
Blockchain-based Rental Documentation
Management with Audit Support

1,2João F. Santos, 2Miguel P. Correia, 1Tiago R. Dias
1Unlockit.io, Portugal 2INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

joao.santos@unlockit.io, tiago.dias@unlockit.io, miguel.p.correia@tecnico.ulisboa.pt

Abstract—In the rental market, document management is a
critical process to ensure the accuracy of financial transactions
and regulatory compliance. In Portugal and many other coun-
tries, challenges include the complexity of legislation, particularly
GDPR compliance, lack of transparency, and bureaucratic inef-
ficiencies. With this in mind, a solution based on Hyperledger
Fabric, a blockchain platform, is presented for the implementa-
tion of a document management system for the rental process that
supports auditing. This system oversees the rental process. We
present the system, a prototype, and an experimental evaluation.

I. INTRODUCTION

Blockchain technology provides decentralisation to sectors
where the single point of failure is the norm. Developers and
entrepreneurs continue to explore new use cases for this new
cutting-edge technology. Cryptocurrencies, such as Bitcoin,
are an excellent illustration of this, since their primary purpose
is to provide an alternative payment system that is decen-
tralised but otherwise functions similarly to existing solutions,
creating a more transparent and efficient way to conduct finan-
cial transactions. However, centralised organisations such as
banks can also look at blockchain technology as an innovation
with the ability to improve efficiency and transparency. There
are still many use cases where blockchain can enter and
improve the field, such as Supply Chain & Logistics, Finance,
and Property & Real Estate, given that this is a new technology
undergoing improvement and development.

Today, the real estate market is inefficient and slow in
responding to consumer needs. In order to acquire or lease
a new home, numerous bureaucratic steps must be followed
to ensure adherence to legal standards; consequently, these
processes are lengthy. The processes that slow down such
procedures are, among others, risk verification, regulatory
compliance, and fraud investigation.

Real estate audits and due diligence processes require
manual validation of documentation. An audit is necessary
to investigate information about properties and their own-
ers whose objective is to form an independent opinion on
financial and legal statements. During the process, all the
financial, accounting and tax aspects of the property must be
analysed. This process seeks to catch any possible fraud that
the buyer, seller, or renter may be committing, for instance,
debts that somehow may be linked to the property itself or
even fake property reviews and forgers, who are armed with
false documentation, to impersonate owners, sellers, or even
attorneys. High intermediary or brokerage fees, the acquisition

and verification of pertinent information from legal sources,
fluctuating transaction prices, opacity of property rights, and
tax fluctuation are other relevant issues within this entire pro-
cedure in real estate [1]. Due to its complexity and difficulty
in regulation, it can be difficult to create innovative solutions
to solve this real estate audit problem.

Blockchain shows a promising future for the enhancement
and development of new tools in this area. However, it is
imperative to recognise that these technologies are not bullet-
proof. As a result, in addition to the benefits mentioned earlier,
the space may suffer from any drawbacks these technologies
may have. In the future, auditors can use these techniques to
make the audit process more efficient and provide a better and
more sophisticated service to anyone seeking their services.

This paper presents the Blockchain-based Documentation
Management (BDM) system. BDM is a blockchain-based
document management system for the rental process that
supports auditing. This system oversees the rental process,
which consists of three phases: the application for a property
by the prospective tenant through the upload of necessary
documents, acceptance/rejection by the landlord of various
received applications, and the creation of a report by the
system, which only an auditor can request and view. The
system smart contract records metadata associated with the
documents (hash, owner) and coordinates requests for file
access by landlords to prospective tenants. Therefore, the
system creates immutable and traceable records of the entire
process and serves as a foundation for audits. After the
landlord verifies the files and accepts the rental proposal,
any authorised auditor can request a report for a property by
accessing the records through the final report, which includes
all events that occurred during the process. We present the
system, a prototype, and an experimental evaluation.

II. BACKGROUND

A blockchain is a distributed, durable and append-only
ledger that contains records organised in blocks [2]. Blocks
store valid transactions as a record book page. A blockchain
is a distributed ledger technology (DLT) in which the ledger
is not controlled by a central authority. This technology
can be used to ensure safe transactions, reduce compliance
costs, and simplify data processing. When a block is filled
with transactions (block t + 1), it is closed and linked to
the previous block (block t), forming a chain of data, the
blockchain. Following that newly added block, all additional

1

data is collected into a new block, which is then added to the
chain once it is complete. The transaction validation process
ensures that transactions and blocks on the blockchain are
verified [3].

