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Abstract—Web applications are exposed to many threats and, despite the best defensive efforts, are often successfully attacked.
Reverting the effects of an attack on the state of such an application requires a profound knowledge about the application, to
understand what data did the attack corrupt. Furthermore, it requires knowing what steps are needed to revert the effects without
modifying legitimate data created by legitimate users. Existing intrusion recovery systems are capable of reverting the effects of the
attack but they require modifications to the source code of the application, which may be unpractical.
We present Sanare, a pluggable intrusion recovery system designed for web applications that use different data storage systems to
keep their state. Sanare does not require any modification to the source code of the application or the web server. Instead, it uses a
new deep learning scheme that we also introduce in the paper, Matchare, that learns the matches between the HTTP requests and the
database statements, file system operations, and web service requests that the HTTP requests caused. We evaluated Sanare with
three open source web applications: WordPress, GitLab and ownCloud. In our experiments, Matchare achieved precision and recall
higher than 97.5% with a performance overhead of less than 18% to the application.
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1 INTRODUCTION

W EB applications are exposed to countless threats [1],
[2]. Web developers and system administrators adopt

intrusion prevention techniques to reduce the probability of
attacks being successful, but eventually new vulnerabilities
are discovered and exploited by attackers. When an attack
succeeds in corrupting the state of a web application it is
necessary to revert its actions. One way of doing so is
to perform regular snapshots of the state that can later
be used to revert the application to a point in time prior
to the attack. This approach will succeed in removing the
effect of the attacker’s actions, but at the cost of discarding
every legitimate user operation that was executed after the
snapshot.

A different approach to revert unintended actions from
the application is to use an intrusion recovery mechanism
that is capable of removing the attackers actions while
keeping the remaining ones intact. In the literature there
are already intrusion recovery mechanisms designed for
web applications [3], [4], [5], [6], [7]. These mechanisms
use a combination of regular snapshots and operation logs
to allow system administrators to select unintended actions
that should be erased from the state. Notice that in terms of
CIA properties these systems are concerned with healing
the integrity of the application. They are not concerned
with confidentiality that is an orthogonal concern. They do
not prevent intrusions; they remove their effect from the
application state.

A drawback of these mechanisms is that they require
significant modifications to the source code of the applica-
tion, databases, or servers running the application. These
modifications append extra metadata to the HTTP requests
that is passed to the database statements so that it is possible
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to trace the effects of the attack in the state, i.e., to identify
the database statements that were caused by a specific
HTTP request. Although many developers are capable of
implementing such adaptations, in many cases this is un-
feasible, e.g., because the source code is not available or
is too complex. The single intrusion recovery system that
aims to solve this problem is Rectify, which does not require
any modification to the source code [8]. Rectify assumes a
system model in which the web application uses an SQL
database to store its entire state. This system model is sim-
plistic since it does not assume that the web application may
use the file system or external cloud storage services to save
its state. More importantly, Rectify requires the application
to use well-formed URIs, which is not the case in many
applications.

Current web applications often use different data repos-
itories for different needs. For example, they use a database
to store structured and relatively small data records and a
cloud storage service to store large data files, such as images
and videos. Web applications may also use remote web
services to access and modify external data. For example, an
e-commerce application may use a web service for the pay-
ment service and another web service to emit the invoice.
This distribution of the state of the web application makes
it unfeasible to use existing intrusion recovery systems that
assume a single data storage [3], [4], [5], [6], [7], [8]. Another
characteristic of web applications is the vast spectrum of
technologies used to implement them. There are several
programming languages and many more frameworks. In
terms of databases, a developer can now choose between
different SQL and NoSQL databases which have their own
query languages and characteristics. This complexity in
web development makes it difficult to adopt an existing
intrusion recovery mechanism that requires modifications
to the source code of the application.
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We present Sanare (“to heal” in Latin), an intrusion
recovery service for web applications that is “pluggable” in
the sense that it does not require modifications to the source
code of the application. Sanare assumes the web application
may keep its state in a set of diverse data repositories, e.g.,
a database, a file system and a cloud storage service. Sanare
allows system administrators to plug agents (self-contained
modules) to the different data repositories that will log
every operation that changes the state of the application.
The agents can also log invocations to remote web services,
allowing Sanare to notify them that an intrusion occurred.

The main challenge of the work is matching the HTTP
requests issued to the application with the operations done
in the data repositories. This is even more challenging as
we do not assume well-formed URIs. For that purpose,
we introduce Matchare (“to match” in Italian), a new deep
learning scheme that does that matching. Matchare is a su-
pervised learning scheme so, during the setup phase, Sanare
uses Matchare to learn how the different HTTP requests
of the application affect the state, allowing it to adapt to
new versions of the application without requiring additional
effort from developers. Matchare is based on a Deep Con-
volutional Neural Network [9], which allows Sanare not to
require well-formed URIs, going beyond Rectify that uses
simple classifiers (e.g., Naive Bayes). Although Matchare
is a supervised learning scheme, the problem it solves is
different and more complex than classification. The problem
is the association of two timelines of requests, one issued to
the application, the other to one of the data repositories.
This is not the problem of classifying a request in a class,
but the problem of associating pairs of items, one in each
timeline. Although we thoroughly searched the literature
for solutions for this problem, we did not find any.

Another challenge of Sanare is to provide a modular
design that allows developers to install Sanare in a web
application that uses several data repositories to keep its
state. Sanare solves three problems: (1) it logs every oper-
ation that modifies the state of the application regardless
of the data repository; (2) it performs recovery in several
data repositories, as opposed to current intrusion recovery
systems which only recover a single data repository; and
(3) it performs recovery without violating consistency of the
application data.

Sanare was designed to be deployed as a module, giving
system administrators the ability to revert the effects of
unintended actions from the application. These unintended
actions are HTTP requests that were intentionally caused
by an attacker or accidentally by a legitimate user. Sanare
allows the system administrator to select these requests
from the log of the application or to plug an Intrusion
Detection System (IDS) [10], [11], [12], [13] to automate
the identification and recovery of the unintended HTTP
requests. Recovery is done by executing compensating opera-
tions1 in the data repositories that were affected by the HTTP
request. These compensating operations erase the effects
of the intrusion while keeping the legitimate data intact.
This allows recovery to be done on-the-fly, meaning that the
application does not need to be offline to revert unintended

1. The classical term is compensating transactions but we use operations
as they are not necessarily database transactions.

actions, keeping the application available to its users.
Sanare was implemented in Python and packaged in a

container, making it ready to be deployed in cloud services.
Our implementation is compatible with MySQL [14], an
SQL database, MongoDB [15], [16], [17], a NoSQL database,
and the most widely used cloud storage services, including
Amazon S3, Google Cloud Storage and Azure Blob. The
source code of Sanare as well as the container are available
for download.2 3 Sanare was evaluated in a public cloud
with three web applications that have their state distributed
between a database and a file system: WordPress [18], Git-
Lab [19] and ownCloud [20]. In the experiments Sanare
was able to revert a single intrusion in less than 4 seconds
and 100 intrusions in less than 3 minutes, which is very fast
compared with an operation that is normally done manually
by humans.

The main contributions of the paper are: 1) Sanare, a
novel intrusion recovery mechanism that allows the appli-
cation state to be scattered in several stores, places no restric-
tions on URI format, and uses deep learning for associating
requests to storage operations; 2) Matchare, a new deep
learning method that matches HTTP requests with database
statements and file system operations, removing the need
of modifications to the source code of the application; 3) a
prototype of Sanare that can be deployed in a cloud offering
to recover from intrusions in web applications; 4) three
datasets with samples of HTTP requests and corresponding
database statements, file system operations and web service
requests from WordPress, ownCloud and GitLab (available
in the same GitHub project).

Matchare is used in Sanare but it is made available for
other uses, as its advanced capability of matching HTTP
requests with data operations is useful for log traceability,
for example.

