
FlowHacker: Detecting Unknown Network Attacks
in Big Traffic Data using Network Flows

Luis Sacramento1,3 Ibéria Medeiros2 João Bota3 Miguel Correia1
1INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

2LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal
3Vodafone Portugal, Portugal

luis.sacramento@tecnico.ulisboa.pt, imedeiros@di.fc.ul.pt, joao.bota@vodafone.com, miguel.p.correia@tecnico.ulisboa.pt

Abstract—Traditional Network Intrusion Detection Systems
(NIDSs) inspect the payload of the packets looking for known
intrusion signatures or deviations from normal behavior, but
inspecting traffic at the current speed of Internet Service Provider
(ISP) networks is difficult or even unfeasible. This paper presents
an approach to detect malicious traffic and identify malicious
hosts by inspecting flows, leveraging a combination of unsuper-
vised machine learning and threat intelligence, without requiring
either previous knowledge about attacks or traffic without
attacks. The approach was implemented in the FlowHacker NIDS
and evaluated with two kinds of traffic flows: synthetic traffic
flows and real ISP traffic flows.

Index Terms—Intrusion detection, flows, machine learning

I. INTRODUCTION

Network security is becoming increasingly important since
the inception of computer communications. Network security
systems have to be able to keep up with this challenge that
grows with the speed of the Internet Service Providers (ISPs)
links, which now have backbones with bandwidths in the order
of 1 to 10 Gbps. Faster links support new forms of commu-
nication and services not possible in the past, but also create
the opportunity for new attacks that can pass unnoticed by
protection mechanisms such as Network Intrusion Detection
Systems (NIDSs).

Traditional NIDSs are either signature-based or behaviour-
based and usually operate using deep packet inspection (DPI),
meaning that they analyse the payload of the packets passing
through specific points of the network (e.g., an edge or
border router), looking for a certain signature or behavioral
pattern. These approaches require, respectively, knowledge
about existing attacks and traffic without attacks for training
purposes, neither of which is simple to obtain [1]. This kind
of analysis is feasible in reasonably slow link connections,
but not in modern high-speed backbones. Moreover, nowadays
most of the traffic payload is encrypted due to the use of
protocols such as HTTPS and IPSec, which makes this kind
of inspection even harder and less useful [9].

An alternative to these approaches is the inspection of
network flows [2], [3]. The concept of flow was first proposed
by Cisco in the context of its NetFlow router feature [2].
A flow can be defined as a sequence of packets with a
common set of features, passing through an observation point,
in a given period of time. Flows are a way of monitoring
communication without inspecting the content of the packets,

using instead high-level information about connections (e.g.,
source/destination IP address, source/destination port) but not
the data transferred itself. Analyzing this information is more
efficient than doing DPI in terms of protection of the privacy of
users and consumption of computational resources, once flows
do not carry payload content, requiring thus less processing to
be analyzed. Network flow analysis allows, for example, the
detection of internal and external actions such as network mis-
configuration and policy violation [8]. They can detect many
network layer and transport layer attacks, but not application
layer attacks such as SQL injection or buffer overflows.

Machine learning has been used in NIDS in the context
of behaviour-based detection, also called anomaly detection
[7], [5]. Either traditional knowledge-based NIDSs or Netflow-
based systems can also use machine learning techniques, but
the precision and accuracy of these systems depend on the
completeness of the knowledge they have about the threats
that they will detect, as they need to be fed and trained with
that knowledge. Machine learning techniques aim to provide
knowledge to such systems, allowing them to discover hidden
patterns in input data based on the knowledge they learned,
and classify that data. However, even using machine learning,
there are challenges in analyzing network flow data, such as
the huge amount of traffic flow becoming from larger and
faster networks as, for instance, connection links of ISPs.