1) Smart Contracts: Smart contracts, an innovation in
blockchain technology, change the way agreements are made
and enforced [4]. These self-executing digital agreements
operate autonomously within blockchain networks, automating
and verifying contract terms. They are coded to execute actions
based on predefined conditions, be they simple criteria or
complex events. Crucially, they interact with the blockchain
data and modify it as needed.

These contracts are integral to decentralised blockchain
networks and leverage low-level programming languages such
as Ethereum bytecodes. They find applications in various
domains, offering transparency, automation, and security. By
eliminating intermediaries and reducing manual intervention,
they improve efficiency and accuracy, making them valuable
for supply chain management, finance, and real estate.

2) Permissionless Blockchains: In permissionless
blockchains [2], there are no restrictions on joining the
network. Anyone can participate in the consensus algorithm
[5] and validate transactions. A user generates a personal
address on a permissionless blockchain and interacts with the
network by sending transactions to other users or assisting
the network in validating transactions. If a user helps with
block validation, a reward is earned for validating the new
incoming blocks, so this type of blockchain receives more
support from the community.

3) Permissioned Blockchains: A permissioned blockchain
restricts access to authorised users and is often chosen for
enhanced security. Blockchain administrators manage user
authorisations, ensuring that only authorised individuals can
interact with them. This approach is popular among organi-
sations that prioritise data confidentiality and privacy. Permis-
sioned blockchains are widely adopted, especially in corporate
settings.

4) Permissioned Blockchain Frameworks: Various permis-
sioned blockchain frameworks, such as Canton [6], Hyper-
ledger Fabric [7], and R3 Corda [8], support programmable
transactions, allowing entities managing the blockchain to
define business rules and logic.

Hyperledger Fabric, part of the Hyperledger project under
the Linux Foundation, is a permissioned distributed ledger
platform. It emphasises modular architecture and adaptability,
supporting various consensus algorithms. The unique feature
of Fabric is its use of channels for segregated communica-
tion paths, ensuring data privacy. Customisable endorsement
policies streamline transaction agreement, focusing on scala-
bility. Identity management and access control are maintained
through the Membership Service Provider (MSP) framework,
ensuring accountability and transparency. Transactions in Fab-
ric undergo a lifecycle, including proposal, endorsement, block
distribution, consensus, and ledger update.

R3 Corda is an enterprise-grade distributed ledger platform
that focusses on privacy, scalability, and interoperability. It

emphasises shared ledgers, where only the parties involved
access the transaction data for confidentiality. Fine-grained
permissions determine data access. The Corda Flow Frame-
work allows direct communication and negotiation, similar
to real-world agreements. Smart contracts, called states and
contracts, govern shared facts and transaction rules. Pluggable
consensus models enable the choice of the most suitable
algorithm for security and performance.

Canton is an innovative blockchain technology that priori-
tises efficiency, scalability, and practicality. It employs the
Proof-of-Stakeholder (PoSH) consensus mechanism, consider-
ing participants’ roles for influence, ensuring decentralisation
and efficiency. Canton’s architecture focusses on scalability
using infrastructure nodes that efficiently process and verify
transactions without accessing data content directly. Secure
communication within defined trust zones optimises network
efficiency and supports high-throughput use cases. By combin-
ing PoSH with an efficiency-oriented design, Canton offers
an enterprise-ready platform for blockchain implementation.
More details can be found in [6].

III. AUDIT PROCESS IN REAL ESTATE

An audit is a meticulous process to verify the degree to
which an organisation complies with various requirements,
which can be regional, national, or international in nature
[1]. These requirements can vary significantly based on the
organisation’s location, e.g., in terms of tax obligations. Real
estate audits involve examining financial records, transaction
procedures, and document quality. Financial scrutiny involves
a detailed review of all money flows in a fiscal year, ensuring
the accuracy of financial records. In addition, real estate
audits focus on ensuring that transactions comply with local
real estate laws. This includes property transactions, leases,
contracts, and agreements. The quality of record keeping is
crucial, as it demonstrates an organisation’s commitment to
regulatory standards.

A. Audit Categories

Audits can be divided into three main categories: internal,
external, and governmental. Internal audits are often conducted
by employees of the company. However, the business can also
choose to contract out this service. In external audits, for the
audit process to be impartial, external auditors, unlike internal
auditors, must be able to operate on their own and provide
an unqualified opinion. The last is that government audits are
performed to verify that financial statements have been made
appropriately and that a company’s taxable income has not
been distorted [9]. Audits are essential for business continuity
for several reasons [10]:

• Increase operational efficiency: Find control recommen-
dations to increase the efficacy and efficiency of processes
by regularly assessing and monitoring them.

• Evaluate risks and protects assets: Assist in keeping track
of any environmental alterations documented, as well as
ensuring that any risks discovered are mitigated.

2

• Assess organisational controls: Enhance the organisa-
tion’s control environment by analysing effectiveness and
efficiency.