2 WEB APPLICATION ACHITECTURE

Web applications run in a web server with a runtime envi-
ronment that depends on the language used, e.g., a Java web
application requires a server with a Java Virtual Machine
(JVM). The web server can be a dedicated server or a virtual
machine. Using virtual machines to deploy web applications
has some advantages: it is possible to replicate the applica-
tion by cloning the virtual machine to a different server;
it is possible to create snapshots of the state of the virtual
machine so that it is possible to recover it to a previous
state; developers can replicate the execution environment
in their own machines to develop and test their code; it
is possible to use orchestration tools, such as Kubernetes
[21], to automate the deployment of the application using
scripts. When the application is running in a virtualized
environment, the term container is often used. A container
is an execution environment that encapsulates the required
software to run the application [21], [22]. The container
is a standalone package that can be easily replicated and
migrated to other servers. The state of the application can
be distributed across databases and file systems.

Figure 1 presents an example architecture of a web ap-
plication. The web application is replicated in N containers

2. Sanare - https://www.github.com/davidmatos/sanare
3. Matchare - https://www.github.com/davidmatos/matchare

https://www.github.com/davidmatos/sanare
https://www.github.com/davidmatos/matchare
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Fig. 1: Example architecture of a web application that uses
two external web services and two cloud storage services.

to cope with the traffic. Each replica is running in an appli-
cation server inside a container. A load balancer redirects
the user’s requests to the corresponding replica and dis-
tributes the load evenly. The database is also replicated inM
instances; a database middleware handles the coordination
and data replication. In the figure, the application interacts
with two web services. One belongs to a social network and
another to a banking service. On the right side of the figure
are two cloud storage services that are used to store images
and documents.

This example shows a set of technical challenges we
identified in terms of intrusion recovery: external web ser-
vices; state of the application distributed in a database and
cloud storage services; application deployed in stateless
containers that can be replicated to respond to high traffic.

3 SANARE OVERVIEW

This section presents the system model and the architecture
of Sanare.

3.1 System Model
Sanare is an intrusion recovery system that recovers web ap-
plications. The application that is monitored and recovered
by Sanare is referred to as application. Sanare has connec-
tivity with the application, i.e., it is able to intercept HTTP
requests sent to the application and connect directly to its
database and storage. We make the following assumptions:
• the database used by the application can be SQL or

NoSQL. For NoSQL databases, we assume there are
constructs equivalent to tables, records and columns;

• the file system used by the application provides an
interface that is equivalent to POSIX [23] or similar to
that of an object storage service (e.g., Amazon S3);

• the application may interact with external web services
that are not controlled by the applications’ owner;

• the application does not fail while Sanare is recovering
the application state;

• it is acceptable for users to observe temporary incon-
sistencies during the execution of a recovery, i.e., the
application is eventually consistent [24].

In the remainder of the paper, we use r to represent
an HTTP request, s for a database statement, f for a file
system operation, and w for a web service request. We use
subscripts to differentiate requests and operations whenever
needed.

3.2 Threat Model
We consider the following threat model:
• t1: intrusions can only occur at the application level in

the form of HTTP requests;
• t2: a faulty HTTP request results in the execution of

faulty database statements and faulty file system oper-
ations that corrupt the state of the application;

• t3: a faulty HTTP request may also result in the invoca-
tion of faulty web service requests which will corrupt
external services that are not controlled by the applica-
tion’s owner;

• t4: the attacker cannot tamper with Sanare or the code
of the web application nor can he tamper with Sanare
logs;

• t5: the attacker has no direct access to the database
and file system of the web application, only through
requests to the application;

• t6: every request that reaches the application passes
through and is logged by Sanare.

Assumptions t1 and t2 indicate that attacks can corrupt
the state of the application in both the database and file sys-
tem and should be recovered by Sanare. With assumption
t3 we acknowledge that intrusions may also affect external
web services that are not controlled by the application’s
owner and cannot be directly recovered by Sanare. Instead
these web services are contacted by Sanare so that they can
fix or undo the faulty requests. With assumptions t4 and
t5 we limit the scope of the attacker so that we can focus
on the theme of this paper, which is intrusion recovery for
web applications. For t4 there are some solutions that allow
to detect corruption of logs [25], [26]. For t5 it is possible
to limit the access of the application for Sanare alone by
configuring a firewall such as, iptables [27].

3.3 System Architecture
Sanare runs in a container alongside the application and
acts as the entry point of the application to the users. For
this to work the system administrator needs to configure the
DNS server to ensure that the application’s address points
to Sanare’s IP address, i.e., Sanare acts as a reverse proxy,
forwarding the user’s requests to the application’s container.
It also intercepts the application’s database statements, file
system operations, and web service requests. This way it is
able to log all the operations that are caused by the HTTP
requests. This process is invisible to the user. From his point
of view he is interacting directly with the application.

Figure 2 presents the architecture of an application with
Sanare. In the figure there are two containers. The container
on the left is running the application. The container on the
right is running Sanare, which is composed by the Sanare
Manager, the HTTP Agent, the Web Services Agent, the
Database Agent, and the File System Agent. The Sanare con-
tainer uses two databases: one to store the logs and another
to store the samples used by the deep learning algorithm.
The container running the application is only accessible by
Sanare, meaning that users cannot issue requests directly
to this container. Besides the containers, Sanare also needs
a Cloud Storage service to store backups to ensure that
the logs do not grow indefinitely. Next we present each
component in more detail.
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Fig. 2: Architecture of a system with Sanare. Sanare itself is
the set of components inside the container on the right.

HTTP Agent: is responsible for intercepting every HTTP
request to the application and storing them in the log. HTTP
requests do not receive any special treatment since that
would reduce the overall performance of the application.

Web Services Agent: intercepts and logs requests to external
web services. Like the HTTP Agent, the Web Services Agent
does not modify the HTTP requests before logging them.

Database Agent: acts as a reverse proxy and intercepts every
statement to the database and logs it in the log iff (if and
only if) the execution of the statement returns without error.
Erroneous statements are not recorded since they do not
have to be recovered.

File System Agent: is responsible for logging storage op-
erations. If the storage is the local file system, the agent
starts a watchdog that monitors the file system and issues
a notification when there is a change, so that the agent can
log every file system operation. If the file system is a cloud
storage, the agent acts as a reverse proxy, intercepting the
HTTP requests that are destined to the cloud storage. The
API to access cloud storage services is accessed by the HTTP
protocol.

Logs DB: is a database that stores the logs of the executed
operations. It contains the executed database statements,
HTTP requests, file system operations, and web service
requests. By keeping all the logs in the same database server
it is easier to aggregate them, allowing the system admin-
istrators to search and analyze the executed operations. It
is also a recommended practice [28] to store the logs of a
distributed application in the same repository.

Sanare Manager: manages the recovery process, automatic
backups and allows the system administrator to configure
Sanare. In more detail:

• configuration and setup: it allows the system admin-
istrator to configure the ports used by the proxies, the
access keys to the cloud storage, the integration with an
IDS, and other security parameters;

• automatic backups and garbage collection: it performs
automatic backups of the logs to the cloud storage
and deletes every log entry. This can be configured to
be done periodically (e.g., every 2 weeks) or when a
threshold is achieved (e.g., when the log reaches 100GB
in size);

• automatic snapshot of the application: from time to
time Sanare creates a copy (snapshot) of the application
state, which includes both the database and existing
files. This snapshot will be used during recovery. The
frequency with which Sanare creates snapshots of the
application is configured by the administrator, like the
backups it can be either by a period of time or by the
storage space;

• monitoring: a system administrator is able to analyze
the logs using the Sanare Manager. This can be helpful
to identify possible intrusions or to tune the automatic
backup parameters;

• intrusion recovery: when a system administrator identi-
fies an intrusion, i.e., a malicious HTTP request, he can
start the recovery process. This process is orchestrated
by the Sanare Manager and it consists in a series of steps
that include: assess the damage caused by the faulty
HTTP request; calculate and execute the compensating
operations; notify the affected external web services
about the intrusion; and present a notification to the
users to inform them about the recovery so they can
be prepared for some inconsistencies. This process is
explained in detail in the next section.