This paper presents an approach to detect malicious traffic,
even if as part of new attacks, and to identify the malicious
hosts involved by inspecting network flows. The approach uses
a combination of unsupervised machine learning techniques,
without a priori knowledge, and threat intelligence informa-
tion to achieve its goal. The approach is based on the following
key insights: there is much more normal traffic than malicious
traffic; malicious traffic is qualitatively different from normal
traffic; and similar traffic within each cathegory (normal,
malicious) can be summarized using unsupervised machine
learning. The approach involves splitting traffic (flows) in
clusters, with the larger corresponding to normal traffic and
the smaller are the ones we have to worry about. For the
latter, the approach proposes a classification method based on
unsupervised machine learning to classify them as malicious
or benign, detecting thus malicious traffic and identify mali-
cious hosts. This classification allows reducing drastically the
amount of time spent in analyzing the flows, reducing the size

of the problem of processing the amount of traffic at the speed
of ISP networks. The approach works in loop, iteratively and
continuously detecting network attacks and malicious hosts.
Between iterations, clusters are classified and learned, so that
this knowledge can be used in the following iterations. This
form of learning provides increasing autonomy to the system
and may significantly reduce the network managers’ constant
need for intervention, although not being completely free from
human intervention, as no NIDS is. In fact human intervention
is unavoidable when the goal is to detect attacks without
requiring either previous knowledge about attacks (signatures)
or traffic without attacks (clean traffic for training).

The paper also presents the FLOWHACKER NIDS that
implements our approach. This software uses Hadoop MapRe-
duce [4], [11] to summarize networks flows and a set of
machine learning algorithms to process these summaries, be-
sides providing visual tools for human analysis. We evaluated
FLOWHACKER with two kinds of traffic (synthetic and real)
and it identified botnet command and control servers, SSH
brute-force attacks, and denial of service events.

The main contributions of the paper are: (1) an approach
for improving network security based on the inspection of
network flows by using a combination of unsupervised ma-
chine learning techniques to detect intrusions; (2) an iterative
learning process; (3) a NIDS that implements the approach;
(4) an experimental evaluation that shows the ability of the
system to detect intrusions in computers communication using
network flows.

II. FLOW-BASED NIDS APPROACH

The approach involves processing network flows using a
combination of unsupervised machine learning algorithms and
threat intelligence to detect unknown network attacks. The
approach follows the assumption that most of the traffic
is legitimate, so malicious traffic is much less, as well as
that malicious traffic is qualitatively different from normal
traffic. Having this assumption in mind, the application of the
unsupervised machine learning algorithm allows splitting the
malicious traffic from the clean traffic, so that the biggest clus-
ters are those containing normal traffic, whereas the smaller
ones are those that may be malicious (although that is not
mandatory; there may small clusters of legitimate traffic).
These assumptions in combination with the use of flows allow
to cover (1) the difficulty of reacting to an unknown pattern
when real traffic is analyzed, and (2) the slow processing
and analysis of the traffic payload. The first drawback may
be countered by using an unsupervised machine learning
algorithm, and the second by doing the analysis at flow-level.

The approach acts in loop for improving the knowledge
that has been acquired (learned) and for achieving better
performance in terms of detection. This means that for each
loop iteration all phases involved in the approach are exe-
cuted. Therefore, for each set of collected flows, the approach
gains insights from them, improves such insights with threat
intelligence information, applies an unsupervised algorithm on
the improved insights for getting clusters, and then classifies

Infrastructure

network

Flows

collection

Features extraction

Filtering

Map & Reduce

Normalization

Online

databases Threat

Intelligent

retrieving

Vectors

creation

Similiarity

aggregation

Learning

Manual

labeling

Automatic

labeling

Detection

Dataset

Malicious

hosts

detected

Smaller

clusters

Describing

cluster

Clustering

K=2

empty

?

Dataset with

descriptor

vectors

Malicious

hosts

detected

Unusual

normal

traffic

Automatic

labeling

N Y

Fig. 1: Overview on approach architecture

the smaller clusters as being malicious or benign hosts by
using a classifier method based on a unsupervised algorithm.
Lastly, these new classified clusters are added to the existing
knowledge for the unsupervised data set to be used in the next
loop iterations. This learning phase between loop iterations
makes the approach self-learning, allowing it to increase its
knowledge gradually with every iteration.