• Ensure legal compliance: Applicable laws and regulations
are followed by conducting internal audits on a regular
basis.

Even with a promising digital transformation in the audit
process, many obstacles still exist. Auditors need to acquire
the skills to undergo this digital transformation and are not
ready to approach a more automated audit workflow, creating
a significant obstacle in this regime change.

An interesting case is that of SmartAudit, a company
that provides cloud-based audit services. Tasks such as lead
scheduling, financial statement preparation, and report writing
are automated, and the progress of this audit can be seen in real
time [11]. When new clients are accepted, they must upload
their data to their cloud-based infrastructure. Afterward, a new
plan is set to audit all available files, in compliance with
international standards. In the end, a report is generated.

B. Blockchain-based Smart Audit

A more reliable and secure environment for audits can
be obtained by combining blockchain with the smart audit
techniques mentioned above. Due to the sufficiency, relevance,
and dependability requirements for audit evidence, blockchain
technology is suitable for use in conjunction with intelligent
auditing approaches. The integrity of the data provided by
blockchain increases the trustworthiness of the audit evidence.
The information flow steps are the following:

1) Data Production and Control: Data is collected using
smart sensors, IoT, and other technologies. To find
anomalies and useful information, a number of tests and
analytics are performed using intelligent audit modules.

2) Data Storage: Metadata used to assess the integrity of
the bulk data is maintained in a selected blockchain.

3) Smart Contract Data Manipulation: Smart contracts en-
force, without human intervention, the proper operation
of intelligent audit modules.

4) Data Auditing: The data stored in the blockchain will
then be used to perform an audit of those data with
the help of tools such as intelligent process automation,
natural language processing, and machine learning.

C. Related Work

Several research efforts have explored the application of
blockchain technology in various industries, including real
estate. Here are some key findings:

Kang et al. [12] proposed a solution using blockchain,
a peer-to-peer network, and the Interplanetary File System
(IPFS) to improve file storage and sharing. This approach
improves decentralisation, scalability, and data consistency.
It combines blockchain, P2P networks, and IPFS to create a
secure and efficient system for storing and sharing files.

Wouda et al. [13] discussed the potential of blockchain
to streamline commercial real estate asset transactions, par-
ticularly in the Netherlands. They highlighted the challenges

faced in these transactions, such as high costs and lack of
transparency, and proposed the use of blockchain to address
these issues. The aim is to create a transparent and efficient
infrastructure for real estate transactions.

Bharimalla et al. [14] presented a solution for an Electronic
Health Record System using blockchain, natural language
processing (NLP), and machine learning. They implemented
a permissioned blockchain, Hyperledger Fabric, to manage
access to electronic health records. NLP and OCR technology
was used to digitise medical records on paper, which were
then standardised and stored on the blockchain.

JusticeChain is a proposal for an auditing solution for a crit-
ical Portuguese government application [15]. External oracles
provide audit logs to JusticeChain, which are processed and
recorded on a permissioned blockchain, Hyperledger Fabric.
Auditors can access these logs only with the consensus of most
auditors, ensuring the integrity of the audit process.

IV. BDM ARCHITECTURE AND DESIGN

Blockchain-based Documentation Management (BDM) is a
system designed to enable users to efficiently manage their
real estate document sharing and transactions securely. Within
this architecture, users exercise control over their document
management through a set of defined processes, leveraging
the immutable characteristic of a blockchain for enhanced data
security and transparency. BDM incorporates two fundamental
approaches to streamline document management: proactive
consent and consent on request. In proactive consent, users
have the ability to proactively grant or withhold consent to
share their documents with relevant parties. This consent is
encapsulated in permissions, which are subsequently recorded
on the blockchain.

A. Solution Overview

BDM involves three primary user roles, auditor, tenant,
and landlord, each with their own actions and responsibilities.
Figure 1 presents each one of the actions for each role of the
participant.

Fig. 1: BDM use case diagram

3

Fig. 2: BDM architecture Archimate diagram

• Tenant: The tenant can upload documents to submit
a rental application or can handle the permissions to
access the uploaded documents. The documents and their
metadata are stored securely for audit purposes.

• Landlord: The landlord is an individual or organization
who owns or manages a property, such as a house or
apartment, and rents or leases it to tenants in exchange
for a periodic payment. He can handle a rental proposal,
either by declining or accepting it. He can also request
to see the original uploaded documents. This permission
must be granted by the owner of the document.

• Auditor: The auditor can audit any house he chooses and
has access to. The BDM will generate a report with each
interaction that happened in that house for the auditor to
analyse.