3.4 Execution phases

When Sanare is plugged into an application, it runs in four
phases:
Learning phase (Section 5): executed before the application

is available to the users. In this phase Sanare executes a
series of HTTP requests in order to gather examples of
the database statements, file system operations and web
service requests caused by the HTTP requests. Then
these requests are used by the Matchare scheme for
training;

Normal phase: the application is available to the users. In
this phase Sanare logs every HTTP request, database
statement, file system operation, and web service re-
quest. Sanare also performs automatic backups of the
application and the logs.

Damage assessment phase (Section 6): when the system
administrator identifies the malicious HTTP requests
that need to be undone, Sanare uses Matchare to iden-
tify the database statements, file system operations and
web service requests that were caused by the attack;

Damage repair phase (Section 7): Sanare executes the com-
pensating operations to undo the effects of the attack.
In this phase the application is still available to the
users, but they may observe some inconsistencies or
downgraded performance due to the execution of the
compensating operations.

4 MATCHARE

The problem solved by Matchare is to match an HTTP re-
quest to the database statements, file system operations and
web service requests that it caused when it was executed.
Data about these statements, operations, and requests is
stored in a log. To the best of our knowledge, this problem
of matching HTTP requests with operations from different
data repositories without requiring modifications to the



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

source code, has never been solved in the literature. In the
case of Sanare, this is needed to identify the effects of the
unintended requests from which we want to recover, a hard
operation to do manually. However, Matchare may be useful
for other purposes beyond intrusion recovery, e.g., for log
traceability, debugging or analytics.

Matchare solves this problem by resorting to a super-
vised deep learning scheme. Specifically, the scheme can be
considered to be a binary classification algorithm that aims
to decide if the pair {HTTP request, data operation} is a
match, i.e., if the operation was caused by the HTTP request
(here data operation can be a database statement, file system
operation or a web service request). Matchare verifies every
possible combination of HTTP request and operation that
occurred in a period of time, meaning that if there are n
HTTP requests and m operations, then Matchare needs to
verify n×m pairs.

4.1 Matching scheme

The scheme that finds matches between the pairs {HTTP
request, data operation} uses a dataset with all combina-
tions that an HTTP request can have with every database
statement, file system operation and web service request.
During recovery, the matching scheme tests the malicious
HTTP request with every operation that occurred in a time
window that starts roughly when the HTTP request was
executed and ends after a period of time elapsed (con-
figurable, e.g., a couple of seconds). Sanare does not use
the timestamp of the HTTP response since this may ignore
some data operations that are executed afterwards. In our
experiments we noticed that some operations are still being
executed when the HTTP response arrives (for example,
some cloud storage operations are executed asynchronously,
allowing the HTTP response to be sent to the user before
completing the operation). In practice Sanare uses Matchare
with three matching models, since the features used for the
database statements, file system operations and web service
requests are different. The matching scheme, Matchare itself,
is the same, but it is trained three times, one for each type
of operation.

The matching scheme uses a Deep Convolutional Neu-
ral Network (Deep CNN) [9]. In preliminary experiments
we tested other classification algorithms such as, Naive
Bayes [29], Logistic Regression [30] and Random Forest [31],
which provided good results in Rectify with well-formed
requests [8]. However, when we tested these algorithms
to match the HTTP requests with the operations in the
GitLab and ownCloud, we could not get them to correctly
match more than 50% of the examples. In our experi-
ments, the Deep CNN algorithm greatly outperformed these
algorithms. The main reason why Naive Bayes, Logistic
Regression and Random Forest fail to correctly match the
requests with the corresponding operations is that both
ownCloud and GitLab are more complex applications than
those tested in [8], thus requiring more features to train
the model. It is possible that with more features these
algorithms could achieve the same performance. However,
for these algorithms having more features would require
more tuning when compared with a Deep CNN [9] making
it more difficult to reach the same results.

The Deep CNN uses several hidden layers with each
layer having a set of nodes. Our models were composed by
a set of 5 layers with each layer having between 4 and 7
nodes. The exact number of nodes depends on the model.
The activation function used at a given layer l is given by

al+1 = σ(W lal + bl) (1)

where W l denotes the weights used at layer l, al the
activation for the nodes at layer l, bl the bias and σ the non-
linear activation function tanh(x) = ex−e−x

ex+e−x (hyperbolic
tangent function). At the final layer we use the Rectified
Linear Unit (ReLU) function (f(x) = max(0, x)), which will
result in a non-negative probability of the given pair ({HTTP
request, data operation}) being a match. In our experiments
the ReLU function achieved a better performance than the
sigmoid and tanh functions. To classify the pairs that match
we defined a threshold of 70%, meaning that every pair that
has a probability greater or equal than 0.70 is considered
a match. The threshold value was defined in an empirical
manner from the first experiment results.

4.2 Features

The features used by the matching scheme depend on the
type of operation. For the database statements we have
specific features that are different from those used for file
system operations. However, the HTTP request features are
the same for the three datasets.
HTTP requests features:
• Verb: GET, POST, PUT or another;
• URI: relative path of the request;
• Bytes sent: size of the request;
• Number of parameters: total number of parameters of

the request;
• Parameters (names and values): name and value of

every parameter.

Database statements features:
• Type: type of database statement, e.g., insert;
• Table: table targeted by the database statement;
• Columns: number of columns in the statement;
• Columns (names and values): names of the columns

and corresponding values;
• Hamming distances 4 between every pair of HTTP

parameter value and database column value.

File system operations features:
• Operation: type of operation (create, delete, copy, etc.);
• Source path: path of the affected file (for the copy and

move operation this corresponds to the origin file);
• Destination path: path where the file will be copied or

moved into (if it applies);
• Is directory: a Boolean value indicating if the affected

file is a directory or a file;
• Hamming distances between every combination of

HTTP parameter value and source and destination
paths.

Web service requests features:

4. The Hamming distance is a metric for comparing two binary data
strings, counting the number of bit positions that are different.
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• Verb: GET, POST, PUT or another;
• URL: absolute path of the web service;
• Bytes sent: size of the request;
• Number of parameters: total number of parameters of

the request;
• Parameters (names and values): name and value of

every parameter;
• Hamming distances between every combination of an

HTTP request and web service parameter values.
The Hamming distances capture something that we

observed in the logs: that frequently the same string, or
a variant, appears in the HTTP request and the database
statements or file system operations it causes. This notion
is crucial to understand if a request matches an operation.
However, it is worth noticing that this may not be true in
some cases (for example, when the application performs
some computation on the parameter’s value before writ-
ing it to the database). Nevertheless, we opted for using
Hamming distances of these strings as they contributed to a
better accuracy of the deep learning models.

As mentioned, the scheme is a form of binary classifica-
tion, so it assigns a class, called match, true or false, to every
pair {HTTP request, operation}. Moreover, it is a supervised
learning scheme, so it requires a set of pairs labelled with
that class for training. It needs a balanced training dataset,
so the number of pairs that match and do not match should
be the same [32].

Table 1 shows an example of four samples that were
generated by Sanare with example HTTP requests. The first
features come from the HTTP request, the following from
the database statement, and the last column is the label. The
label indicates if the database statement was caused by that
HTTP request or not. The second sample does not match; it
was created for training purposes.

4.3 Pre-processing the features

Before training and using the model to classify the logs, we
need to pre-process the features to normalize the numeric
features and encode the categorical (text) features.

Normalization refers to the process of scaling numeric
variables so that they all fit in a smaller interval. By nor-
malizing the numerical features the model converges to the
optimal weights in less steps [33], making the training more
efficient. The method we use to normalize is the Z-score
normalization in which every numeric value x is converted
to x′ such that x′ = x−x

σ .
Encoding the categorical features involves creating a

new variable for each possible value that a categorical
feature has. For example, the variable mode (from the file
system’s log) can assume one of three possible values: read,
write and execute. During encoding the variable is removed
and three new variables are created in the dataset: read, write
and execute, then in each sample one of these variables will
be 1 and the remaining ones 0.

