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ABSTRACT
Cloud-backed file systems provide on-demand, high-availability,
scalable storage. Their security may be improved with techniques
such as erasure codes and secret sharing to fragment files and
encryption keys in several clouds. Attacking the server-side of such
systems involves penetrating one or more clouds, which can be
extremely difficult.

Despite all these benefits, a weak side remains: the client-side.
The client devices store user credentials that, if stolen or com-
promised, may lead to confidentiality, integrity, and availability
violations. In this paper we propose RockFS, a cloud-backed file
system framework that aims to make the client-side of such systems
resilient to attacks. RockFS protects data in the client device and
allows undoing unintended file modifications.

CCS CONCEPTS
• Security andprivacy→Distributed systems security; •Com-
puter systems organization→Maintainability andmaintenance;
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1 INTRODUCTION
Cloud storage is increasingly important to individuals and organiza-
tions. Currently it is being used as part of mission-critical systems
like medical record databases and government software that have
strong requirements in terms of security. However, cloud storage
raises important concerns regarding security. First, data is stored
and maintained by a third party, so it may be vulnerable to theft
and corruption [45, 66]. Second, if the cloud provider has an outage
(which is not that uncommon [41]), there is no way to access the
data.
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Several solutions have been proposed to enhance cloud storage
security [2, 9, 10, 20, 34, 54, 68, 70]. An interesting approach is to
encrypt and store data in several clouds, forming a cloud-of-clouds,
allowing to improve data availability, while ensuring data integrity
and confidentiality, even if some of the clouds fail [2, 9, 10, 70].
Some of these systems, and others that are not so concerned with
security and dependability, may be designated cloud-backed file
systems, in the sense that they provide client-side software that
exports a POSIX file system interface [24]. This approach allows
users to use seemingly local files that transparently store data in
the clouds [10, 57, 68].

Despite all these benefits, a weakness remains: the client device.
These devices store user credentials that if stolen or compromised
may lead to violations of confidentiality (files are disclosed), in-
tegrity (files are modified), and availability (files are made inacces-
sible).

Both file systems that store data in a single cloud and in cloud-
of-clouds assume that the client-side – the user’s device or proxy
used to access the cloud – is secure [2, 9, 10, 57, 68, 70]. This is
a strong assumption considering that in many occasions users
leave their personal devices unattended, use weak passwords, have
outdated systems with known vulnerabilities, or fall prey to social
engineering [18, 65]. Once an attacker gains access to a user account,
he can read, modify or delete any file that the user has access to.
Even if the file system stores several versions of the files, the attacker
may delete the old versions or revert a file to the version prior to
the attack, discarding a significant amount of work. Moreover, there
is a reasonably recent surge of ransomware that encrypts device
data, potentially making the user unable to use his credentials and
access the files stored in the cloud(s) [35, 69].

To overcome attacks against client devices, we propose the
RockFS framework,1 a set of components that allow improving client-
side security of cloud-backed file systems. RockFS provides two
sets of security mechanisms to be integrated with the client-side
of a file system: a recovery service capable of undoing unintended
file operations without losing valid file operations that occurred
after the attack; and device data security mechanisms to safely store
encryption keys reducing the probability of having the credentials
compromised by attackers and to protect cached data.

In this paper we present the RockFS framework, a prototype
compatible with most cloud storage systems2 and an experimental
evaluation.

To the best of our knowledge the client-side protections provided
by RockFS are not provided by any other cloud-backed storage sys-
tems, not even individually. Recovery services have been designed

1ROCKFS – RecOverable Cloud-bacKed File-System
2Available for download at: https://github.com/inesc-id/SafeCloudFS.
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for local file systems [26, 31, 36], cloud databases [46], and web
applications in the cloud [47, 52], but not for cloud-backed stor-
age. In relation to device data security mechanisms, backup and
encryption schemes are widely adopted for protecting credentials
in endpoints, but not secret sharing that both protects and allows
recovering credentials [12, 61, 62], and not for cloud-backed stor-
age. This paper presents new protections and demonstrates their
usefulness by leveraging an existing cloud-backed file system, not
by proposing a new one. Specifically, the RockFS prototype is based
on the Shared Cloud-backed File System (SCFS) [10], which itself
is based on the DepSky Byzantine fault-tolerant cloud-of-clouds
storage service [9].

The remainder of the paper is structured as follows: Section 2
describes RockFS, presenting the system model, threat model and
system architecture. Section 3 presents the file recovery mecha-
nisms. Section 4 describes the mechanisms used to secure the user’s
credentials and cached files. Section 5 describes our implementa-
tion of RockFS. Section 6 presents the result of our experiments.
Section 7 describes related work in literature. Finally, Section 8
concludes the paper.

2 ROCKFS
RockFS improves cloud-backed file systems in the two following
ways: it provides logs that allow an administrator to analyze the
usage of the file system and to recover user files stored in the clouds
by undoing unintended operations; it secures user data that is stored
on the client-side, namely, access credentials to the cloud service
providers and cached files by encrypting this data with a key that
is distributed using secret sharing.

2.1 Threats
We assume attackers cannot access the cloud back-ends, however
they may gain total access to the user’s device, therefore RockFS
focuses on three security threats not addressed by current cloud-
backed file systems, as they target the client device:

• Threat T1: Adversary illegally modifies files in the cloud, e.g.
with a ransomware that overwrites the data files in the client
device, which eventually are synchronized to the cloud.

• Threat T2:Adversary prevents a user from accessing the cloud,
by corrupting or deleting the access credentials stored in the
client.

• Threat T3: Adversary accesses the locally cached files, when
he gets access to the user’s device, as the client cache is not
encrypted.

2.2 System Model
We assume that the client device may be compromised by an at-
tacker that may get access to any data that is on the disk. On the
contrary, we assume that adversaries have no access to data in
memory. In relation to the services running in clouds, we make the
same assumptions as cloud-backed file systems, e.g., that the cloud
is not compromised [57] or that no more than a threshold of clouds
is compromised [10].

We assume that communication over the Internet is done using
secure channels that ensure communication authentication, confi-
dentiality, and integrity (e.g., using SSL/TLS). We make the standard

assumptions about cryptography, e.g. that encryption cannot be
broken in practice, that hash functions are collision-resistant, and
that signatures cannot be forged.

In RockFS there are two main actors:

• Users: contract cloud services to store files and access them
remotely using a personal computer or a mobile device.