B. System Architecture

The application architecture relies on multiple ecosystem
components and a permissioned blockchain with a dedicated
event register to support its core functionality. The architecture
is represented in Figure 2.

The architecture comprises all the components required to
make the BDM system work. The authentication module is
a Certificate Authority (CA) that handles identities within a
decentralised network. Every tenant that is authenticated on
the platform must accept the terms and conditions so that,
in the future, the system generates a final report with the data
generated on the system. All related real estate rental services,
document cloud storage, permissioned blockchain, and its
smart contract are linked together to create an intelligent tool
capable of auditing a house.

• Authentication is the entry point in the application. It
handles the identities of users using a CA.

• Document Cloud Storage is the component where up-
loaded documents will be stored and accessed.

• Permissioned Blockchain is the blockchain network. This
solution will contain two organisations, the tenant or-
ganisation and the landlord/auditor organisation. Smart

contracts save document-related information and handle
authorisation to access documents stored in the document
storage. The blockchain itself serves as the register,
tracking every event, including permission grants and
document uploads.

• Smart Contract represents the core of this architecture,
where specific techniques are applied to the document
for each step of the process, defining a proper workflow
for each task in the Rental Process Related Services.

• Rental Process Related Services are the methods es-
tablished inside the smart contract that can be called
depending on the role of the authenticated user.

An important concept for this architecture is the notion
of a hash function [16]. It is a mathematical algorithm that
takes an input and produces a fixed-length string of characters,
known as the hash value or digest. It is designed to be a one-
way process, which means that it should be computationally
infeasible to reverse the hash value to retrieve the original
input. The three main properties of a good hash function are:

• Deterministic: the same input always produces the same
hash value.

• Fast computation: it is efficient to compute the hash for
any given input.

• Collision Resistance it is extremely unlikely for two
different inputs to produce the same hash value.

The metadata of the uploaded documents will be stored in
the smart contracts, and the document itself will be stored in
the document cloud storage component. We did not choose
to store the documents in IPFS due to the private nature
of the information present in the documents. A Ricardian
contract is a digital contract that combines a legal contract
with a machine-readable contract, often used in blockchain
technology to automate and verify contract terms [17]. They
allow the inclusion of legal language and privacy terms within
the smart contract. This makes it possible to specify and
enforce GDPR-related obligations, such as data protection,
consent, and especially the right to be forgotten, directly in

4

the contract code. Here are the steps to implement a Ricardian
contract with a smart contract using a document hash:

1) Create a legal document with the terms and conditions.
2) Compute the hash of the document.
3) Embed the hash in the smart contract.
4) Implement logic to validate the document’s hash in the

smart contract.
5) Deploy the smart contract on a blockchain.
6) Maintain an audit trail of interactions on the blockchain.

C. System Processes

The system processes outline the core processes within
the application and highlight key interactions among tenants,
landlords, and auditors. The three main processes covered
include tenant document uploads, document authorisation, and
the audit process. These processes are essential components of
the application and encompass user onboarding, permission
management, and regulatory compliance verification.

1) Tenant Upload Documents Process: Figure 3 represents
the first interaction with the application. A user with a
tenant role registers and is authenticated on the platform.
Subsequently, the user must accept the terms and conditions
so that the system generates data for future audit requests.
Then he proceeds to choose a house to rent and submits its
documents. The metadata of the documents is then uploaded
to the blockchain, and the original documents are uploaded
to the Google document storage. The next steps, when the
tenant and the landlord interact to handle the permissions on
the uploaded documents, are discussed in Section IV-C2.

Fig. 3: Tenant documents upload process sequence diagram

2) Document Authorisation Process: Figure 4 illustrates the
interaction following the submission of a tenant’s proposal.
The landlord, authenticated on the platform, selects a house
with pending applications. He requests permission to view the
original proposal documents, deploying a notification to the
tenant. The tenant can either accept or decline the request.
Upon acceptance, the landlord retrieves the original documents
from Google Cloud storage. After reviewing documents from
multiple applications, the landlord selects the best proposal,
updating the proposal status for the tenant organisation.

For document integrity verification, the system retrieves the
document’s hash from the blockchain and compares it to the
hash generated from the stored document. A match confirms
the integrity of the document, while a mismatch indicates
corruption. The landlord can then proceed to accept or deny
the proposal application.

Fig. 4: Document authorisation process sequence diagram

3) Auditing Process: The final interaction occurs after the
sequence of Figure 4. Now that transactions have occurred, a
verified auditor can request a chosen house to audit and verify
that everything is according to the regulations. The sequence
starts with the authentication of the auditor (cf. Figure 5). A
house is chosen and a request is made to retrieve the metadata
of the documents. The frontend then generates a final report
for the auditor to download.