The approach comprises six phases, as shown in Fig. 1:

1) Flows collection: to collect flows from different hosts or
routers belonging to a network infrastructure, correspond-
ing to a certain period of time (e.g., a day). Each flow
summarizes a set of packets collected from a host during
a period of time.

2) Features extraction: to extract data from the collected
flows in order to create vectors of features that allow
characterizing the flows. Flows are filtered to extracting
relevant data, afterwards this data goes through MapRe-
duce for getting statistics and summarizing their values,
then they are normalized and the vectors created.

3) Threat intelligence retrieving: to automatically retrieve
information about threats from online databases, namely
blacklists of subnets and IP addresses. Afterwards, this
information is used to complement and complete the data
of vectors of features.

4) Similarity aggregation: to apply an unsupervised machine
learning algorithm over the feature vectors to aggregate
similar vectors (i.e., with similar feature values), resulting
in clusters that represent hosts having a similar behavior.
The biggest clusters are assumed to contain clean traffic
and the smaller clusters have to be further analyzed.

5) Detection: to detect unknown network attacking hosts.
Based on the knowledge acquired in the learning phase a
classification method using unsupervised machine learn-
ing classifies the small clusters as being malicious or
clean traffic. In the first loop iteration, the classification
is done manually, but automatically subsequently when
the system has already knowledge from the previous
classifications. Clusters are labeled with its classification
and the classified data set is updated with them.

6) Learning: to learn the new cluster classifications resulting
from the detection phase. For each loop iteration, the
clusters classified as malicious are learned for later to
be used in the next loop iterations by the classifier.

III. FLOWHACKER

We implemented our approach in the FLOWHACKER NIDS,
which we developed in Python. The system is composed by
two modules – similarity and classification –, for aggregating
feature vectors in clusters and detecting malicious hosts,
respectively. In addition, FLOWHACKER interacts with the
Hadoop framework for running MapReduce over the flows,
obtaining aggregated flows and vectors of features.

Before using FLOWHACKER, the first step is to gather
the flow collection, obtained using NetFlow-enabled routers
placed at the border routers between the core network and
the connection to the ISP. For the sake of analyzing and
treating these flows, all of this data is converted to the SiLK
format. Next, a filtering to the flows is performed for getting
the features needed to compose the feature vectors (see Table
I). Afterwards, these filtered features are processed by the
Hadoop framework. Hadoop is an open-source framework that
features both distributed storage and parallel processing of Big
Data, making it very scalable to very large amounts of data.
To support the parallel data processing, Hadoop implements
Google’s MapReduce algorithm [4]. This model can be divided
in two main steps, mapping and reducing, that realize the
processing operations.

TABLE I: Set of features that describe an aggregated flow in the
form of a vector.

Feature Description #

L
2

AggregationKey IP address used as identifier
NumSIPs / NumDIPs The number of IP addresses contacted 1
LocationCode Code for the country associated with the address

L
3

NumSports The number of different source ports contacted 2
NumDport The number of different destination ports contacted 3
ICMPRate Ratio of ICMP packets, and total number of packets 13
SynRate Ratio of packets with SYN flag over the total 14

L
4

NumHTTP The number of packets to/from port 80 (HTTP) 4, 8
NumIRC Number of packets to/from ports 194 or 6667 (IRC) 5, 9
NumSMTP Number of packets to/from port 25 (SMTP) 6
NumSSH Number of packets to/from port 22 (SSH) 7, 10

St
at

is
tic

TotalNumPkts Total number of packets exchanged 11
TotalNumBytes Overall sum of bytes 15
PktRate Ratio of the number of packets sent and its duration 12
AvgPktSize Average packet size 16

FLOWHACKER starts with the similarity module which
allows the users managing the clusters, such as change or
calculate the number of clusters (k), generate the clusters, and
visualize their contents, and then the classification module gets
the smaller clusters resulting of the first module, verifies if they
are malicious or not, classifying them, and updates the dataset
with the malicious ones for further classifications. Moreover,
the tool has a terminal interface that was developed to facilitate
the similarity aggregation tasks and visualize the outcomes.