• Administrators: operate RockFS, i.e., maintain the coordi-
nation service, monitor the usage of RockFS, and trigger
recoveries.

The authentication of both users (PUU , PRU ) and administrators
(PUA, PRA) relies on asymmetric keys (PUblic, PRivate). We assume
that only the owner of a key pair knows the private key, whereas
public keys are known and accessible to every user.

The access control to the cloud storage relies on access tokens (tl ,
tu ). Access tokens are temporary credentials generated by cloud
storage providers that authorize users and applications to use spe-
cific actions of their services without sharing passwords. In RockFS
we use an access token for the log (tl ) that only authorizes to append
data, and another one (tu ) that authorizes users to read and modify
files but not the logs. These access tokens will typically include the
identifier of the user, an expiration date, an identifier of RockFS
and a signature to ensure integrity. We assume that these tokens
are generated by the cloud storage providers in a non-predictable
manner and that it is not possible for an attacker to re-use revoked
tokens. RockFS requires several tokens and keys to ensure integrity
and confidentiality of data. The list is presented in Table 1.

2.3 System Architecture
The system architecture is presented in Figure 1. RockFS can be
deployed using a single cloud or using a cloud-of-clouds. On the top
left of each figure there is a cloud storage service, where the data
is stored (e.g., Amazon S3, Google Drive, etc.). On the top right of
each figure there is a coordination service, which is responsible for
storing logs and other metadata. It is possible to deploy each replica
of the coordination service in a distinct cloud (cloud-of-clouds
architecture), improving the availability of the service. RockFS may
be deployed with coordination services like ZooKeeper [33] or
DepSpace [8]. The client agent, on the bottom, is a middleware
component that runs on the client-side and communicates with the
storage cloud and the coordination service, transparently for the
file system user.

Both RockFS’ users and administrators access the cloud storage
and coordination service, but with different privileges: users only
access their files; administrators access the files and also the logs
used to store recovery data. The users interact with the file system
by invoking the POSIX operations (e.g. open, read, write and close).
The administrator accesses logs to analyze usage and recover from
unintended actions.

The interaction between the client, the cloud storage services
and the coordination service is mediated by the RockFS agent and
the cloud-backed file system (CBFS) agent, that are responsible for
intercepting file system operations with the aid of the FUSE library3.
The RockFS agent performs several encryption and encoding tasks.

3Filesystem in Userspace, https://github.com/libfuse/libfuse
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Entity Notation Description Generated by Stored in

User

PUU Public key of user U User U during setup Shared between the user’s device, coordination service
and external storagePRU Private key of user U

Ai ith log entry secret key RockFS agent Coordination service
Bi ith log entry secret key
tl Access token to create log entries in the cloud storage Cloud providers Shared between the user’s device, coordination service

and external storagetu Access token to manage files

SCi Cloud storage service credentials User and admin. during setup Shared between the user and the administrator’s device,
coordination service and external storageCCi Coordination service credentials Administrator during setup

SU Session key of user U for local cache User U Shared between the user’s device, coordination service
and external storage

Administrator PUA Public key of administrator A Administrator A during setup Shared between the administrator’s device,
coordination service and external storagePRA Private key of administrator A

Clouds

PUSCi Cloud storage service public key Administrator during setup Each cloud storage servicePRSCi Cloud storage service private key
PUCCi Coordination service public key Administrator during setup Each cloud hosting a coordination service replicaPRCCi Coordination service private key

Table 1: Keys used in RockFS with description, who generated them, and where they are stored.
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Figure 1: RockFS architecture (a) with a single cloud stor-
age provider and coordination service (b) with four differ-
ent cloud storage providers and four replicas of the coordi-
nation service.

2.4 Client Architecture
The user device contains the RockFS agent, the local cache and the
keystore, including the private key of the user (PRU ). In order to
access the cloud(s), the RockFS agent needs the access credentials

of each cloud storage provider (SCi ) and cloud used by the coor-
dination service (CCi ). These credentials are stored in a file called
keystore. The keystore is kept in persistent storage. RockFS splits the
keystore in shares and stores them in separate places so that, even
if an attacker accesses one of the shares, he can neither read nor
delete the keystore. This is achieved using secret sharing [12, 62].

When the user performs a login, the RockFS agent needs to
combine some of the shares, e.g., 2 out of 3 shares, to obtain the
credentials, which it keeps only in volatile memory. By default, it
uses the share kept in the coordination service and the share in the
client device. The share in the client device is protected by the user
account access control mechanisms.

For recovery there is one or more additional shares stored in an
external memory, like a USB flash drive, or a smart card, which must
be kept at a secure location. The use of secret sharing is further
detailed in Section 4.1.
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Figure 2: User device with client-side components and exter-
nal memory with one of the shares of the keystore.
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Figure 3: RockFS logging of operations in the file system.

The user device architecture is represented in Figure 2. The
Disk stores the encrypted local cache and one of the shares of the
keystore. The RAM stores the keystore that is reconstructed with
secret sharing. This ensures that even if the user’s device is stolen,
the adversary cannot obtain the access credentials from the disk.
The CPU executes the RockFS agent.

2.5 Logging Architecture
Figure 3 represents the architecture of the subsystem used to log
file system operations in order to support recovery. The operations
are logged in a coordination service (top-right of the figure). This
coordination service will contain the metadata corresponding to
the log entry, i.e., a timestamp, file identifier and user identifier.
The log entry data is stored in the cloud storage.

The figure also represents what happens when the user closes a
file after writing into it: the file and log data are uploaded to the
cloud storage services. Then, a log entry is created in the coordina-
tion service. Finally, in some cloud-backed file systems (e.g., SCFS),
the file metadata will be updated in the coordination service. This
step must be performed at the end to ensure that all data – the file,
log data and metadata – is stable before notifying the user that the
operation was completed successfully. This step is done at the end
rather than at the beginning to prevent other users from seeing
data files that were not yet uploaded to the cloud, or may not be
uploaded if the client crashes during the operation.

Each log entry has two parts: the data part and the metadata
part. These parts are kept in different systems for two reasons: first,
the data part requires more storage space, so it is more effectively
stored in a cloud storage service; second, the metadata needs to
be queried by the administrator, something that is supported by
coordination services, but is harder with cloud storage services
(typically the data would have to be downloaded before the query
being processed).