V. BDM IMPLEMENTATION

In implementing this specific use case, an approach has been
developed that takes advantage of the features of the Hyper-

5

Fig. 5: Auditing process sequence diagram

ledger Fabric framework to seamlessly integrate blockchain
technology. This implementation is further supported by the
creation of a frontend application using React, a JavaScript
framework. This Introduction lays the foundation for a thor-
ough examination of the implemented approach and its essen-
tial components.

A. Blockchain Architecture
The network comprises distinct components: certificate au-

thorities, organisations, an orderer, and channels, each with
a defined role in the overall structure. These elements are
explained next, and the blockchain infrastructure can be seen
in Figure 6.

Fig. 6: Hyperledger Fabric implemented network architecture

• Organization: Organisations in this context are entities
that define the participants in the network. Each organi-
sation typically has its own set of peer nodes, a CA, and
administrative control over its members.

• Certificate Authority: The CA issues digital certificates
to network participants. These certificates contain cryp-
tographic keys and are used to verify the identity of the
nodes and maintain the integrity and confidentiality of
transactions (Section V-B).

• Chaincode: Chaincode or Smart Contract, is a piece of
code that defines the rules and logic for transactions on
the blockchain. It is installed on peer nodes and can
be invoked to modify the ledger state. Before chaincode
can be used, it must go through an approval and com-
mitment process. This involves an endorsement policy,
where peers validate and approve the chaincode, and a
commitment to the channel ledger. This ensures that all
organisations agree on the legitimacy of the code.

• Peer Nodes: Peer nodes are individual instances within
an organisation that maintain a copy of the ledger. They
execute chaincode transactions, validate transactions, and
endorse them before they are added to the blockchain.
Having two peer nodes per organisation ensures redun-
dancy and high availability.

• Orderer Nodes: Orderer nodes are responsible for main-
taining the order of transactions on the blockchain. They
validate transactions, create blocks, and ensure consensus
among network participants. The consensus algorithm can
be crash-fault-tolerant or byzantine-fault-tolerant. Three
orderer nodes enhance fault tolerance and maintain the
integrity of the ledger.

• Channel: A channel is a private communication layer in
the blockchain network that allows the segregation of
transaction data. It restricts access to specific organisa-
tions, ensuring that only authorised participants can view
and transact on this channel.

• Network APIs: Application Programming Interfaces pro-
vide an interface for external applications to interact
with the blockchain network. In this case, two APIs
are deployed, each tailored to a specific organisation,
allowing authorised users to send transactions and retrieve
data from the blockchain.

In this architecture, tenants connect to Organisation 1 to
input data into the ecosystem, while landlords and audi-
tors connect to Organisation 2. They use this connection to
view uploaded files or generate reports based on information
extracted from blockchain transactions. Every transaction is
signed by its author, and therefore non-repudiation is granted.

B. Authentication

Within the context of user identity management in Hy-
perledger Fabric, there exists a structured process to enable
secure participation in the network. This process involves user
registration, during which individuals provide vital information
such as their username, password, and role. After successful
registration, users are equipped with cryptographic credentials,
namely an X.509 certificate and a private key. These creden-
tials establish their secure digital identity within the network.
The user identity is securely stored in a wallet, protecting
cryptographic keys and certificates from unauthorised access.

6

When users intend to log in, the verification of their identity
takes place through the CA, using the certificate and private
key stored in the wallet for authentication. This meticulous
process ensures that only authorised users, possessing valid
credentials, gain access to the blockchain network, thus en-
suring the security and reliability of interactions.

• Registration with the CA: The code includes a registration
process that allows new users to join the Hyperledger
Fabric network securely. When a user wishes to register,
they provide essential information, such as a username,
password, and role. The code first checks if the user
identity already exists within the CA. If not found, it
proceeds with the registration. During registration, the
user enrolment ID and secret, often chosen by the user
during signup, are used. These credentials are crucial to
authenticating the user within the network.

• Enrolment and Identity Creation: Following successful
registration, the code initiates the enrolment process.
This step involves obtaining cryptographic credentials
for the user, namely, an X.509 certificate and a private
key. These credentials serve as the user digital identity
within the Hyperledger Fabric network. The enrolment
process ensures that the user identity is securely generated
and linked to the CA. This identity creation process
is an integral part of ensuring secure and authenticated
interactions with the blockchain network.

• Storage in the Wallet: Once the user identity is generated
and enroled with the CA, it is securely stored in a wallet.
The wallet acts as a secure repository for user identities.
It ensures that cryptographic keys and certificates are
protected from unauthorised access. Users can conve-
niently access their identities from the wallet for subse-
quent interactions with the network. This secure storage
mechanism is vital to maintaining the confidentiality and
integrity of user credentials.