IV. EXPERIMENTAL EVALUATION

The objective of the experimental evaluation was to an-
swer the following questions: (1) Is FLOWHACKER able to
detect attacks against synthetic data and real data? (2) Is
FLOWHACKER able to identify the type of attacks performed?
(3) How does it perform in terms of false positives and false
negatives? In order to validate our approach, we evaluate
FLOWHACKER with two datasets. In Section IV-A the ISCX

synthetic dataset1 is used, and in Section IV-A the evaluation
uses real data provided by the large Portuguese ISP. Both
sections answer to questions 1 to 3.

A. Attack Detection with Synthetic Data

The ISCX dataset consists in flows collected during one
week, and aims to provide a complete testbed for IDSs [10].
All flows in this dataset are labeled, therefore allowing for a
validation of the accuracy of the FLOWHACKER. Upon the
cluster generation and respective manual labeling of this data,
the results were compared to the ground truth provided by the
original dataset. After the data that was labeled, we proceeded
to train our classifier, which is the classifier for further flows to
be analyzed. The next two sections provide an analysis under
the similarity task results and classification results, whereas
the last section discusses the validation results.

1) Cluster Analysis: The ISCX IDS dataset is divided in
6 sets, each one representing a weekday, from Saturday to
Thursday. Attacks were detected in all of these days, except
for Wednesday, that was found to be a regular intrusion-
free day. For the data of each day, we proceeded with its
filtering, extraction, and normalization. Next, it was processed
by Hadoop, and then we used FLOWHACKER configured for
10 clusters. Next we present the clustering results.

Saturday. By analyzing cluster contents, we found one cluster
that presented features that are rather alarming. In this one,
the number of different source ports used and number of
connections through the SSH port are highlighted, being the
number of connections through the SSH port at its absolute
maximum value. A study on Brute-Force SSH attacks [6] has
shown that these two features together are representative of
a Brute-Force SSH attack. Given that the rest of the traffic
presents feature values that are rather normal (i.e., none of
them is indicting the presence of an intrusion), we considered
that the flow present in this cluster was performing such an
attack, therefore highlighting it as an intrusion flow, as the
remainder of the traffic was considered to be normal.

Sunday. The results for this day showed a rather different
pattern. Unlike the previous day, now we see that almost every
cluster presents very high feature values. Features such as
the average packet size, the number of source ports and the
number of HTTP connection are high in the great majority
of the clusters. Also, the number of SMTP connections was
also found to be very high in two different clusters. This
behavior shows us that something is not right, as the SMTP
connections are usually grouped together in a single cluster,
and this analysis shows us that two different clusters have
these characteristics. Taking this into account we assume
that these flows, although having this feature with very high
values, were grouped into different clusters because they have
a different behavior, and therefore showing us that these flows
are not normal. As for the remaining clusters, we found 4
that have very high values for the the number of HTTP

1http://www.unb.ca/research/iscx/dataset/iscx-IDS-dataset.html

connections, alongside with the number of different source
ports and average packet sizes. These three features together
may indicate that a large volume attack is being perpetrated,
exploring the HTTP protocol, therefore also labeling these
clusters as attacks.

Monday. Moving on to Monday, when looking at their clusters’
content, we found two clusters that immediately distinguish
themselves from the rest. The first one has a mean value of
0.998 for the ICMP Rate, being it the cluster with the biggest
dimension (it contains 375 different flows); the second one
has the number of destination ports and number of SMTP and
IRC connections at its highest value possible. However, this is
not considered an alarming behavior, because even though the
value for ICMP Rate in indeed at a very high value, no other
feature in that cluster was showing a high value; as for the
second cluster, throughout the whole evaluation of the system,
there was always one cluster with such characteristics, and we
can infer that this cluster corresponds only to regular clients
using email services. Apart from these two, other four clusters
also present an alarming pattern. All these clusters share high
values for the number of different source ports, number of
HTTP connection and also for the average packet sizes. Such
pattern may be attributed to a DoS attack, as each host is
send a great amount of packets from many different ports, all
direct to the port 80 (or port 8080, in some cases), with an high
average packet size. This is the case of the DoS HTTP Flood
attack. However, this is an attack that is easily identifiable by
inspecting its payload, and this flow-based approach does no
allow us to perform such an analysis, being these features our
only way to hint the presence of such an attack.