3 STORAGE RECOVERY
This section details how RockFS handles threat T1: an adversary
illegally modifying files as if he was their owner (see Section 2.1).

When an adversary hijacks a user’s session, e.g., by stealing his
computer, he can tamper with the user’s files. Every action executed
in the user’s device that modifies a file is eventually synchronized
to the storage cloud(s), so the effects of an attack that occurred on
the client-side are propagated to the cloud-side. When this happens,

the cloud(s) will have tampered files. To cope with this vulnerability
we propose a recovery approach that enables the administrator to
identify malicious operations and undo them.

3.1 Recovery and Logging Threats
The log is the resource that allows the administrator to recover
from attacks. As such, it becomes a target for an attacker that wants
to prevent the administrator from recovering the file system. After
modifying user files, an attacker may also try to modify the log
entries corresponding to his actions in order to make the effects of
the attack permanent. More exactly, in RockFS an adversary may
try the following attacks:

• A1: attacker illegally modifies user files in the cloud storage
services;

• A2: attacker illegally modifies log entries;
• A3: attacker illegally modifies both the user files and corre-
sponding log entries;

If an attacker succeeds in A1 or A3 it is still possible to revert
what he has done by recovering the affected files, as explained
further in Section 3.3. To cope with A2 we propose a log integrity
check mechanism explained in Section 3.2.

3.2 Logging
To enable the administrator to undo the faulty operations per-
formed by adversaries, all modifications done to a file have to be
registered in a log. The RockFS agent is the component responsible
for recording these operations. The log is stored alongside with the
files in the cloud or cloud-of-clouds, with the protections provided
by the cloud-backed file system (more precisely by its cloud-access
subsystem, such as the one available in DepSky [9]).

The metadata that is logged in the coordination service for an
operation, lmf u , contains a timestamp, the user identifier, the file
name, the version identifier and the operation (create, update or
delete).

The log data of the user’s files, ldf u , is stored encrypted in the
cloud or cloud-of-clouds and consists of the differences between
the new version of the file and the previous one or, if the differences
are larger than the file, the file itself.4

Logging is triggered when a file is closed. Specifically, when
the POSIX operation close is invoked on a file fu , the following
operations are executed by the RockFS agent:

• Compute ldf u , a file with the differences between fu and its
previous version that is stored; if ldf u is larger than fu , then
consider ldf u to be fu (a flag indicates which is the case);

• ldf u is encrypted using a random secret key Sf u ;
• If a cloud-of-clouds is being used, the encode function is
used to split ldf u in n shares, where n is the number of
clouds used;

3From time to time it is necessary to create a snapshot of the file system in order
to clean old log entries (for instance, by moving them to cold storage, e.g., Amazon
Glacier [4]) and save some storage space.
4More sophisticated policies might be devised but we simplify by considering that
the best is to store whatever is the smallest between the two: differences or whole
file. Nevertheless, we expect the differences file to be typically much smaller than the
whole file, except for small files.
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• ldf u is sent to the cloud storage service or services (one share
per service in the latter case) following the same scheme
used in the cloud-backed file system;

• The key Sf u is stored in the same way the cloud-backed file
system does, e.g., in the coordination service or by splitting
it in shares using secret sharing and storing one per cloud
(as in SCFS [10]);

• Log metadata lmf u is stored in the coordination service;
• Finally, both the file and log data are uploaded to the cloud
storage back-end after its corresponding metadata was up-
dated in the coordination service.

Both the log entries and files are uploaded to the cloud or cloud-
of-clouds by the agent. If an adversary gains access to the user’s
device, he could try to erase or modify the log entries in order to
prevent the administrator from recovering the file. To prevent this
from happening, RockFS uses two distinct access credentials for the
cloud storage: the user’s files token, tu , and the logging token, tl .
These tokens are generated by the cloud storage providers and they
restrict access in a way that tl cannot be used tomodify the user files
and tu cannot be used to tamper with the log entries. Most cloud
storage services provide such control access mechanisms [5, 17, 38].
Figure 3 shows how RockFS agent uses these credentials.

By using the logging token, tl , we ensure that even if an ad-
versary gains access to the user’s device he cannot tamper with
the existing log entries. He can only create new log entries in or-
der to try to interfere with the recovery process. To ensure the
recovery is done correctly, RockFS has to provide forward-secure
stream integrity [44], a property that ensures that logs, which are
considered to be streams of sequential entries, can be verified for
integrity. The scheme we leverage in RockFS is the forward-secure
stream integrity scheme (FssAgg) presented in [44] that provides
the following guarantees:

• Forward Security: the secret signing key used in the scheme
is updated by a one-way function, making it computationally
unfeasible for an attacker to recover previous keys from a
current, stolen, key;

• Stream Security: the sequential aggregation process preserves
the order of the log entries and provides stream-security;

• Integrity: illegal insertions, modifications and deletion of log
entries are detected.

This scheme provides the following functions:
• FssAgg.Kg: generates pairs of asymmetric keys;
• FssAgg.Asig: generates an aggregate signature for a log
entry. Takes as input the previous aggregate signature, the
log entry and the current secret key.

• FssAgg.Upd: updates the secret key used to authenticate
each log entry;

• FssAgg.Aver: verification algorithm that takes as input a
log entry and the corresponding signature.

These protections are relevant for the security goals of RockFS
and the system implements them. The forward-secure stream in-
tegrity scheme [44] allows the integrity of the entire log to be
checked. This requires that, during setup, two random symmetric
keys, A1 and B1, are securely exchanged between two parties. We
assume the administrator himself is responsible for providing these
keys to the cloud storage servers (stored in shares using secret

sharing) and the coordination service. For every new log entry Li
that is created, RockFS agent will generate a hash value based on
the previous ones:

Ui = H (Ui−1 |macAi (Li ))

whereUi is a FssAggMAC of the ith entry of the log. It is calculated
by the hash of the concatenation of two values: the previous Ui−1,
and the MAC of the current log entry with the current symmetric
key Ai . Ai evolves in each new log entry by using an hash function
(Ai = H (Ai−1)).

The new hash values are then uploaded to the cloud storage
servers and the coordination service. A more detailed explanation
and proof of work can be found in [43].