5 LEARNING PHASE

This section focuses on Sanare/Matchare’s learning phase.
This phase has to be executed before the application is
available for the users and every time it gets updated with

new requests, new operations, or changes in the relations
among them. The phase has two steps: 1) simulating HTTP
requests from users and 2) training the machine learning
model with the results of Step 1.

5.1 Simulating HTTP requests
Sanare simulates the execution of HTTP requests so it can
observe the database statements, file system operations and
web service requests that are generated by them. The simu-
lation works by executing a list of HTTP requests. This auto-
labeling of operations is automatic and it only requires the
system administrator to provide a list of HTTP requests. The
list should include at least one request for each endpoint of
the application, but does not need to include every possible
HTTP request (as this would be impossible). For example,
the request: application.com/user/create?name=john
is sufficient to represent the endpoint /user/create, it is
not necessary to provide other requests with every possible
name parameter. The list should be extensive enough since
the endpoints that are not simulated by Sanare cannot be
matched by Matchare and, therefore, cannot be recovered.
If a specific HTTP request produces different operations
depending on the current state of the application (for ex-
ample, if the current logged in user belongs to a specific
user group), then the system administrator has to provide
different HTTP requests for different users to illustrate these
situations. This list of HTTP requests is executed in a con-
tainer that should be in an isolated environment, such as a
test server, so that the application does not execute external
web services during this phase. Instead, during this stage of
the learning phase the application should use a mock testing
approach [34]. In mock testing, external web services are
replaced by dummy components that simulate them so that
all features of the application can be tested without issuing
requests to real web services. Each HTTP request is executed
at a time so that there are no concurrent HTTP requests and
it is possible to know exactly which database statements, file
system operations and web service requests it executes.

For each simulated HTTP request, Sanare stores in the
Samples DB the pairs {HTTP request, data operation} for
every operation (in the database, file system and web
services) it caused. After the simulation, the Samples DB
should have three datasets similar to the example in Table 1:
one for database statements, one for file system operations
and another for web service requests. Notice that we can use
our dataset of only matches to create more pairs that do not
match, by combining different HTTP requests from training
with different DB statements. This will give us sufficient
non-matching statements, which we need to train deep
CNN (as explained in Section 4). After simulating every
HTTP request Sanare starts training the Matchare models.

5.2 Training the models
The output of the training phase is a model. A model is de-
fined by an algorithm and a set of parameters (weights and
biases) that are adjusted during training. These parameters
are used by the deep learning algorithm to calculate a prob-
ability of a sample (in this case, a pair {HTTP request, data
operation}) being true or not. So, during the training phase,
a set of parameters are tuned throughout several iterations,
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TABLE 1: Example of samples of HTTP requests with database statements.

Sample
ID

HTTP Features Database Features Label

Verb URI Bytes
send Params Param 1 Value 1 Param N Value N Type Table Columns Column 1 Value 1 Column N Value N Hamming

Distance 1
Hamming
Distance 2

Hamming
Distance MxN MATCH

1 GET search.php 45 1 q News - - SELECT - 5 q News - 0 - - 1
2 PUT comment.php 32 2 user John comment This is a. . . INSERT COMMENT 6 user David comment Another. . . 0 0 5 0
3 POST post.php 312 2 user Michael topic National SELECT - 4 user Michael topic National 0 0 0 1
4 POST post.php 343 2 user Michael subject Tech post INSERT POST 4 Topic David Text Tech post 0 0 0 1

Train Classify

Model

Samples DB

DB SampleDB SampleDB SampleSamples (DB, FS, WS and HTTP)

Pre-processing

Training

Logs

DB SampleDB SampleDB SampleCandidates

Pre-processing

Classify

Mal. DB StmtMal. DB StmtMalicious operations

Malicious HTTP request

Fig. 3: Training and classification with Matchare.

in each iteration the accuracy of the model improves. The
training is done in a sample of examples, called training set,
and tested in each iteration in another sample of example,
called test set. When training finishes the set of parameters
is stored to be later used to classify the pairs {HTTP request,
operation}.

There are three models to be trained due to the dif-
ferences between the types of operations: one model for
database statements, another for file system operations, and
a third for web services. Besides the different features, the
three models are trained the same way, therefore the follow-
ing description is valid for all the models. Using the samples
collected earlier the matching model will gather information
that will help it understand how database statements, file
system operations and web service requests differ when
executing the same HTTP request.

The left-hand side of Figure 3 shows the steps executed
during training. First the samples are fetched from the
Samples DB, then they are pre-processed (see Section 4.3)
and finally the model is trained (as described in this section).
The trained model is then stored to be used during recovery
to classify the pairs {HTTP request, data operation}.

6 DAMAGE ASSESSMENT PHASE

The damage assessment phase consists of identifying the
database statements, file system operations and web service
requests caused by the malicious HTTP request. This is done
using Matchare and the models trained during the learning
phase (Section 6.1). Moreover, Sanare also needs to find the
operations that depend on the operations directly caused by
the malicious HTTP request (Section 6.2). For example, if a
malicious HTTP request results in a database statement that
creates a new record in the database then the statements that
access that record depend on them and should be undone
as well.

6.1 Operations directly caused by HTTP requests
The malicious database statements and file system opera-
tions that need to be reverted, as well as the web service
requests that need to be reported to the web services owners,
are in the Logs DB. To find them, Sanare scans the logs in a

time interval of the intrusion. The time interval is calculated
according to the skew, time difference, in the clocks of
the HTTP server and the database server hosting the logs
using Cristian’s algorithm [35]. With the skew of the clocks
calculated it is necessary to define a time interval for Sanare
to scan the logs. The duration of the time interval cannot
be too long, otherwise Sanare wastes time looking into the
incorrect log entries, or too short, to avoid missing the log
entries caused by the HTTP request. The time interval we
established starts in the moment t of the intrusion minus
two times the skew and it ends in t+ r + 2× skew being r
the maximum latency observed by any HTTP request from
the application.

With the set of candidate operations (all operations that
occurred during the time interval), Sanare can combine
them with the malicious HTTP request(s) and use the
trained models to classify them, i.e., to detect if they match
or not. Similarly to training (Section 5.2), this is done in two
steps: pre-processing the logs alongside with the malicious
HTTP request; and running the trained models to classify.
The right side of Figure 3 represents how this process is
done.

6.2 Operations indirectly caused by HTTP requests

This section is not concerned with the operations that match
the malicious HTTP requests, identified using Matchare, but
those that depend on them (as seen in the example from the
beginning of Section 6). Sanare uses a dependency graph to
identify the database statements that depend on those that
are malicious and spread the execution of the compensating
operations to them. Sanare does not calculate a dependency
graph for file system’s operations since they have access
policies very different from a database. For example, most
file systems only allow a file to be written by a single process
at a time, while in a database several processes may compete
to write in the same table. We also exclude web services
as they are external to the application, so it is infeasible to
grasp dependencies that they may cause.

To obtain the dependency graph, Sanare scans through
the HTTP requests and database statements in the log and,
for each one of them, verifies a set of rules. Sanare needs to
verify the dependency between HTTP requests since they
will be used to infer dependencies among the database
statements they caused. We use a set of rules to define the
dependencies between requests:

HTTP1. For any two HTTP requests ri and rj , ri → rj (i.e.,
ri precedes rj or rj depends on ri) if

ts respri < ts reqrj ∧ sessionri = sessionrj
being ts reqrj the timestamp of the request rj , ts respri the
timestamp of the response to ri and sessionri the session of
the HTTP request ri. In other words, rj depends on ri if ri
completed before rj and if both were executed in the same
HTTP session.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

HTTP2. For any two HTTP requests ri and rj , ri → rj if
ts respri < ts reqrj ∧ userri = userrj

being userri the username of the HTTP request ri. In other
words, rj depends on ri if ri completed before rj and if
both were executed by the same user. This rule is targeted
at web applications that handle users with usernames. A
drawback of this rule is that if an attacker impersonates
a legitimate user he may create dependencies that should
not be considered, otherwise recovery will erase legitimate
operations. For this reason this rule is optional and can be
deactivated by the system administrator.