• Log in with the CA and Wallet: When a user wants to log
in, the code checks the CA to verify the user identity. If
the identity is found, the user X.509 certificate and private
key stored in the wallet are used for authentication. This
login process ensures that only authorised users with
valid credentials can access the blockchain network. It
also provides a secure and convenient way for users to
participate in blockchain transactions and queries.

The authentication phase provides security by generating
and storing user identities, ensuring that only authorised users
can interact with the Hyperledger Fabric network. These pro-
cesses are essential to maintain the integrity and confidentiality
of blockchain transactions and user data.

C. Cloud File Storage

Google Cloud File Storage was selected for file storage and
retrieval based on personal experience with the technology. A
Google Service Account is essential for secure and automated
access to Google Cloud services, enabling the application to
interact with Google resources without user passwords. This
is crucial for data processing, server-to-server communication,

and integrating the application frontend with Google Cloud
services. The main storage features include:

1) Store Files:
• Upload Files: upload files to Google Cloud File Storage

using Google Service Account credentials through the
Web interface.

• Organize Files: organise files into folders, all managed by
the Google Service Account, ensuring a well-maintained
and structured storage system.

• Permission settings: precise control over access per-
missions, granting read-only, read-write, or customised
access to specific users or groups through the Google
Service Account.

2) Retrieve Files:
• Access Anywhere: retrieve stored files from Google Cloud

Storage using the Google Service Account within the
Web interface.

• Search and Retrieve: locate files within the React applica-
tion by employing keywords or parameters in the search
function.

• Permission settings: enforce strict access control during
file retrieval, allowing only authorised users authenticated
by the Google Service Account to view or modify files.

D. Smart Contract Implementation
The application’s core functions are divided into write and

read functions, enabling users to interact with documents,
houses, proposals, and access requests. These functions are
crucial to creating, managing, and retrieving historical data,
ensuring effective and secure user interactions.

1) Implemented Functions:
• createHouse: Allows users to create a new house asso-

ciated with a landlord, subject to necessary permissions
and checks.

• createProposal: Enables tenants to create rental propos-
als for houses and landlords, following permission and
existence checks.

• denyProposal: Permits landlords to reject tenant rental
proposals for specific houses, after verifying permissions
and existence.

• acceptProposal: Allows landlords to accept tenant rental
proposals, subject to checks and permissions.

• getRequestsForTenant: Retrieves access requests made by
tenants after ensuring caller existence and permissions.

• createDocument: Tenants create documents related to
rented houses, provided they have the necessary permis-
sions and meet house-related criteria.

• requestAccess: Tenants request access to specific docu-
ments from landlords, subject to various checks.

• acceptAccess: Tenants grant access to landlords for spe-
cific documents, ensuring permissions and existence.

• denyAccess: Tenants deny access to landlords for specific
documents, following checks and permissions.

• getDocument: Allows users to retrieve document details
with proper access rights and after confirming document
existence and permissions.

7

• getProposalsForLandlord: Retrieves rental proposals
made to a specific landlord, provided that the landlord
exists and has the necessary permissions.

• getHistoricData: Offers comprehensive historical data,
including document metadata history, proposal history,
and access request history. It checks various conditions
for each aspect to ensure that data retrieval is valid and
secure.

E. User Interfaces

For various types of users interacting with the system, a
frontend has been designed featuring three separate interfaces:
one for tenants, another for landlords, and a third for auditors.
These interfaces provide a simple way for tenants to apply
for properties and manage them, landlords to manage their
properties and tenant applications, and auditors to review every
transaction for a certain house rental. The frontend has been
developed in React version v18.2.0, a JavaScript framework
chosen for its flexibility and performance.

Fig. 7: Tenant document upload view

Figure 7 displays the Tenant Document Upload View, where
tenants can securely upload the necessary documents for
their rental application. This figure illustrates the document
management capabilities of the interface, which streamlines
the process for tenants while ensuring the secure storage of
important documentation.

Fig. 8: Tenant document authorisation view

The Tenant Documents Authorisation View, as shown in
Figure 8, where possible tenants manage and authorise access
to their uploaded documents. This figure hints at features that

allow tenants to grant access to these documents to landlords
or other authorised parties, maintaining control over their
information.

Fig. 9: Landlord rental proposals view

Figure 9 presents the Landlord Rental Proposals View,
which showcases the interface designed for landlords. This
interface likely enables landlords to review tenant applications
and manage rental proposals efficiently. Provides a compre-
hensive overview of tenant applications, helping landlords in
their decision-making process.