3.3 Recovery
Before recovering a file, the RockFS agent needs to verify the in-
tegrity of the log entries using the forward-secure stream [43]
verification algorithm. This is done by taking the symmetric key
A1 and and computing the corresponding hash values (A′

i ) for each
log entry (Li ). Then RockFS compares the computed hash values of
each entry (A′

i = Ai ). If they match then the log entries are valid
and the recovery process can initiate. Otherwise, the invalid log
entries are removed.

Recovering a file, as opposed to rolling it back to a previous
version, allows users to erase illegal modifications while keeping
the valid ones that occurred after the attack. To do so it is necessary
to reconstruct the file by executing each valid action. This technique
has been proposed in a different context and named as selective
re-execution [36]. It can be executed from the first operation that
created the file or by obtaining the latest valid version of a file.
From this point, RockFS will apply every valid operation to it until
the present time. In more detail:

(1) The administrator fetches the first version of fu and its cor-
responding log entries, LDf u (LDf u is an array with several
ldf u );

(2) The function decode is used to join the shares of both the
fu and every ldf u

(3) The administrator selects the malicious modifications from
LDf u and discards them;

(4) For each ldf u in LDf u , the function patch is invoked to apply
ldf u to fu ;

(5) File fu is shared by the encode version and sent to the cloud
storage services.

Steps 2 and 4 are only necessary if the file system is backed by
a cloud-of-clouds offering. If the file system is backed by a single
cloud, then there is no need to share the log entries and the file.

In relation to step 3, notice that we assume that there is someway
of knowing which modifications have been compromised. This is a
problem of intrusion detection to which there are many solutions
[39, 58], so we simply take that for granted.

It is worth mentioning that the recovery operations will be
logged as well. This means that, if a file gets corrupted a second
time after it was already recovered, then the RockFS will execute
the same operations on the file that were executed in the first re-
covery. This happens because we want to ensure integrity of the
log entries and by not allowing even the administrator to erase or
modify log entries we are also avoiding adversaries to do so.
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4 SECURING THE USER DEVICE
In this section we propose solutions for the threats T2 (adversary
corrupting access credentials) and T3 (adversary accessing files
cached in the user device) presented in Section 2.1. The user de-
vice stores two types of sensitive information: the credentials for
accessing the cloud(s), and the local cache with the most recently
accessed files. By corrupting the access credentials an attacker may
violate the availability of the service. If the local cache is accessed
by an attacker both the integrity and confidentiality of the user
files are at risk.

4.1 Securing User Credentials
The credentials are protected with secret sharing [62]. The idea is
that, even if the user’s machine is compromised and the keystore
is corrupted, the user may still recover his credentials and resume
the use of the cloud-backed file system.

In a secret sharing scheme there is a special entity, the dealer, that
splits a secret among n parties. Each party gets a share of the secret,
meaning that if an attacker succeeds in obtaining one of the shares
he cannot reconstruct the secret. With such a scheme, k < n shares
of the secret are required to reconstruct it, therefore an attacker
would need to be get k shares to recover it. More specifically, in
this work we use a secret sharing scheme called publicly verifiable
secret sharing scheme (PVSS) that allows verifying if the shares are
corrupted [61].

In RockFS, the PVSS scheme is used to break the keystore with
the credentials in shares. The client acts as a dealer, sharing, combin-
ing and verifying the shares. PVSS provides the following functions:

• share, invoked by the client to obtain the shares of the
keystore;

• combine, invoked by the client to reconstruct the keystore
using k shares;

• verifyD, invoked by the servers to verify if the received
share is legitimate;

• verifyS, invoked by the client to verify if the shares sent
by the servers are legitimate.

The shares of the keystore are generated during setup, in the
following way:

• The RockFS agent asks the user for how many shares of the
keystore (n) should be generated, and how many are needed
to reconstruct the keystore (k);

• The RockFS agent invokes the share function of the PVSS
with parameters n and k ;

• One of the shares is sent to the coordination service while
the remaining shares are given to the user so he can choose
where to store them,

• The shares given to the user are erased from disk and RAM,
and the setup is complete.

By default, the user keeps one secret share on his device, for
making it simple to log in RockFS (assuming a scenario with n = 3
and k = 2) and another share in the coordination service (so the
k = 2 that are needed are available online). However, the PVSS
allows the user to choose a different way to split the secret (different
parameters n and k) and different devices where to store them, for

added security. The user’s smartphone can be used for this purpose,
or other more elaborate password stores [63].

A user recovers the keystore in two situations: every time he
logs in, and when his device was compromised and he needs to
recover the keystore using the share kept in external memory. For
both cases the recovery works as follows:

• The user provides k − 1 shares (the remaining one is located
in the coordination service);

• RockFS agent fetches the remaining share from the coordi-
nation service;

• RockFS agent executes the PVSS function verifyS to verify
if all the shares are legitimate;

• RockFS agent executes the PVSS function combine and loads
the keystore into memory. In any case the keystore is on the
disk.

This scheme protects the keystore from deletion or ransomware
encryption, unlike the alternative of encrypting the keystore with
an user-provided password (which would be converted to an en-
cryption key). It also protects the keystore from being read at the
disk, unlike the alternative of backing it up. In relation to the alter-
native of both encrypting and backing up the keystore, the solution
still provides the benefit of not requiring the user to introduce a
password.

4.2 Securing the Device Local Cache
In RockFSwe proposemechanisms to verify the integrity and ensure
confidentiality of the local cache on the device, which stores the
files recently accessed by the user. The existence of this cache in
a cloud-backed file system is not mandatory, but in practice it is
essential for the performance to be acceptable (otherwise, e.g., the
client would block for long periods waiting for reads or writes in
the storage clouds).

Figure 4 represents the extension of the POSIX file operations
open and close that have to be modified for protecting the cache.
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Figure 4: RockFS operations, the read and write operations
from the cloud-backed file system remain unaltered. The op-
erations open and close decrypt and encrypt the local cached
files to ensure data confidentiality.
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4.2.1 Confidentiality. Local cache files are encrypted using a
session key, SU , to ensure confidentiality. This key has a short
validity (configurable by the administrator), and is associated with
an entry in the coordination service, preventing an attacker from
reusing old session keys. On open, the RockFS agent:

• Checks if SU is still valid, if not the local cached file is dis-
carded and a new SU is generated and exchanged with the
coordination service;

• Decrypts the opened file and loads it.
The file close operation:
• Creates a log entry for the file update, and uploads the log
entry to the cloud;

• Uploads the file to the cloud;
• Fetches SU from the keystore;
• Removes the log entry from the disk or memory;
• Encrypts the file that was closed.