DB1. For any two database statements si and sj , si → sj if
ts ressi < ts reqsj ∧ Rowssi

⋂
Rowssj 6= ⊥

being ts reqsj the timestamp of the execution of sj , ts ressi
the timestamp of the result of the execution of si andRowssi
the set of records affected by si. This rule considers the
case when the database statement si completed before sj
was executed and both statements had at least one database
record in common.

DB2. For any two database statements si and sj , si → sj if
∀Rowssi ,∀Rowssi∃Rowssi(pk)→ Rowssi(fk)

being Rowsi(pk) → Rowsi(fk) a primary key-foreign key
relationship. This rule is used to ensure that, if a record
needs to be deleted, then every record that has a foreign
key connected to it is deleted first.

With these rules Sanare is able to create tuples rep-
resenting relations between HTTP requests and database
statements. For example the tuple R = (r1, r2, r3) states
two dependencies: r3 depends on r2 and r2 depends on r1.
Using these tuples Sanare constructs the dependency graph.

The algorithm to construct the dependency graph works
the following way. First, Sanare takes rf , the malicious
HTTP request that was identified by the system adminis-
trator and collects every HTTP request that depends on it
using rule HTTP1. Then, for each HTTP request it collects
the database statements that were issued by it. This is done
using the algorithm described in Section 6.1. Then, for each
subset of database statements Sanare applies rules DB1
and DB2 and creates the tuples with the dependencies.
Using these tuples Sanare is able to create n dependency
graphs, one for each HTTP request. Finally, Sanare connects
the dependency graphs the following way: the statement
that does not depend on another statement connects with
the one from the following dependency graph that has
no dependencies. If there is more than one HTTP request
identified as malicious, the process is executed once per
request.

Dependency graph

r1 r2

s1 s2 s4
s3 s6

s5

s8
s7

Malicious  
HTTP request

Fig. 4: Example of a dependency graph.

Figure 4 presents an example of a dependency graph.
In the example, r1 is the malicious HTTP request that the
system administrator intends to recover from. By using the
rule HTTP1, Sanare infers that r2 depends on r1. Then,
it generates two dependency sub-graphs: one with s1, s2
and s3 and another with s4, s5, s6, s7 and s8. Finally, Sanare
connects both dependency graphs by connecting s3 with s4
because: (1) there is no database statement that depends on
s3 and (2) s4 is the first operation from r2. Sanare connects
these two graphs because since r2 depends on r1, then the
first operation caused by r2 depends on the last operation
caused by r1.

7 DAMAGE REPAIR PHASE

To repair the damage caused by the malicious HTTP re-
quest(s), Sanare executes compensating operations on the
database, on the file system, and contacts the remote ser-
vices, to undo the effects of the intrusions. In other words,
the compensating operations will revert the affected data
objects (files and database records) to the previous version
prior to the attack. If a legit user did modify a corrupt data
object, his changes will be lost since Sanare tagged that data
object as corrupt from the moment the attacker modified
it. Each transaction undoes a single database statement or
file system operation or a remote operation, and they differ
depending on the target. A compensating operation that
undoes an SQL database statement is an SQL statement
while a compensating operation for the file system consists
in a file system operation and a compensating operation on
a web service is a remote call.

7.1 Compensating operations in the database
The compensating operations for a database vary depending
on the database management system. An SQL database,
such as PostgreSQL [36] has its own language which is
different than a NoSQL database, such as MongoDB [15].
To cope with this heterogeneity, Sanare has an adapter for
each of the most used database management systems. It
is possible for developers to create more adapters making
it compatible with more database management systems.
Sanare should be capable of recovering any database as
long as the CRUD (create, read, update and delete) operations
are available. Read operations are ignored by Sanare to
calculate the compensating operations since they do not
modify the database records. For the remaining operations,
the compensating operations are calculated as follows:
• create: a record created by an attacker is always corrupt,

even if a legitimate user alters it later on. As such
it should be deleted. The compensating operation for
a create operation consists in a delete that targets the
created records;

• update: records that are modified by an attacker using
an update operation should be reverted back to their
previous versions prior to the attack. Sanare does this
by calculating an update that reverts the affected records
back to the most recent version before the attack;

• delete: when an attacker deletes a record it should be
recreated during recovery. Sanare does this by calculat-
ing a create statement that inserts the removed record
back to the database.
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7.2 Compensating operations in the file system
The compensating operations for file system operations
should be capable of reverting the affected files and folders
back to most recent version prior to the attack. Even if
legitimate users modify a file that was corrupted by an
attacker, such modifications are ignored. We chose this
approach since it is not possible to reconstruct every file
ignoring previous modifications.

The compensating operations for the files use a combi-
nation of file system backups, that are stored in an external
cloud storage, and file system operations, that are stored
in the Logs DB. The approach adopted by Sanare to create
backups of files is: if a file f is modified, then a new version
of f is created in the file system and the previous version is
moved to the cloud storage. If a file f is moved from one
folder to another, then it is not copied to the cloud storage,
instead, the move operation is stored in the log. If a file is
deleted then it is copied to the cloud storage and deleted in
the local file system of the application. When a file is created,
a copy is uploaded to the cloud storage. This approach is
used in append-only file systems and cloud storage services,
such as Microsoft OneDrive, that stores up to 500 versions
of each file by default.

The compensating operations for files should take into
account the tree structure of the file system. For example,
if an attacker creates a new folder and moves several files
to that folder, the compensating operations should not just
delete the folder and its files. Although the structure of the
file system was modified by the attacker, the files were not.
For this case Sanare should move the files back to their
previous location and then delete the folder created by the
attacker. It may happen that legitimate users create files in a
directory created by an attacker. By default, Sanare deletes
these files as well; even though they were not corrupted by
the attacker, it is not possible for Sanare to know where to
put such files. However, before executing the compensating
operations, Sanare always asks the system administrator if
he wishes to copy these files to a new location.

7.3 Compensating operations in remote web services
The compensating operations for remote web services are
not calculated by Sanare. These remote web services are
controlled by third parties and have different interfaces and
functionality. For example, it is typical for a web application
to contact a remote web service to issue payments and
another to emit receipts. Each of these web services has
a different protocol making their compensating operations
specific for each one. Furthermore, it is a good practice in
remote web services to provide an interface that allows to
undo previously executed operations (for example, refund a
payment from a returned purchased item). One example of
such undo operations is the PATCH method [37], [38] that
was introduced in the HTTP protocol for this situation.

We assume that remote services are prepared to receive
repair messages from Sanare that will trigger the required
actions to recover their state. Sanare allows the system ad-
ministrator to manually configure compensating operations
for each remote web service. During recovery Sanare will
invoke these compensating operations. This also allows the
system administrator to make the compensating operations

more sophisticated, for example, by invoking an extra web
service that notifies the users of the application that a
recovery process was performed.

7.4 Data consistency after recovery

To maintain data consistency after the recovery finished, it
is necessary to execute all compensating operations atomi-
cally; if only a subset of the compensating operations were
executed, then the application would become inconsistent,
with part of its state reflecting the effects of the attack
and another the effects of the recovery. To avoid this situ-
ation, Sanare executes recovery atomically, executing every
compensating operation inside a system-wide transaction.
The system coordinates the execution of the compensating
operations in the following way:

1) for each database record affected by the compensating
operation, Sanare saves in memory the current value
of the database records. These values are saved in the
form of a database statement (rollback transaction) that
is capable of reverting the records back to their previous
version;

2) for each file affected by the compensating operation,
Sanare saves in memory the file;

3) Sanare executes the compensating operations in both
the database and the file system;

a) if at least one compensating operation failed then
system uses the rollback transactions to revert the
database records to the pre-recovery state. The files
affected by the compensating operations are reverted
as well. The recovery is considered unsuccessful and
the system administrator is alerted to try again;

b) if every compensating operation is successfully exe-
cuted then the recovery process is considered com-
pleted and the system administrator is alerted.