F. Audit Report

The blockchain system’s audit report meticulously records
all transactions related to a specific house, offering a unique
capability to track the rental process. This transparency and
precision simplify future audits. The built-in Hyperledger
Fabric function getHistoryByKey is used to achieve this func-
tionality. It provides the complete history of an object using a
key representing a house, its landlord, and tenants. Accessing
the history of the house object reveals the entire transaction
lifecycle of that specific rental.

Authorised auditors can obtain detailed records of the rental
process, from application to approval. Figure 10 presents a
simple audit report for a rental application.

VI. EVALUATION

A. Methodology

Apache JMeter is a versatile tool for testing server-based
applications. It provides features like result trees and aggregate
reports to analyse performance. The result trees show details
of the execution of the HTTP request, which aids in the
identification of the issue. Aggregate reports compile metrics
across multiple test runs, revealing insights into response
times, throughput, and errors.

B. Experimental Setup

Figure 11 presents the Hyperledger Fabric network infras-
tructure, hosted within a locally deployed Kubernetes cluster.
This deployment relies on KinD (Kubernetes in Docker), a tool
that facilitates the creation and management of Kubernetes
clusters using Docker containers as nodes. The process is

8

Fig. 10: Audit report example

Fig. 11: BDM Kubernetes diagram

streamlined through the use of the HLF Operator, a Kubernetes
operator designed to simplify the deployment and management
of Hyperledger Fabric networks within Kubernetes clusters.

C. Experimental Results

Evaluation of system performance provided critical insight
into how the system behaves under varying loads of concurrent
requests. Eight functions were examined, with request loads
ranging from 50 to 1000 concurrent requests. A consistent
trend emerged: As the number of concurrent requests in-
creased, the system latency increased, leading to decreased
throughput. This well-documented inverse relationship be-
tween latency and throughput was observed. Figures 12 and
13 present specific findings related to individual functions,
revealing their strengths and vulnerabilities with increasing
concurrent requests. These results serve as a basis for op-
timising the system for real-world scenarios with dynamic
workloads.

As expected, the results demonstrate that as concurrent
requests increase, system latency increases while throughput
decreases. The increase in latency with higher concurrency

Fig. 12: Latency for each implemented function

Fig. 13: Throughput for each implemented function

can be attributed to the finite resources of the system be-
ing spread among multiple requests, resulting in delays in
processing, leading to higher response times. Concurrently,
reduced throughput indicates that the system handles fewer
requests per second as the levels of concurrency increase.
This is due to the longer time required to process each
request, which limits the overall capacity of the system. At
the latency level, the functions constitute more or less the
same latencies per number of requests, with the createProposal
function being the slowest one. The getHistoricData function
is the one with the lowest throughput, as expected, since it
must carry for each historic transaction its content, resulting
in the usage of more bandwidth per request. On the other
hand, acceptAccess and acceptProposal are the ones with the
highest throughput for 1000 requests, since they require less
data. At high request levels, the system encounters issues like
denying or dropping connections, impacting the above results,
leading to request exceptions. These exceptions cause some
requests to terminate prematurely, resulting in response times
shorter than anticipated. For a complete overview of system
malfunction across functions and concurrency levels, Table I
is provided.

TABLE I: Error percentage per function for different numbers
of requests

requests createHouse createDocument createProposal acceptProposal requestAccess acceptAccess getDocument getHistoricData
50 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0
250 0 0 0 0 0 0 0 0
500 0 0 0 0 0 0 0 0
750 0.15 78.53 0 0 0.6 0.6 0 2.3

1000 2 80 0 0 5 4 2 12

Most functions begin to encounter errors after around 750

9

requests. The createDocument function has a notably higher
error rate compared to other functions because it handles the
storage of document metadata, resulting in larger data trans-
actions per request. In contrast, the functions createProposal
and acceptProposal have no errors, as they are simpler and
involve smaller data transactions. createHouse, requestAccess,
acceptAccess, and getDocument functions exhibit low error
levels even at 1000 requests. However, getHistoricData has a
12% error rate of 1000 requests due to larger data responses,
occasionally causing connection drops.

D. Current Process vs Smart Audit Process

The BDM with audit support system represents an advance
over current manual processes. In the current system, auditors
spend a substantial amount of time and effort manually col-
lecting, validating, and reconciling data from various sources.
This is a laborious and time-consuming task. However, with
the introduction of blockchain, these tasks are performed on
top of verified data, freeing auditors from repetitive work and
enabling them to focus on more strategic aspects of auditing.

Furthermore, the use of blockchain technology ensures the
accuracy and reliability of the data. In the manual system,
the risk of human error is a constant concern that requires
additional effort to verify the data. In contrast, the blockchain
immutable ledger guarantees the integrity of information,
reducing the need for extensive error checking and increasing
efficiency.

