepted. The most recurrent
messages are, thus, the three last, which adds to 3(n − 1)



TABLE I
COMPARISON OF RELATED ALGORITHMS

Algorithm Ref Time model # communication steps # messages Message complexity
PritTO [17] synchronous 3 (n− 1)2 O(n2)
Rodrigues et al. [18], [20] failure detector 2 (n− 1) + n(n− 1)2 O(n3)
Wang et al. [19], [21] failure detector 4 (2n3 + 7n2 + 5n− 2)/2 O(n3)
Paxos [6] asynchronous 3 3(n− 1) O(n)
PRaxos this paper eventual synchronous 3 3(n− 1) O(n)

total messages, where n is the total number of processes, and
message complexity is linear O(n).

PRaxos follows similarly. Propose and Promise messages
are exchanged after leader election and when a priority inver-
sion occurs as a high priority request is sent by a client. Still,
the most recurrent messages are the same as in Paxos, and
message complexity remains linear.

Table I shows the comparison between PRaxos and the
related algorithms. PRaxos has better message complexity than
all three compared algorithms. This is consequence of the
design, that aimed at being close to Paxos. The algorithm in
[18] uses view atomic multicast [20] that executes with (n−1)2

messages, and [19] uses the general agreement framework [21]
that exchanges n+ 2n2 messages.

VIII. CONCLUSION

We propose a priority-based consensus algorithm for state
machine replication that does not require a consensus service
and thus works with fewer messages than available algorithms.
This was achieved by adapting the Paxos algorithm to take
requests priority handling by itself, while maintaining safety
requirements from Paxos, in addition to the new constraint.
PRaxos is crash fault-tolerant, with resiliency of 2f + 1.
This protocol can be used in practice to support priorities in
replicated services such as cloud storage services, network file
systems, cooperative backup services, and relational database
management systems.
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