It is worth mentioning that during the execution of Step
3 the users may observe some inconsistencies as the system
is being recovered and some records may be recovered while
others may still reflect the effects of the attack. We assume
that this behavior is accordingly with our system model that
assumes an eventual consistency guarantee, which means that
users may observe some inconsistencies but, eventually, the
application becomes consistent and from that point forward
it will be consistent.

7.5 Dealing with external inconsistencies

External inconsistencies happen when users of the applica-
tion observe effects of the attack and later on, after recovery
finishes, these effects of the attack disappear. One example
is when an attacker creates messages that are illegally sent
to users. The recipients of these messages read and can even
reply to them, but once recovery removes those messages,
the users may believe the application is malfunctioning.
Since it is not possible to make the users forget they read the
attacker’s messages then the users should be notified that
a recovery took place and therefore they may experience
some inconsistencies. Sanare handles this by allowing the
system administrator to leave a message to users to let
them know the application was under maintenance and
they may experience some inconsistencies. For example, if
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the system administrator recovers the request to the URL
www.site.com/posts/a post, then only the HTTP requests
to this location get the notification. This avoids having a
notification of a recovery in a completely different part of
the application.

8 IMPLEMENTATION

We implemented Sanare as a microservices application [39],
[40] where each component of Figure 2 is a microservice.
Sanare can be deployed in a single container or distributed,
with each component running in its own container.

8.1 Sanare
Each component of Sanare is a microservice that was im-
plemented in Python using the Flask micro web framework
[41]. The logs are stored in MongoDB [15], [17] databases.
Sanare Manager: is the coordinator of the system. It starts
the remaining microservices and coordinates the recovery
process. The Manager can also turn off unused components,
for example, if the application does not use web services
then the Manager can turn off the Web Service Agent. This
microservice has access to a user of the cloud to allow it
to start a replica of the application during recovery. This
is done using the API of the cloud provider. It is also
the only microservice that is accessible by the users of
Sanare. Therefore, this is the only microservice that has ports
opened for outside traffic.
HTTP Agent: uses NGINX [42], configured as a reverse
proxy, to intercept and log every HTTP request that targets
the application. Each log entry is then synchronized to a
database (HTTP log) with RSYSLOG.5 The HTTP Agent
does not modify the received HTTP request and it logs it
as is, this way it interferes as little as possible with the
application throughput.
Web Service Agent: is another instance of NGINX that is
configured as a proxy that captures every HTTP request that
comes from the application. Like the HTTP Agent, the Web
Service Agent does not modify the HTTP requests, it just
logs and synchronizes them, with the aid of RSYSLOG, to
the WS Log.
File System Agent: logs file system operations that occur in
the file system where the application is hosted. We imple-
mented this component in two different ways: as a mounted
volume using FUSE,6 and as a listener process that runs in
the application container using Watchdog.7 Each approach
has its advantages and disadvantages. With FUSE it is pos-
sible to mount an external file system (for example, a cloud
storage) and use a dedicated storage recovery system [26],
however, this approach requires the application container to
be configured to use the mounted volume, which may not be
possible in some cloud providers. With Watchdog the setup
is simpler because it consists in starting a process in the
application container. In both approaches the File System
Agent logs file system operations to the Logs DB without
modifying them.

5. RSYSLOG – https://www.rsyslog.com
6. Filesystem in Userspace, https://github.com/libfuse/libfuse
7. Watchdog: Python API and shell utilities to monitor file system

events – https://pypi.org/project/watchdog/

Database Agent: is a process that runs in the same machine
of the application’s database and it is responsible for two
things: first, when it starts it configures the database of the
applications to log every statement in its built-in log; second,
it periodically synchronizes the application’s database log
to the DB Log and garbage collects the old log entries. This
approach is different than the one used by the HTTP Agent,
which uses a proxy to intercept the requests. We opted for
this approach as it performs faster than passing requests
through an additional component.

8.2 Deploying Sanare
Sanare was designed to be deployed alongside the applica-
tion. Given its distributed architecture, it can be deployed
in three different ways: embedded, single container, or
distributed.
Embedded deployment: Sanare runs in the same container
of the application. This approach is adequate for simple
applications that do not have high demanding traffic re-
quirements. It is easier to manage, since it does not add
the inherent complexity of distributed applications and it
requires less resources. It is also cheaper, since it does not
require extra machines to run Sanare. The drawback is the
performance degradation of having more processes running
in the same machine.
Single container deployment: allows the administrator to as-
sign a container to run every component of Sanare. This way
the application’s container does not get overloaded and the
administrator can scale up the machine running Sanare if
it is degrading the application’s performance. This deploy-
ment mode is adequate for medium sized applications that
have more demanding traffic requirements.
Distributed deployment: allows each component (microser-
vice) of Sanare to run in its own machine. By distributing
every component of Sanare it is possible to scale up the
components that are degrading the performance of the ap-
plication. For example, it is expected that the HTTP Agent,
which responds to every user, has far more requests to
handle than the Sanare manager, which is only accessed by
the system administrator. The drawback of this approach
is the complexity of deploying and managing a distributed
system. However, it is possible to use a tool like Kuber-
netes [21], [43] to automate the deployment process. This
approach is the most indicated for complex applications that
may already be distributed.

9 EXPERIMENTAL EVALUATION

In our experiments we wanted to find the answer to these
questions: (a) How does Sanare impact the performance of
the application? (b) How much storage is needed to keep
the logs and the necessary recovery data? (c) How long
does it take to recover an application when the number of
malicious HTTP requests varies? How much does it cost to
use Sanare in public clouds? What is the accuracy of Sanare
in matching operations that cause modifications to the state
with the corresponding malicious HTTP requests?

To answer these questions we evaluated Sanare using
three different applications: WordPress [18], GitLab [19] and
ownCloud [20]. These three applications have very different
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purposes and use cases. WordPress is a content management
system (CMS) that is used by more than 37% of the top 10
million website.8 With WordPress we can evaluate Sanare in
a web application that is mostly used for blogging and pro-
vide content to their users. GitLab is a DevOps lifecycle tool
with a Git repository and support for documentation with
Wiki and issue tracking. With GitLab we aim to evaluate
Sanare with a system that has a complex use case: storing
thousands of files in a Git repository and keeping issues and
users in a database. OwnCloud is a cloud storage server
that offers a similar functionality to DropBox [44], which
is to store files in a server and allow users to synchronize
them using different client-side applications. This gives us
a different use case from GitLab since files can be modified
by the users; usually in a Git repository previous versions
of the files are kept in a version history.

In our experiments we do not compare Sanare with
others intrusion recovery systems since Sanare is the first
intrusion recovery that is targeted for web applications that
use several repositories. It would be possible to create a test
scenario in which the the target application would only have
a single repository to allow comparing Sanare with another
system, such as [7], [8]. However, such comparison would
not evaluate the full potential of Sanare in the sense that
it was designed for multi-repository applications. Instead,
we focused our experiments in evaluating the accuracy of
Sanare in multi-repository applications.

The experiments were conducted in Google Cloud9 us-
ing Google Compute Engine [45], their IaaS offering. This
allowed us to distribute Sanare in different containers and
use Sanare Manager to coordinate every component of the
system using the Google Cloud APIs.10 The machines had
4vCPU, 15GBs of memory and 20GBs SSDs.

