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Abstract
Despite their rising popularity, current cloud storage

offers and cloud-backed storage systems still have some
limitations related with reliability, durability assurances
and inefficient file sharing. We present SCFS, a cloud-
backed file system that addresses these issues and pro-
vides strong consistency and near-POSIX semantics on
top of eventually-consistent cloud storage services. SCFS
provides a pluggable backplane that allows it to work with
various storage clouds or a cloud-of-clouds (for added de-
pendability). It also exploits some design opportunities
inherent in the current cloud services through a set of
novel ideas for cloud-backed file systems: always write /
avoid reading, modular coordination, private name spaces
and consistency anchors.

1 Introduction
File backup, data archival and collaboration are among

the top usages of the cloud in companies [1], and they are
normally based on cloud storage services like the Ama-
zon S3, Dropbox, Google Drive and Microsoft SkyDrive.
These services are popular because of their ubiquitous
accessibility, pay-as-you-go model, high scalability, and
ease of use. A cloud storage service can be accessed in
a convenient way with a client application that interfaces
the local file system with the cloud. Such services can be
broadly grouped in two classes: (1) personal file synchro-
nization services (e.g., DropBox) and (2) cloud-backed
file systems (e.g., S3FS [5]).

Services of the first class – personal file synchroniza-
tion – are usually composed of a back-end storage cloud
and a client application that interacts with the local file
system through a monitoring interface like inotify (in
Linux). Recent works shown that this interaction model
can lead to reliability and consistency problems on the
stored data [38], as well as CPU and bandwidth over usage
under certain workloads [32]. In particular, given the fact
that these monitoring components lack an understanding
of when data or metadata is made persistent in the local
storage, this can lead to corrupted data being saved in the
cloud. A possible solution to these difficulties would be to
modify the file system to increase the integration between
the client application and local storage.

The second class of services – cloud-backed file sys-
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Figure 1: Cloud-backed file systems and their limitations.

tems – solve the problem in a more generic way. This ap-
proach is typically implemented at user-level, following
one of the two architectural models represented in Fig-
ure 1. The first model is shown at the top of the figure and
is followed by BlueSky [36] and several commercial stor-
age gateways. In this model, a proxy component is placed
in the network infrastructure of the organization, acting as
a file server to the various clients and supporting access
protocols such as NFS and CIFS. The proxy implements
the core functionality of the file system and calls the cloud
to store and retrieve files. File sharing among clients is
possible as long as all of them connect to the same proxy.
The main limitations are that the proxy can become a per-
formance bottleneck and a single point of failure. More-
over, in BlueSky (and other systems), there is no coordi-
nation between different proxies accessing the same files.
The second model is implemented by open-source solu-
tions like S3FS [5] and S3QL [6] (bottom of Figure 1).
In this model, clients access the clouds directly, without
the interposition of a proxy. Consequently, there is no
longer a single point of failure, but on the negative side,
the model misses the convenient rendezvous point for syn-
chronization, making it harder to support controlled file
sharing among clients.

A common limitation of the two classes of services
is the need to trust the cloud provider with respect to
the stored data confidentiality, integrity and availability.
Although confidentiality can be guaranteed by making
clients (or the proxy) encrypt files before sending them
to the cloud, sharing encrypted files requires a key dis-
tribution mechanism, which is not easy to implement in
this environment. Integrity is provided by systems like
SUNDR [31], but there is the need to run server-side code
in the cloud provider, which is currently not possible when
using unmodifiable storage services. Availability against
cloud failures to the best of our knowledge is not provided
by any of the current cloud-backed file systems.
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This paper presents the Shared Cloud-backed File Sys-
tem (SCFS),1 a storage solution that addresses the afore-
mentioned limitations. More specifically, SCFS allows
entities to share files in a secure and fault-tolerant way,
improving the durability guarantees. It also ensures strong
consistency on file accesses, and provides a pluggable
backplane that supports the use of different cloud storage
offerings.