Tuesday. Analyzing Tuesday, we observed that there were
multiple clusters with a very high value for the ICMP Rate.
However, this feature appear alone, i.e., it is the only feature in
these clusters that has a relevant high value, no other features
show up, apart from one cluster that also has a high value for
the average packet size, which also does not correspond to a
recognizable pattern. From all these clusters, the one that grabs
our attention is the tenth, which features a high value for the
number of source ports, HTTP connections and average packet
size. Also, it has a high packet rate, average packet size and
total number of bytes. From what we have seen so far, this
can only correspond to an attack, and therefore the content of
this cluster was labeled as being an attack.

Thursday. Reaching the last day with intrusions, Thursday, just
like when we analyzed Saturday, there is one cluster that was
found to have an absolute maximum value for the number
of SSH connection alongside with a high value of number
of different source ports, thus indicating us the presence of a
Brute-Force SSH attack. Also, three other clusters have high
values for the number of different source ports, number of
HTTP connections and also a high average packet size, also
possibly indicating the presence of an attack. Therefore, these
two clusters were also labeled as malicious.

TABLE II: FLOWHACKER results with the synthetic dataset,
showing how results improve with the number of iterations.

Saturday Sunday Monday Tuesday Wednesday Thursday
True Positive 1 3 2 0 0 1
False Positive 0 1 0 1 5 4
False Negative 0 17 4 3 0 0

2) Unsupervised Classification: Parallel to this daily anal-
ysis, the system may also autonomously identify malicious
activities using the classification method implemented, which
classifies the smaller clusters resulting from the similarity
module based on an unsupervised algorithm and a training
dataset. Before the FLOWHACKER is able to classify data it
is needed, at least, malicious labeled data from the first day,
which results from manual intervention. From this day on, the
classifier is able to produce results on its own, and these results
may be refined with every iteration of the system (for the
purposes of this work, an iteration corresponds to the period
of one day), by training the system again, as new patterns are
identified and manually labeled.

The classifier was trained for the first day with data from the
analysis for Saturday, as seen in Section IV-A1. As expected
when the system processed the clusters for that day, it correctly
identified the malicious flow. However, when trying to classify
the results for Sunday, the classifier did not found any sort of
malicious activity. This was due to the fact that the system’s
only knowledge about the intrusions observed during Saturday,
which does not give sufficient information to the system to
detect other attacks. After training the system once again with
the analysis done for Sunday, the classifier was now able to
identify the malicious activities, although it could not identify
them all. This same behavior was found when classifying the
remainder of dataset throughout the rest of the days.

Table II describes this analysis in further detail. Along the
system iterations, FLOWHACKER detected 7 attacks, which
correspond to flows whose were perpetrating the attack with
greater intensity, i.e., producing large volumes of traffic,
whereas the remainder of the attacks were not successfully
identified. Although we observed 24 false negatives, it is
visible that they were decreased during the iterations, which
is justified by increasing of knowledge that the system was
learned. Regarding the Wednesday, the system misclassified 5
flows (i.e., false positives) as being malicious, when the traffic
relative to Wednesday is all normal, intrusion-free traffic. This
is due to the fact that Wednesday was one of the day that
had the largest amount of traffic, and therefore the flows that
belong to it also produced higher features values, leading
to it being perceived as malicious. At the end the system
misclassified 11 flows as being malicious. This means that it
needs some refine in the classification method. However, we
prefer to have a system giving false positives than unreported
attacks, i.e., with false negatives.