9.1 Performance overhead

Sanare degrades the performance of the application due to
the overhead of having every HTTP request, web service,
database statement and file system operation being logged.
To evaluate the performance penalty of running Sanare we
deployed it with the three tested applications: WordPress,
GitLab and ownCloud. We opted for the distributed de-
ployment, i.e., each component of Sanare is running in
its own container. Then we executed a workload for each
application that was composed by a set of different HTTP
requests for each application using the Locust open source
load testing tool.11 Locust allows to execute workloads of
HTTP requests using distributed machines. The workloads
are written and parameterized using scripts, then Locust
executes the list of requests in the workload randomly. The
workloads that we created for the experiments simulate
how users interact with the application. For example, for
WordPress the workload has two types of users: readers and
writers. The readers only have read access to the content of
the site and the writers can write new posts, modify pages,
delete comments and upload files. The readers and writers

8. Usage statistics of content management systems –
https://w3techs.com/technologies/overview/content management

9. Google Cloud – https://cloud.google.com
10. Google Cloud APIs – https://cloud.google.com/apis
11. Locust – https://locust.io

are distributed 95%/5% for WordPress and 50%/50% for
the remaining applications. These distributions are similar
to those used in other workload testing tools, namely, in the
much used YCSB [46]. For both ownCloud and GitLab we
opted to use an update heavy workload since these kinds
of applications are used for creating and modifying large
quantities of files. All the requests in the experiments were
executed randomly.

Figure 5 presents the performance, in terms of requests
per second, of the three tested applications with the number
of parallel users varying from 1,000 to 10,000. Varying the
number of parallel users allows us to assess how the applica-
tion with Sanare behaves when the traffic load increases. We
tested each application with (green line) and without (blue
line) Sanare. From 2,000 parallel users some requests start to
fail. This happens because the application is not able to keep
up with the traffic. The orange and red lines present the
failures per second respectively with and without Sanare.
As we can see in the figure, there is an average performance
penalty of 17%, 15% and 12% for WordPress, GitLab and
ownCloud, respectively. The performance degradation in-
creases after 3,000 parallel users, which indicates that the
machine hosting this particular application starts failing at
around 3,000 parallel users.

9.2 Required storage

Sanare uses logs with the executed operations to perform
recovery. These logs take significant space as they grow over
time. To evaluate how much storage would be necessary to
keep the execution logs, we executed a load of 1,000,000
HTTP requests using Locust. The requests were equally
divided between read operations and write operations. This
is not a strict concept in the tested applications since it is not
possible to draw a line between read operations and write
operations as we could do in, for example, a file system. As
such, we defined a read operation as one that modifies as
little as possible the state of the application. In WordPress
this consists in getting a blog post or a page. In GitLab this
consists in fetching the code with git pull or viewing the code
tree of a project. In ownCloud a read operation consists in
navigating through the file systems. For the write operations
we assume those that modify as much as possible the state
of the application. For WordPress this consists in creating
a blog post that contains an image file and is shared in
a social network. For GitLab it can be the creation of a
new repository, pushing new code or removing a repository.
For ownCloud it consists in uploading and deleting files.
Locust executes these operations randomly with a constant
probability.

Table 2 lists the amount of storage required to keep the
logs. In each line of the table we have the three tested ap-
plications and in each column there is the required storage
for each log. The last column sums the total of all the logs.
The required storage is in the scale of the GBs of data. The
total amount of storage required for 1,000,000 requests is
lower than 30GBs. This amount of storage does not vary
significantly from other intrusion recovery systems [7], [8],
[26].
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Fig. 5: Throughput in requests per second (RPS) and failures (FPS) of WordPress, GitLab and ownCloud in an out-of-the-box
setup and configured with Sanare.

TABLE 2: Size of the logs (in GBs) of the three tested
applications after executing 1,000,000 HTTP requests with
Locust.

Application DB FS WS HTTP Total
WordPress 6.56 1.13 2.32 7.37 17.38
GitLab 7.21 4.87 11.32 5.21 28.61
ownCloud 5.23 5.13 3.35 6.53 20.24

9.3 Time to recover

The time it takes to recover an application depends on the
number of intrusions that need to be reverted. For a single
intrusion there is only a single HTTP request to analyze and
few database statements, file system operations and web
services to revert. When this number scales to 100, Sanare
needs to repeat the process 100 times. To evaluate how long
it takes to revert an intrusion, we tagged a set of HTTP
requests as malicious from a log with 1,000,000 requests.
These HTTP requests were selected randomly. They are
not different from the legit requests besides being tagged
as malicious. The goal of this experiment was to measure
how long it takes to revert operations. Tagging random
operations as malicious serves this purpose. The experi-
ments were repeated the tests 10 times for each number of
intrusions. In each test we executed a recovery process with
Sanare. We varied the number of malicious operation from
10 to 100 and measure the time it took from the moment
recovery started to the moment it finished. Figure 6 shows
the average time to recover the three tested applications.
The average time to recover grows linearly with the number
of intrusions to recover. The values vary depending on
the application. WordPress was the fastest application to
recover and ownCloud the slowest. This experiment shows
that the time to recover depends on two factors: the number
of intrusions to recover from and the complexity of the ap-
plication. A single intrusion takes between 1.8 (WordPress)
to 6 seconds (ownCloud).

9.4 Monetary cost

Sanare was designed to be deployed alongside the applica-
tion it is protecting, but it may require extra machines in the
cloud to run its components. It is possible to deploy Sanare
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Fig. 6: Average Time To Recover (TTR) the three tested
applications with the number of intrusions varying from 10
to 60 with a confidence interval of 95%.

in the ways mentioned earlier (embedded, single container,
or distributed containers). To evaluate these monetary costs,
we calculated how much it would cost to run Sanare in the
three deployments. These values were calculated assuming
the application is running in a virtual machine with 4
vCPUs and 16GBs RAM and Sanare modules run in similar
machines.

TABLE 3: Additional monetary cost of running Sanare
monthly and yearly in the three deployment modes.

Deployment mode Monthly cost Yearly cost
Embedded $0 $0
Single container $126 $1,512
Distributed $378 $4,536

Table 3 lists the monetary cost of running Sanare in
the three different deployment modes: embedded, Sanare
is running in the same container of the application therefore
there is no monetary cost associated; single container, every
module of Sanare is running in a single container apart from
the applications; and distributed, each of the components of
Sanare that can be distributed (HTTP agent, Web Service
agent and Sanare manager) is running in its own dedicated
container.
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There is another cost associated with Sanare that is the
cost of keeping the logs of the application. Sanare gives
the option of garbage collecting old logs to save space,
however it is not possible to recover from operations that
were discarded. Keeping old logs allows the administrator
to recover from intrusions that were detected after a consid-
erable amount of time. Table 4 lists the costs of storing logs
in a cloud storage. Unlike the cost of running Sanare, it is
not possible to predict the cost the logs will take over time
since that depends on the traffic the application receives
and, as we see in Table 2, the required storage for the logs
is different for each application. So, we assume that the
application receives an average of 1,000,000 requests per
month and that results in 22GBs (roughly the average of
the three applications tested in Table 2). This means that
the logs grow 22GB each month until they are garbage
collected, in other words, by the end of the year the cost
is not the cost of storing 22GBs times 12 months, but instead
the cost of storing 22GBs for one month plus 44GBs for
another month and so on. Table 4 lists the cost of keeping
the logs for an application that receives 1,000,000 HTTP
requests per month. In the table there are two types of costs:
cloud storage and cold storage. Cloud storage is a standard
option that is used to keep data that needs to be constantly
available and cold storage is an option to keep data that is
rarely used. We believe that cold storage is the best option
to keep older logs since they are only consulted when an
intrusion happens.