Besides encrypting the locally cached file, the close operation
also logs the modifications, as detailed in Section 3.

4.2.2 Integrity. The integrity of the local cache is ensured us-
ing cryptographic hash functions, which are encrypted with SU
together with the rest of the file. When a user invokes the open
operation on a file fu , the RockFS agent:

• Fetches hf u , the hash value correspondent to fu ;
• Computes a hash value h′f u of fu ;
• Compares both hash values, hf u and h′f u . If they match the
file is opened, otherwise the file is discarded and a valid
version of the file is fetched from the cloud.

When the user invokes the close operation on a file fu :
• A new hash value, hf u , is calculated and stored in the local
cache alongside fu ;

• The file fu and hf u are encrypted.

5 ROCKFS IMPLEMENTATION
In our implementation of RockFS we used a modified version of
SCFS as cloud-backed file system [10]. Most modifications were
made to implement the log of operations and extend the compatibil-
ity of SCFS with more cloud storage back-ends by using JClouds [1].
SCFS works with a single cloud or with a cloud-of-clouds, but we
considered only the latter configuration, as it provides stronger
security and dependability assurances for the server-side (i.e., the
cloud). The underlying protocol, DepSky, deals with the heterogene-
ity of the different clouds and is compatible with most commercial
cloud storage. As coordination service we used DepSpace, also sup-
ported by SCFS. We start by presenting these components before
presenting the implementation of RockFS itself.

5.1 DepSky Cloud-of-Clouds Storage
DepSky is a dependable and secure cloud-of-clouds storage system
that addresses four limitations of existing cloud storage services:
loss of availability, loss and corruption of data, loss of privacy, and
vendor lock-in [9]. It works by using a collection of cloud storage
services that are managed remotely by a client library. The user
files are stored encrypted in public clouds.

It also uses erasure-codes [16, 27–29] to reduce the required
storage for the user files. This way, instead of having n copies of a
file distributed in n cloud providers, only a fraction of n (usually
half) is needed. DepSky provides a consistency level similar to the
weakest consistency level given by the cloud providers. For each
user file in the clouds, there is the file itself and a signed metadata
file that stores the version number of the file and verification data.

DepSky supports two protocols: A and CA. A, which stands for
availability, and CA, which stands for confidentiality plus availabil-
ity. The A protocol replicates the file in each cloud storage. This
improves availability at the cost of the extra storage (n times the
size of the file). The CA protocol encrypts each file with a symmetric
key before sending it to the cloud. Then the key is split in n parts
using secret sharing, requiring at least k + 1 parts to reconstruct
the key. The file itself is also split in n shares using erasure-codes,
which will require k + 1 shares to reconstruct it. The CA protocol
requires less storage thanks to the erasure-codes (n−kn as opposed
to n).

RockFS uses the CA protocol for two reasons: first, it requires
less storage space, and, second, it encrypts the files and secures the
encryption key with secret sharing, which fits our system model.

5.2 SCFS Cloud-of-Clouds File System
SCFS [10] is a distributed file system supported by DepSky, when
configured for cloud-of-clouds (the case we consider). It provides
consistency-on-close semantics [30]. Its architecture is more com-
plex than DepSky because it requires a coordination service to keep
the logical structure of the file system and to coordinate concurrent
accesses from multiple writers.

SCFS provides confidentiality of data stored in cloud storage
providers through the mechanisms of DepSky: the user’s files are
encrypted and the secret keys are protected using secret sharing.
These encryption mechanisms ensure confidentiality of data in
the cloud. However, the data stored in the user’s personal device
is not encrypted since it is assumed to be trusted. Metadata of
SCFS is stored in the coordination service for three reasons: the
coordination service offers consistent storage; it uses replication to
cope with faults; and because it can be used to cope with faults and
to implement synchronization operations, such as file locking.

5.3 DepSpace Dependable Coordination Service
DepSpace [8] is a Byzantine fault-tolerant distributed coordination
service. It was designed to run on a cluster of commodity machines,
making it possible to deploy in any infrastructure cloud service.
Unlike other coordination services like ZooKeeper [33], DepSpace
tolerates arbitrary faults. It uses Byzantine fault-tolerant proto-
cols [6] to ensure correctness in the event of up to f arbitrary faults
(also designated Byzantine faults), requiring 3f + 1 replicas, pos-
sibly running in different cloud services, for that effect. DepSpace
provides a tuple space which can be used to implement locks, timed
tuples, partial barriers and secret storage.

One of the limitations of the original DepSpace was the fact that
it maintained its state in volatile memory, making it impossible to
recover if more than f replicas failed by crashing. An enhanced
version was proposed in [11] and is being used by RockFS. It applies
check-pointing and logging mechanisms that use external storage
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to keep recovery data. These mechanisms also allow the migration
of a DepSpace cluster to a different cloud provider, thereby avoiding
vendor lock-in.

5.4 RockFS Implementation
RockFS was implemented in Java SE 8. We chose this programming
language since all the components of SCFS were written in Java and
every cloud storage service used in this work also provides Java
APIs. Also, since Java is a multi-platform language, it is possible to
deploy in distinct execution environments, making it more robust
against operating system specific vulnerabilities.

The size of the keys as well as the algorithms used to generate
them were chosen taking into account their security in the long
term. According to ENISA, the recommended values are: SHA-512
for hash values, 512 bit elliptic curves for public keys and AES-256
for symmetric keys [22].

The keystore (depicted in Figure 4) is a text file with the access
credentials for cloud services, the access credentials for the coor-
dination service, the sessions keys (SU ) and the private key of the
user (PRU ). This file is never stored on persistent storage (disk).
It is split in, at least, three shares: with one of the shares in the
coordination service, another in the user’s device and an extra one
in a external storage (USB memory or smartcard), especially for
recovery. To recover the keystore it is not enough to reveal the
secrets since this file is also encrypted (with AES-256), requiring a
user password to decrypt it. Once it is decrypted it is loaded into
memory (RAM).

The RockFS agent uses a variation of the UNIX diff command [32]
called JBDiff 5. This command is used to calculate the log entries of
each file operation. Each log entry is in fact the difference between
the old version and the new version of a file. Recovery is done
by reconstructing a file, i.e., executing the corresponding patch
command sequence.