3) Results Validation: The ISCX dataset is a dataset with
known attacks put in a database containing information about
them. The dataset is used as the ground truth validation, so we
compared the FLOWHACKER results with this ground truth to

validate them and find out the accuracy and precision of our
system. Each flow belonging to ISCX is identified by a unique
ID, meaning that the flows contained in our clusters have this
ID. Therefore, through this ID we were able to traceback it to
its IP address (which is stored in the database), and this way
we were able to identify the malicious hosts.

We were able to verify that all clusters containing mali-
cious flows identified by our system actually such flows are
malicious, meaning thus that our system is able to detect
and classify correctly attacks under traffic analysis. Also, we
observe that correctly we identify the type of attack evolved
in such flows. However, we also verified that our system
generates some false positives and misses some malicious
flows (false negatives), such as Table II shows.

These results suggest a positive answer to questions 1 to 3.

B. Attack Detection with Real Data

The following results were obtained from data provided
by the above-mentioned ISP. Our NIDS approach assumes
that data is collected using NetFlow-enabled routers, e.g.,
placed at the border routers between the core network and
the connection to the ISP. All the data that reaches the Por-
tuguese company network arises from the ISP, that connects to
Portuguese company via routers that are placed at the borders
of the core network. These routers are NetFlow-enabled, and
are protected by firewalls, in order to filter any wanted data,
according to their security policies, therefore ensuring that
only supposedly clean data reaches its clients. However, not
all bad traffic is filtered, which is why there are needed extra
security measures, such as NIDSs. So, the data that reaches
these routers from the outside (i.e. the data incoming from
the ISP) is collected by NetFlow, for further analysis. For the
purpose of this evaluation, a data sample was collected for a
few hours.

1) Data Analysis: After performing the filtering and
MapReduce phases, we obtained two datasets comprising the
source flows and the destination flows, respectively. Therefore,
the following analysis reports to each of these datasets. The
clustering was performed with 30 clusters (i.e., k = 30).

Source aggregation key clustering.
By looking at the source aggregation key clustering content,

we observe five clusters that present high feature values, as
shown in Table IV (clusters 13, 15, 17, 21 and 30). The first
presents a high number of different source ports, as well as
a high number of total bytes sent. However, such pattern was
not found to be suspicious, as the number of source ports itself
does not represent an alarming network threat, as opposed to
the number of destination ports, and no address found in this
cluster was found to be in any IP blacklist. When analyzing
the second one, we see that is presents a high connectivity to
various users, under various ports, receiving communication on
an IRC port, and communicating through HTTP, with a high
number of packets sent, as well as a high number of bytes.
This leads us to assume that this machine is either a major
spammer, or it could be a DoS attack, given its traffic pattern,

and it was thus labeled as being a malicious host. Moving
on the third cluster, it was found to have a high number of
SSH communications alone, which could represent a Brute-
Force SSH attack, in just like had observed in the previous
section, thus also being labeled as malicious hosts. The fourth
presented a high number of IRC (which is used as a portal for
botnet’s C&C communications) communications, alongside
with an high average packet size. This feature distribution led
us to consider that this could a botnet communicating, and
thus labeling it as malicious hosts. Moreover, we decided to
track the IP addresses, and check them against a number of
public available blacklists, which confirmed and categorized
the IP addresses as sources of Botnets/Spam. One of the IP
addresses lead us directly to an authentication page of a C&C.
When analyzing the last alarming cluster, we observed that it
presented a high number of SMTP communications, but when
analyzing its IP addresses, we found that these were only mail
servers communication, and we found no harm in it. Prior to
this analysis, all of the IP addresses present in the malicious
clusters, were found to be present in several blacklist, thus
confirming our suspicion.

Destination aggregation key clustering.