Collaboration and transparency are greatly improved by
the blockchain-based platform. Current collaboration methods
with stakeholders can be malicious and lack transparency.
However, the system offers a secure platform for all parties
to contribute and access data transparently with the neces-
sary authorisation, facilitating seamless communication and
improving transparency.

In addition, the system supports security and compliance
efforts. Ensuring data security and compliance can be chal-
lenging in the current system. However, the cryptographic se-
curity features of the blockchain and the audit trail capabilities
improve data security and compliance, reducing potential legal
and financial risks.

Finally, the system results in significant time and cost
savings. Manual processes are resource-intensive and can lead
to high costs. Automation, real-time data access, and improved
accuracy result in significant time and cost savings for audi-
tors, allowing them to allocate resources more efficiently and
strategically.

VII. CONCLUSION

This document introduces a solution to streamline the
house rental process and audit reporting in the real estate
market, with the aim of enhancing transparency and efficiency
for tenants, landlords, and auditors. The solution leverages
blockchain technology for added security and efficiency. Key
functions in the system include creating and accepting rental
proposals, accessing and verifying documents, and maintaining
the integrity of uploaded files through hashing. Performance

evaluation of the system involved measuring latency, through-
put, and errors. The results indicate the system’s capability
to handle up to 500 concurrent transactions without errors.
In addition, the document discusses how this technology can
make auditors more efficient by automating repetitive tasks,
comparing it with existing processes.

ACKNOWLEDGEMENTS

This work was financially supported by Project
Blockchain.PT – Decentralize Portugal with Blockchain
Agenda, (Project no 51), WP 6, Call no 02/C05-i01.01/2022,
funded by the Portuguese Recovery and Resilience Program
(PPR), The Portuguese Republic and The European Union
(EU) under the framework of Next Generation EU Program.
This work was also supported by national funds through
Fundação para a Ciência e Tecnologia (FCT) with reference
UIDB/50021/2020 (INESC-ID).

REFERENCES

[1] A. Kilgore, R. Radich, and G. Harrison, “The relative importance of
audit quality attributes,” Australian Accounting Review, vol. 21, no. 3,
pp. 253–265, 2011.

[2] M. E. Peck, “Blockchains: How they work and why they’ll change the
world,” IEEE Spectrum, vol. 54, no. 10, pp. 26–35, 2017.

[3] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, Bit-
coin and Cryptocurrency Technologies: A Comprehensive Introduction.
Princeton University Press, 2016.

[4] Z. Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran,
“An overview on smart contracts: Challenges, advances and platforms,”
Future Generation Computer Systems, vol. 105, pp. 475–491, 2020.

[5] M. Correia, “From byzantine consensus to blockchain consensus,” in
Essentials of Blockchain Technology. CRC Press, 2019, ch. 3.

[6] Digital Asset Canton Team, “Canton: A Daml based ledger interoperabil-
ity protocol,” https://www.canton.io/publications/canton-whitepaper.pdf.

[7] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger Fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the 13th ACM EuroSys Conference,
2018.

[8] R3 Corda Team, “R3 corda,” https://www.r3.com/, accessed: 09.10.2022.
[9] CFI Team, “An objective examination and evaluation of a company’s

financial statements,” https://corporatefinanceinstitute.com/resources/
knowledge/accounting/what-is-an-audit/.

[10] S. Harvey, “5 reasons why an internal audit is important,”
https://kirkpatrickprice.com/blog/5-reasons-why-internal-audit-is-
important/.

[11] Smart Audit Team, “SmartAudit - audit workflow software,”
https://smartaudit.co/, accessed: 23.07.2024.

[12] P. Kang, W. Yang, and J. Zheng, “Blockchain private file storage-sharing
method based on IPFS,” Sensors, vol. 22, no. 14, p. 5100, 2022.

[13] H. P. Wouda and R. Opdenakker, “Blockchain technology in commercial
real estate transactions,” Journal of property investment & Finance,
vol. 37, no. 6, pp. 570–579, 2019.

[14] P. K. Bharimalla, H. Choudhury, S. Parida, D. K. Mallick, and S. R.
Dash, “A blockchain and NLP based electronic health record system:
Indian subcontinent context,” Informatica, vol. 45, no. 4, 2021.

[15] R. Belchior, M. Correia, and A. Vasconcelos, “Towards secure, decen-
tralized, and automatic audits with blockchain,” In Proceedings of the
European Conference on Information Systems (ECIS), June 2020, 2020.

[16] B. Preneel, “Cryptographic hash functions,” European Transactions on
Telecommunications, vol. 5, no. 4, pp. 431–448, 1994.

[17] I. Grigg, “The ricardian contract,” in Proceedings 1st IEEE International
Workshop on Electronic Contracting, 2004, pp. 25–31.

10