6 EXPERIMENTAL EVALUATION
The performance of the protections for the credentials (threat T2)
and cache (T3) was found to be below tens of milliseconds, so their
cost can be considered negligible in the overall cloud-of-clouds
solution. Therefore, our evaluation focused on T1, i.e., on the costs
of the recovery scheme presented in Section 3.With the experiments
performed we wanted to answer the following three questions: (a)
What is the cost, in terms of performance, of having the RockFS
agent log every file operation? (b) What is the cost, in terms of
storage, of saving every file modification? (c) How long does it
take to recover files depending of the number of modifications they
suffered? The answer to this last question is relevant to assess how
effective our solution is against ransomware attacks.

In the experiments we wanted to simulate a realistic scenario in
which RockFS would be deployed in at least two different clouds.
This way it would be possible to ensure that metadata and data are
stored in different locations (logically and geographically) ensur-
ing that even if one cloud gets compromised, it is not possible to
read the users’ files. We set up RockFS using two different clouds:
Amazon S3 [5] for the cloud storage services; and Google Compute
Engine [38], for the coordination service. Regarding the Amazon
5Java Binary Diff https://github.com/jdesbonnet/jbdiff

S3 storage services, we set up 4 storage buckets in Ireland. In the
Google Compute Engine we created 4 instances (for the 4 replicas
of DepSpace) with 1 vCPU and 3.75GB of memory for each machine.
All 4 replicas were located in the Belgium data center.

For the client machine, we created an instance, again with 1
vCPU and 3.75GB of memory, in the London data center. This
additional instance serves as a client of RockFS and will execute
the RockFS agent code. We chose to execute the client on the cloud
for two reasons: first, it provides a stable Internet connection; and
second, this machine is as simple as possible, meaning that no extra
software running in the background interferes with the execution
of the experiments.

6.1 Latency Overhead of Log Operations
To calculate the latency of logging operations we created aworkload
that consisted in creating files and then updating these files with
an extra 30% content. We vary the size of the files between 1 and
50MB, according to statistics from [3]. Given that SCFS offers two
different approaches for file synchronization (blocking and non-
blocking), we performed the experiments with both configurations.
Each test was repeated 10 times and the values presented in the
graphs correspond to the average values.
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Figure 5: Latency of using RockFS with and without the log.

Figure 5 presents the average latency of logging file operations
in RockFS. The latency is the time it takes since the user finishes
updating the file, i.e. invoking the POSIX close function, and the
time the coordination service finishes recording the file operation.
The latency values without log were collected executing the work-
load on SCFS. The latency values with logging are, on average, 20%
higher than the ones without logging. This overhead is expected,
since it takes time for the RockFS agent to compute the log entry
(differences between versions) and to upload these differences to
the cloud. Several optimizations were performed to reach this value.
The two most important ones were (1) both the logging and the
file operation are processed in parallel by the coordination service,
and (2) the file and log entry uploads are also done in parallel. This
20% overhead can be reduced by improving the network bandwidth
(for instance, by using the same data center for the storage services
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and the coordination services) and by improving the computing
hardware of the client (to process the differences quicker).

In a different experimentwe usedmicrobenchmarks from FileBench
[23] to execute different workloads. Table 2 shows the results of
three different workloads: sequential write, that appends data to
the end of a file; random write, that modifies a random section of a
file; and create files, that creates new files without modifying them
afterwards. Each workload was tested in both SCFS and RockFS in
two different modes: non-blocking (NB) which synchronizes files to
the cloud in the background allowing the user to proceed his work,
and blocking (B) which blocks the application until the modified
file has been completely uploaded to the clouds. We tested these
three workloads with both SCFS and RockFS to understand how
much does it cost, in terms of performance, to log file operations.
Unlike the original experiments in SCFS [10] that executed several
workloads of read operations, in this case we are only interested in
testing operations that modify files, since these are the only ones
being logged by RockFS. The overhead of using RockFS according
to the results shown in Table 2 is non-negligible but can be consid-
ered acceptable, especially in the non-blocking mode which is the
recommended configuration.

6.2 Storage Overhead of Log Operations
We did experiments to find out how much more storage RockFS
needs to keep all the logs of several file operations. To do so we
executed 1, 10 and 100 file updates in files with sizes again varying
from 1MB to 50MB.

Experiments show that the storage overhead of the log is signifi-
cant. Every time a user appends 10MB to a file, an extra 10MB are
added to the log. In this system model we are using the CA protocol
of DepSky (described in Section 5.1) which uses erasure-codes to
reduce the required storage to 2 times (as opposed to 4 times in the
A protocol) i.e. a log entry of 10MB will occupy 20MB overall in
the clouds.

It is also worth noting that a file that is modified several times
will create a log history greater than a file that is created once and
subsequently is not modified. In these experiments we wanted to
evaluate how much storage does it take to store the log entries of
files that are rarely updated (1 version), moderately updated (10
times) and intensively updated (100 times). Each modification to
the file was in 30% of the original size of the file (e.g. a file with
10MB was updated with more 3MB every time).

Figure 6 presents the storage overhead of logging different files
with different versions. The storage growth is linear. The red bars,
labeled as "without log entries", represents the total storage oc-
cupied the file itself in the clouds. It is worth noticing that each
file occupies twice its size in the clouds storage due to the use of
several clouds and erasure codes. The increment in the total size
for the blue bars (with 1 log entry) is only marginally superior to
the red bars because it represents the size of the file plus the log
entries, which only contains the delta of the modifications. For
the 10 versions we can see that the required storage for the log is
greater than the file itself. This motivates the adoption of a future
snapshot mechanism to create backup versions of the files in order
to discard log entries. The log size values for the 100 versions file
are not in the chart. The sizes vary from 60MB (for the 1MB file) to
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Figure 6: Required storage for the files and logs in the cloud
storage services.

around 3GB (for the 50MB file). It is worth noticing that existing
cloud-backed file systems already employ a multi version approach
to prevent data loss. In such systems the amount of storage required
to save every version of the file would be greater than the RockFS
logs, since it just stores the delta encoding of each version.