Regarding the destination aggregation key clustering, we
observe that there are 5 clusters (16, 20, 22, 25, 29) with
alarming features (Table IV). Analyzing cluster 16, we see
that it has a feature distribution that is similar to what we had
understood as a DoS HTTP Flood attack when analyzing the
ISCX data, except that this cluster is missing a high value
for the number of HTTP connections. Therefore, this could
also represent a DoS attack, but directed to other applications,
e.g., DNS. We cannot be sure of this attack, because none
of the monitored ports are presenting high values, and so
we cannot infer anything more about it. Cluster 20 presents
a high number of different source IP addresses, destination
ports and number of bytes. Because these flows do not have
a high average packet size, it could possibly indicate that this
a network scan, as these flow contacted many different port
of many different IP addresses, resulting in a high value of
bytes sent throughout this process. Cluster 22, on the other
hand, presents a feature distribution that is similar to what had
previously perceived as a DoS attack: it has a high number of
different source IP addresses, number of source ports, number
of HTTP connections, and a number of bytes sent. However, it
still lacks a high value for the average packet size. Therefore,
this may be, just like cluster 20, a network scan, but this time
directed to the HTTP application, i.e. it may be a probing of
a website in order to locate some vulnerability, for example.
Cluster 25 presents a high number of different IP addresses,
average packet sizes and number of bytes sent. These features
alone do not seem to correspond to a malicious behavior,
as we interpreted them a simple burst of traffic. At last,
cluster 29 hold a have number of source IP addresses, number
of destination ports, number of source HTTP connections,
average packet sizes and number of bytes sent. This pattern
very similar to what we have seen for the DDoS IRC botnet

TABLE III: Source key clustering content using K-Means
Clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Flows 1605 51773 6485 13305 529 1730 1729 21507 8523 8522 1498 4686 10 5653 1 824 5 4606 1864 1676 12 107 13 2233 2264 8091 10 23897 16843 35
Features
1 - - - - - - - - - - - - - - 1.0 - - - - - - - - - - - - - - -
2 -
3 - - - - - - - - - - - - 0.368 - 1.0 - - - - - - - - - - - - - - -
4 -
5 - - - - - - - - - - - - - - 0.667 - - - - - - - 0.384 ; 0.184 - - - - - - -
6 - 0.237 ; 0.158
7 -
8 - - - - - - - - - - - - - - 1.0 - - - - - - - - - - - - - - -
9 - 0.542 ; 0.18 - - - - - - - - -
10 - - - - - - - - - - - - - - - - 0.626 ; 0.21 - - - - - - - - - - - - -
11 - - - - - - - - - - - - - - 1.0 - - - - - - - - - - - - - - -
12 -
13 -
14 -
15 - - - - - - - - - - - - 0.61 ; 0.208 - 0.843 - - - - - - - - - - - - - - -
16 - - - - - - - - - - - - - - - - - - - 0.261 - - - - - - - - -
17 -

TABLE IV: Destination key clustering content using K-Means
Clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Flows 34565 1447 7734 888 312 17180 53767 497 7 2442 2177 3089 232 62515 644 12 1242 1699 4987 84 93 23 10883 754 36 22543 16 503 3 8680
Features
1 - - - - - - - - 0.840 ; 0.110 - - - - - - 0.413 ; 0.067 - - - 0.159 ; 0.069 - 0.209 ; 0.047 - - 0.150 ; 0.093 - - - 0.156 ; 0.09 -
2 - - - - - - - - - - - - - - - - - - - 0.229 ; 0.012 - - - - - - - - 0.236 ; 0.093 -
3 - - - - - - - - 0.857 ; 0.155 - - - - - - 0.589 ; 0.178 - - - - - 0.517 ; 0.141 - - - - - - - -
4 - 0.838 ; 0.154 -
5 - 0.396 ; 0.181 - - -
6 -
7 -
8 - - - - - - - - 0.260 ; 0.162 - - - - - - - - - - - - 0.116 ; 0.108 - - - - - - - -
9 -
10 -
11 - - - - - - - - 0.854 ; 0.167 - - - - - - 0.445 ; 0.108 - - - - - - - - 0.123 ; 0.054 - - - 0.102 ; 0.014 -
12 - - - - - - - - - - - - - - – - - - - 0.226 ; 0.013 - - - - - - - - -
13 -
14 -
15 - - - - - - - - 0.258 ; 0.074 - - - - - - - - - - 0.147 - 0.212 ; 0.069 - - 0.449 ; 0.180 - - - 0.400 ; 0.046 -
16 -
17 -

attacks, expect for the number of IRC connections. Therefore,
this may also correspond to infected hosts that are being used
as a third party for attacks, but contacting its botmaster through
a C&C server other than an IRC, or they could be victims of
an attacker who is using spoofed IP addresses to use them as
a third party.