TABLE 4: Monetary Sanare monthly and yearly cost of
keeping 1,000,000 HTTP requests from the log in a cloud
and cold storage

Storage type First month Yearly cost
Cloud storage $3.71 $289.38
Cold storage $0.26 $20.28

9.5 Results of the matching model
We used three metrics to evaluate the models that match the
HTTP requests with the corresponding operations. These
metrics take as input the total number of True Positives and
True Negatives, i.e., the samples that the model correctly
classified as a match and non-match, and False Positive
and False Negatives, i.e., the samples that model failed to
classify as match and non-match. The metrics we used are
Precision, Recall and F1-Score which is calculated as follows:

Precision =
TruePositives

TruePositives+ FalsePositives
(2)

Recall =
TruePositives

TruePositives+ FalseNegatives
(3)

F1Score = 2×
Precision×Recall

Precision+Recall
(4)

The results of these metrics are presented in Table 5. For
the experiments we used a dataset composed by 1,000,000
examples of HTTP requests with corresponding operations.
The dataset is composed by requests from the three tested
applications. Matchare reaches close to 100% in all the
metrics, but not 100%. Therefore, some operations can be
identified as malicious, even if they are not (false positives),

while others may be identified as legit, while they should be
identified as malicious (false negatives). Due to this, Sanare
may be configured to not perform recovery right after it fin-
ishes running Matchare. Instead, it may present the system
administrator a list with the suggested operations Matchare
found that should be reverted. Then the system adminis-
trator may choose if all operations should be reverted or
only a subset of them. It is possible to configure Sanare
to allow Matchare to suggest other operations that may be
malicious, i.e., that have a high probability of being caused
by the malicious HTTP request. By adjusting this probability
threshold Matchare is able to identify all positives with the
expense of suggesting too many operations to the system
administrator.

9.6 Discussion of the results

The results of our experiments suggest how Sanare will
perform in a real world scenario. The performance overhead
is less than 17%. The storage to keep the required logs after
1,000,000 operations were executed varies from 17GBs to
20GBs depending on the application. The time to recover is
linearly proportional to the number of HTTP requests that
need to be reverted. In our experiments, it took around a
minute to revert 10 HTTP requests, and between 2 and 5
minutes to revert 60 requests. Matchare was able to achieve
a precision of around 97% and a similar recall. This means
that for 100 HTTP requests that Sanare analyzes, it is able
to correctly find every operations that causes changes to the
state of the application for 97 of those requests. The remain-
ing 3 requests contain operations that were not caused by
the malicious HTTP requests or is missing some operations
that were caused by them that should also be reverted.

The overall performance overhead is enough to be no-
ticeable in some applications, however, the 17% downgrade
in the throughput can be easily reduced by improving the
computing power of the machines running Sanare. This is
something that can be done without major effort when the
application and Sanare are running in a cloud service. The
storage required for the logs is significant and, because of
that, we calculated how much it would cost to keep the logs
in two different storage options. The yearly cost to store the
logs can be reduced from around 300$ to 20$ if the logs are
moved to a cold storage service.

10 RELATED WORK

The problem of intrusion recovery has been studied in other
works for different types of applications. In [47] the authors
present a generic mechanism to recover from intrusions that
uses a combination of logs and checkpoints to keep track of
the user operations. The proposed approach, called the three
R’s of recovery consists in performing recovery in three
steps: Rewind the system to before the attack; Repair, by
eliminating malicious operations from the log and Replay,
by re-executing the remaining operations. An implementa-
tion of this approach is presented by the same author in [48],
with an extensive experimental evaluation in [49]. In this
work the three R’s approach was implemented in an e-mail
system, allowing system administrators to undo unintended
actions from the e-mail server while keeping the effects from
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TABLE 5: Evaluation of the three models using the Precision, Recall and F1-Score metrics.

Model Precision % Recall % F1-Score % True Positives True Negatives False Positives False Negatives
Database 97.72 97.95 97.83 481,235 497,463 11,245 10,057
File System 97.29 98.38 97.83 486,905 491,493 13,574 8,028
Web Services 97.91 97.51 97.71 479,921 497,583 10,249 12,247

legitimate operations intact. Sanare takes some inspiration
from this work, more specifically the system architecture
was based from [48].

There is some work in the literature regarding intru-
sion recovery for web applications [3], [4], [5], [7]. These
intrusion recovery mechanisms require modifications to the
source code of the application server running it. These
requirements are not in line with our system model since
we assume that such modification cannot be done. There
is another intrusion recovery system for web application
that does not require modifications to the source code called
Rectify [8] which uses machine learning techniques to match
HTTP requests with database operations (and only this kind
of operations). This assumption that it is not possible to
modify the source code of the application is also adopted in
our system and the mechanisms to correlate HTTP requests
with database operations takes some inspiration from this
work. There are other similarities from these works with
ours; more specifically these systems assume a system ar-
chitecture in which the state of the application is contained
in a database. Our assumption of a typical web application
does consider a database to store part of its state but we also
assume that the web application may also use a local and
remote file system to keep its state. In Sanare we also assume
that the web application may interact with external web
services which can be a challenge to recover from intrusions.
This characteristic is also present in another recovery system
called Aire [6] which deals with intrusion recovery from
web applications that are distributed and interact through
web services. In Aire there is a mechanism to propagate the
recovery operations to the external web services which is
similar to our approach that allows the system administrator
to invoke special web services’ operations during recovery.

In order to recover the database of the web applica-
tion we use an algorithm that assesses the damage in the
database and obtains a dependency graph to revert the
effects of the attack in every affected record. This algorithm
was inspired in [3], which explores the problem of intrusion
recovery in databases. We extended the algorithm in [3] to
take into account not only the dependencies at database
level, but also at application level (HTTP requests), to draw
an extended dependency graph. Another work that explores
the dependencies among operations for recovery purposes
is Retro [50]. Retro is an intrusion recovery that creates
action history graphs that describe in detail the system
execution of operations triggered by users. This graph is
then used to selectively re-execute the correct operations
in order to recover the system. Although we do not adopt
the same recovery strategy (selective re-execution), we took
some inspiration from the algorithm to obtain the depen-
dency graph. More specifically, in Retro the authors take into
account the processes and how they interact with objects
(files), while we take into account the user session (from the
HTTP protocol) and how they interact with the database

records.
Sanare recovers corrupted files in the file system using

a combination of execution logs and multi-versioned files.
There is some work in the literature regarding recovery in
file systems. One example is the Elephant File System [51]
that keeps every version of each file, allowing users to revert
files to previous versions. Another file system that allows
users to revert back files is S4 [52], which combines multi-
versioned files with operation logs. Allowing system admin-
istrators to diagnose the damages caused by the attack and
repair from it. RFS [53] is a plugin for existing file systems
that can be attached to log operations and recover from
intrusions. As opposed to [51] and [52], RFS does not revert
to a previous version of the corrupted files; instead it rolls
back the system to a point in time prior to the attack and
re-executed every legitimate operation, similar to [47]. This
approach is also adopted in Taser [54], a file system that
uses logs to taint the files affected by an attack, allowing the
administrator to revert not only the attacked files but also
those that were indirectly contaminated by them. In order
to track the tainted files Taser intercepts system calls, allow-
ing it to register the processes that affected the files. This
approach is similar to the one used by Sanare, in the sense
that it also intercepts file system operations in order to trace
the effects of the attack. Another file system that employs
some of these techniques is IFS [55]. In this file system some
processes only have access to an isolated environment that
does not allow them to modify files, instead new copies are
created. A similar isolation technique is adopted in Sanare
to recreate the attack without corrupting the application.

RockFS [26] is an intrusion recovery service for cloud file
systems. This service is capable of recovering single cloud
and cloud-of-clouds file systems by using a combination
of operation logs and multi-versioned files. RockFS takes
advantage of the cloud services by dynamically allocating
storage containers and virtual machines so that it can keep
logs and perform recovery. This approach of using the cloud
services to leverage the recovery mechanism is also adopted
in different aspects in Sanare.

11 CONCLUSION

In this paper we presented Sanare, a “pluggable” Intrusion
Recovery system for Web Applications. Sanare takes into
account the current trends in web development and allows
administrators to recover applications that rely on database,
file system and external web services. Its modular archi-
tecture makes it possible to use Sanare in applications with
different complexity levels and without requiring additional
software modification to the source code of the applications.
The presented results show that it is possible to recover
from a single intrusion in a couple of seconds. Although
Matchare is a relevant component of Sanare that allows it
to find operations caused by an HTTP request it can also
be used in different contexts. For example, Matchare can
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be used to perform analytical analysis in web applications,
by finding which HTTP requests are generating the most
complex operations. Matchare can also be used for forensic
analysis allowing experts to find how certain operations
affected the state of the application.
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