It is possible to calculate and approximation of the total required
storage s for a file in version n with a percentage of modifications
δ by computing the following equation:

sn = 2 × (sn−1 + δ × sn−1) (1)

The storage overhead is considerable but it is not detrimental
of the adoption of RockFS for two reasons. First, cloud users and
providers seem not to be too eager to minimize the storage space
used as, for example,Microsoft OneDrive by default keeps in storage
500 versions of each file. Second, most cloud providers offer cheaper
cold storage to which older versions can be moved, e.g., Amazon
Glacier. Compression techniques could also be used to reduce the
overall storage required by RockFS. This is a problem we intend to
explore as future work.

6.3 Mean Time to Recover Files
The MTTR (Mean Time to Recover) a specific file varies according
to the number of versions of that file. A file that was only modified
once before being attacked can be recovered by executing a patch
operation (i.e. applying the differences in the log to the original
version), while a file that was modified 100 times requires 100 patch
operations to be executed.

Here we are recovering the file system from a ransomware attack.
In this type of attack, every file in the file system is corrupted
(encrypted). First we did experiments to measure the recovery of a
single file. Then we did experiments with the recovery of the set of
all files.

To evaluate the MTTR of different files we took the files and
log entries from the previous experiments and recovered each file
10 times (to reach an average value). Again, a file with 1 version
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Micro-benchmarks # Operations File size SCFS RockFS Overhead
NB B NB B NB B

write 1 4MB 1.63 1.71 1.90 2.12 17% 24%
create 200 16KB 197.60 236.76 219.00 298.20 11% 26%

Table 2: Latency (in seconds) of Filebench micro-benchmarks for SCFS and RockFS.
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Figure 7: Mean time to recover files with 1, 10 and 100 ver-
sions.

means that was created and modified just once while a file with 100
versions means that after its creation, it was modified 100 times.

Figure 7 presents the MTTR of several files with different ver-
sions. Although the MTTR grows linearly with the file size, in the
100 versions files the growth is steeper. The time varies from around
2 seconds (for 1 version file with 1 MB) to around 40 seconds (for
the 100 versions file with 50MB). We optimize the recovery process
by downloading every log entry of the file to be recovered at once,
instead of downloading each entry at a time.

To evaluate how RockFS recovers a complete file system from
such attack, we created 16KB files (from 10 to 10,000) and modified
them several times (from 1 to 100 versions with each modification
being a 4KB write in the file). Then RockFS recovered every file
of the file system. The results are presented in Figure 8. The mean
time to recover grows exponentially with the number of files in
the file system. In the worst case of the experiments (10,000 files
with 100 versions each) it took around 2 hours and 5 minutes to
recover every file in the system. Considering the hindering effects
of a ransomware attack, the full recovery time is acceptable. This
is still a considerable time but once RockFS starts the recovery
process, files become gradually available for the user. Because of
this property of the system, the recovery can start with the most
urgently needed files, as specified by the user. And assuming that
a regular user does not access every file in the system at once,
this allows him to resume working while RockFS continues the
remaining recovery process in the background.
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6.4 Network overhead
There is a network overhead every time a user modifies a file and
when an administrator recovers a file. It is possible to calculate how
much network traffic will be spend by computing a model for the
upload and a model for the download. Moreover, this model allows
the users of RockFS to calculate how much more will it cost, in
terms of monetary costs, to use RockFS as opposed to a single cloud
storage without recovery capabilities.

In the following models we assume a network overhead of σ that
is depends on the size t of the file, the delta encoding percentage of
the file – δ , the number of clouds – n and the number of versions
of the file – v .

6.4.1 Network overhead while logging. Every time a user updates
a file it is automatically uploaded to the cloud (or clouds). RockFS
will also append the delta encoding of the modifications to be stored
as the log entry of that file operation. Given that a cloud-of-clouds
configuration requires data to be sent to multiple clouds such cost
must bemultiplied by the number of clouds. In the endwe can divide
the total cost by 2 given that we use erasure codes to fragment data.
The following equation can be used to calculate the total cost of
using RockFS to log every file operation.

σ =
((t + δ × t) × n)

2
(2)
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For example, by computing this model with a fixed δ = 30% and
n = 4, uploading a 1MB file will result in 3MB traffic while a 50MB
file will result in 130MB.

In terms of monetary costs, most cloud storage services do not
charge for uploading data. Network-wise logging every file opera-
tion will not have an impact in the service bill.

6.4.2 Network overhead while recovering. When the administra-
tor recovers a file, RockFS will download the first version of that file
and every log entry. The following model can be used to compute
the total network traffic required for recovering a file.

σ =
((t + δ × t ×v) × n)

2
(3)

For example, by computing this model with a fixed δ = 30% and
n = 4, recovering a 1MB file with only 1 version will result in 3MB
traffic while a 50MB file with 100 versions will result in 3.1GB. As of
April, 2018, Amazon S3 charges about 9 cents of a US dollar for GB
downloaded from their cloud. Other cloud storage services charge
a similar price for their services. This means that the 50MB file
with 100 versions will cost the user around 27 cents of US dollars
to recover, while the 1MB file with only 1 version would cost less
than a cent.

7 RELATEDWORK
RockFS fits in a large class of file systems that aim to provide
security guarantees when using the cloud. There are some solu-
tions to provide confidentiality and integrity for files stored in
a single cloud, leveraging different cryptographic schemes. Buri-
habwa et al. present an interesting survey and comparison of such
schemes [14]. SafeFS [55] is a modular file system that offers secu-
rity building blocks based on encryption, replication and coding.
Like RockFS, SafeFS is implemented in user space using FUSE to
intercept system calls for the file system. None of these systems
considers client-side security aspects.

The system architecture of RockFS shares some similarities with
Tiera [56], in the sense that it relies on a middleware that runs in
the client to abstract the complexity of different cloud services.

Versioning filesystems. The idea of creating a new version for
a file every time it gets updated was explored in [48, 50, 59, 67].
These versioning file systems ensure that it is possible to recover
an older version of a corrupted file, however, they require a con-
siderable amount of extra storage. In [19], the authors propose
two space-efficient metadata structures for versioning file systems,
journal-based metadata and multiversion b-trees, which reduce the
required storage by 80% and 99%, respectively, when compared
with [48, 59]. Journal-based metadata operates like a write-ahead
log, recording the file changes of each file (instead of creating a
new copy of the file when it gets updated). When an old version
needs to be restored, each change is undone backward through the
journal until the desired version is recreated. This process is called
journal roll-back. Multiversion b-trees work by storing file versions
in a binary tree. Each file version has a specific key and timestamp
to identify it. When an old version of a file needs to be recovered
it can be read from the tree without needing to be reconstructed.