2) Discussion: Table V summarizes the information re-
garding the intrusions detected throughout this analysis. As
presented in the table, the FLOWHACKER NIDS was able to
detect and identify attacks in real traffic of a company, both in
incoming and outgoing traffic. Such results allow us to verify
that real threats are effective and a concern for companies.
Also, they allow us to verify that our system is effective in
detection of such threats and can be used by companies for
avoiding them. In addition, they allow to answer positively to
questions 1 to 3.

TABLE V: Real data analysis results
Cluster # Aggregation Key Highlighted Features Type of Attack

15 Source 1, 3, 5, 8, 11, 15 Spam / DoS
16 Destination 1, 3, 6 DoS
17 Source 10 Brute-Force SSH
20 Destination 1, 2, 15 Network Scan
21 Source 9, 16 Botnet Communication
22 Destination 1, 3, 8, 15 Web Application Probing
27 Source 1, 2, 5, 8, 11, 15 DDoS IRC Botnet
29 Destination 1, 2, 4, 11, 15 DDoS Botnet

V. CONCLUSION

The paper presents a system able to analyze traffic from
faster networks, such as the fast connection links of Internet
Service Providers (ISPs). The system is based on analysis of
netflows, turning it capable of analyzing such connection links.
The approach behind of the system allows detecting malicious
hosts without requiring previous knowledge about what we
were looking for or clean training data. A combination of data
mining techniques for the feature extraction from netflows,
and machine learning techniques for data analysis allows the
detection of malicious behaviors without requiring specific

training, except for the inevitable human intervention in a first
run of the system. The FLOWHACKER NIDS implements the
approach and it was evaluated with synthetic and real data.

Acknowledgements. This work was partially supported by the EC
through project H2020-700692 (DiSIEM), and by national funds
through Fundação para a Ciência e a Tecnologia (FCT) with ref-
erences UID/CEC/00408/2013 (LASIGE) and UID/CEC/50021/2013
(INESC-ID). We warmly thank Henrique Santos for feedback on a
previous version of this work.

REFERENCES

[1] G. Bruneau. The history and evolution of intrusion detection, SANS in-
stitute, 2001. https://www.sans.org/reading-room/whitepapers/detection/
history-evolution-intrusion-detection-344.

[2] B. Claise. Cisco systems netflow services export version 9. RFC 3954,
RFC Editor, October 2004. http://www.rfc-editor.org/rfc/rfc3954.txt.

[3] B. Claise, B. Trammell, and P. Aitken. Specification of the ip flow
information export (ipfix) protocol for the exchange of flow information.
STD 77, RFC Editor, September 2013. http://www.rfc-editor.org/rfc/
rfc7011.txt.

[4] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[5] H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of intrusion
detection systems. Computer Networks, 31(8):805–822, Apr. 1999.

[6] L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre, and
A. Pras. SSHCure: A flow-based SSH intrusion detection system. In
IFIP International Conference on Autonomous Infrastructure, Manage-
ment and Security, pages 86–97, 2012.

[7] H. Javitz and A. Valdes. The SRI IDES statistical anomaly detector.
Proceedings IEEE Computer Society Symposium on Research in Security
and Privacy, 1991.

[8] B. Li, J. Springer, G. Bebis, and M. H. Gunes. A survey of network
flow applications. Journal of Network and Computer Applications,
36(2):567–581, 2013.

[9] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. Blindbox: Deep
packet inspection over encrypted traffic. ACM SIGCOMM Computer
Communication Review, 45(4):213–226, 2015.

[10] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani. Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection. Computers & Security, 31(3):357–374, 2012.

[11] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In IEEE 26th Symposium on Mass Storage
Systems and Technologies, pages 1–10, 2010.