Although both structures are capable of recovering older versions
of files, journal-based metadata is slow to fetch older versions while
multiversion b-trees can fetch older versions almost immediately.
This comes with the cost of extra storage and overhead when fetch-
ing files during normal operation, since it is required to navigate
through an entire b-tree with several versions of files. Given the
system model of RockFS, the journal-based approach was used, to
reduce the required storage to store the files’ metadata. In Git [67]
every version of an immutable object is stored, allowing users to
revert to previous versions. What differs between Git and RockFS
is that RockFS keeps logs in an isolated storage, which is not ac-
cessible by any user of the system except for administrators. In
Git, if an attacker manages to gain access to a user account with
high privileges he can rewrite the history of any file, making the
recovery process impossible. RockFS also employs mechanisms to
ensure that if the log are tampered it is possible to detect such
corruption and abort the recovery process.

Intrusion recovery. The problem of recovering from intrusions
by undoing malicious operation has been explored in the literature
for some years. Taser [26] is an intrusion recovery service for (lo-
cal) file systems. It aims at reverting malicious actions taken by
attackers while preserving legitimate actions. It operates in three
steps: auditing, analysis and recovery. The auditing phase collects
operation logs, the analysis phase is started by the administrator to
obtain dependencies between operations, and the recovery phase
reverts malicious operations by performing a selective redo of the
legitimate operations. RockFS shares some similarities with Taser,
but includes several mechanisms that are necessary to fit the cloud-
of-clouds model: logging of the user who performed the action;
recovery on both the client and cloud sides; and the assumption that
the operations log is not a trustworthy component and, therefore,
requires additional integrity protection mechanisms.

Back to the Future is a framework that uses an approach similar
to Taser’s for malware removal [31]. A monitor is responsible for
intercepting all read and write operations from processes, then a
logger records these operations so that later a recoverer is able to
undo faulty operations. In order to preserve integrity, trusted and
untrusted processes are taken into account by the monitor. This
guarantees that trusted processes do not read untrusted data.

The Retro system [36] repairs desktops or servers that were com-
promised by applying selective re-execution of legitimate actions.
This technique undoes malicious actions performed by adversaries
while keeping legitimate files intact. Retro records an action history
graph that describes actions and their dependencies. This graph
allows to recover the system with minimal impact since only the
malicious actions and their dependencies are recovered. Retro also
employs a mechanism to execute compensating actions, which al-
low the propagation of recovery to external services. Retro solves
one limitation of Taser when it comes to refining legitimate and
illegal actions. Taser may incur false positives, i.e. undo legitimate
actions. RockFS is fundamentally different from Retro, as it does
not employ any mechanism to take into account how processes
affect the file system.

The use of erasure-codes to recover data files has been proposed
in other works [16, 27, 29]. More recently, Mitra et. al. [49] proposed
Partial Parallel Repair (PPR), a novel method to recover data files
using erasure-codes. As the authors show in their work, PPR is
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able to reduce the required time to recover a data file by computing
the repair process of the shares in parallel. Although this solution
provider better performance when comparing to ours, because we
are using storage containers without computation capacity, it is
impossible to adopt the PPR mechanism.

Log integrity. As explained above, the recovery log has to pro-
vide forward-secure stream integrity [44]. The first solutions to
enforce this property were based on forward-secure sequential
aggregate signatures. These solutions generate a single digital sig-
nature or message authentication code to protect the whole log
[42, 43]. However, such schemes have two problems: they are not
secure against truncation attacks (the attacker can delete a con-
tiguous segment of entries at the end of the log) and delayed de-
tection attacks (the attack is not detected until the entire log is
downloaded to a trusted server). RockFS uses the forward-secure
stream integrity scheme (FssAgg) of Ma and Tsudik that solves
these two problems [44]. There are similarities between forward-
secure streams and blockchains [21, 51, 53], as both aim to provide
integrity of a log. The original blockchain is the core of the Bitcoin
cryptocurrency [51]. Bitcoin relies on a peer-to-peer network of
miners that remove the need for a trusted central authority. Each
miner is randomly assigned the right to add new blocks to the
chain. To be able to do so, it has to solve a cryptopuzzle, which is a
slow and power-hungry process. As of November 2017, Bitcoin can
only handle 7 transactions per second with the maximum block
size of 1 MB [51]. For this reason, proof-of-work blockchains like
Bitcoin are not suitable for log integrity protection, as required
by RockFS. Regarding other approaches, there are proof-of-stake
blockchains that use alternative means to randomly assign the right
to add blocks [7, 37]. These approaches require a large number of
participants and activity level that is not a good fit for a user-driven
file system like RockFS. Permissioned blockchains like Hyperledger
Fabric would be a better fit, as they perform better than their per-
missionless counterparts, but they are arguably slow and complex
in comparison to RockFS’ solution [15]. There is much more work
on making blockchains efficient, but they seem to be too complex
to be part of a system like RockFS [13, 25].

Endpoint security and ransomware protection. Detecting malware
in endpoints is an old problem [64], which fostered the appearance
of a large industry focused on malware detection and anti-malware
protection. Ransomware is a reasonably recent threat [35], so protec-
tion mechanisms are still limited. There is some work on detecting
ransomware before it does its job, e.g. by verifying software in
cloud services before it is downloaded [40, 60]. Another solution is
to do backups and keep them offline. RansomSafeDroid improves
this last approach for protecting mobile devices in real-time by
running backup software inside a trusted execution environment,
supported by ARM processors with the TrustZone extension [69].
RockFS uses an approach that is new in this context –secret sharing
[12, 62]–, which allows recovering the cryptographic material and
files in case ransomware or other malware encrypts or deletes it.

8 CONCLUSION
This paper presented RockFS, a recoverable cloud-of-clouds file
system resilient to client-side attacks. It provides recovery mech-
anisms for the access credentials of the users and for files stored

in the cloud storage services. RockFS improves on SCFS and other
cloud-backed file systems by protecting against client-side attacks
and allowing for recovery of unauthorized changes, in particular,
recovery from ransomware attacks. The experimental evaluation
results show that it is possible to recover intensively modified files
(with 100 updates) in around 40 seconds. Using RockFS to log file
system operations imposes a performance overhead in the order of
20%, a cost that can be further reduced by improving the computing
characteristics of the clouds used in the system.
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