SCFS leverages almost 30 years of distributed file sys-
tems research, integrating classical ideas like consistency-
on-close semantics [26] and separation of data and meta-
data [19], with recent trends such as using cloud services
as (unmodified) storage backends [18, 36] and increasing
dependability by resorting to multiple clouds [8, 11, 12].
SCFS also contributes with the following novel tech-
niques for cloud-backed storage design:

• Always write / avoid reading: SCFS always pushes
updates of file contents to the cloud (besides stor-
ing them locally), but resolves reads locally when-
ever possible. This mechanism has a positive impact
in the reading latency. Moreover, it reduces costs be-
cause writing to the cloud is typically cheap, on the
contrary of reading that tends to be expensive2.

• Modular coordination: SCFS uses a fault-tolerant
coordination service, instead of having lock and
metadata management embedded, as most dis-
tributed file systems do [9, 29, 37]. This service has
the benefit of assisting the management of consis-
tency and sharing. Moreover, the associated modu-
larity is important for instance to allow different fault
tolerance tradeoffs to be supported.

• Private Name Spaces: SCFS uses a new data struc-
ture to store metadata information about files that are
not shared between users (which is expected to be the
majority [30]) as a single object in the storage cloud.
This relieves the coordination service from maintain-
ing information about such private files and improves
the performance of the system.

• Consistency anchors: SCFS employs this novel
mechanism to achieve strong consistency, instead of
the eventual consistency [35] offered by most cloud
storage services, a model typically considered unnat-
ural by a majority of programmers. This mechanism
provides a familiar abstraction – a file system – with-
out requiring modifications to cloud services.

• Multiple redundant cloud backends: SCFS may
employ a cloud-of-clouds backplane [12], making

1SCFS is an open-source project that is available at http://
code.google.com/p/depsky/wiki/SCFS.

2For example, in Amazon S3, writing is free, but reading a GB is
more expensive ($0.12 after the first GB/month) than storing data during
a month ($0.09 per GB). Google Cloud Storage’s prices are similar.

the system tolerant to data corruption and unavail-
ability of cloud providers. All data stored in the
clouds is encrypted for confidentiality and encoded
for storage-efficiency.

The use case scenarios of SCFS include both individu-
als and large organizations, which are willing to explore
the benefits of cloud-backed storage (optionally, with a
cloud-of-clouds backend). For example: a secure per-
sonal file system – similar to Dropbox, iClouds or Sky-
Drive, but without requiring complete trust on any single
provider; a shared file system for organizations – cost-
effective storage, but maintaining control and confiden-
tiality of the organizations’ data; an automatic disaster
recovery system – the files are stored by SCFS in a cloud-
of-clouds backend to survive disasters not only in the lo-
cal IT systems but also of individual cloud providers; a
collaboration infrastructure – dependable data-based col-
laborative applications without running code in the cloud,
made easy by the POSIX-like API for sharing files.

Despite the fact that distributed file systems are a well-
studied subject, our work relates to an area where further
investigation is required – cloud-backed file systems – and
where the practice is still immature. In this sense, besides
presenting a system that explores a novel region of the
cloud storage design space, the paper contributes with a
set of generic principles for cloud-backed file system de-
sign, reusable in further systems with different purposes.

2 SCFS Design
2.1 Design Principles

This section presents a set of design principles that are
followed in SCFS:
Pay-per-ownership. Ideally, a shared cloud-backed file
system should charge each entity (owner of an account)
by the files it creates in the service. This principle is im-
portant because it leads to a flexible usage model, e.g., al-
lowing different organizations to share directories paying
only for the files they create. SCFS implements this prin-
ciple by reusing the protection and isolation between dif-
ferent accounts granted by the cloud providers (see §2.6).
Strong consistency. A file system is a more familiar stor-
age abstraction to programmers than the typical basic in-
terfaces (e.g., REST-based) given by cloud storage ser-
vices. However, to emulate the semantics of a POSIX file
system, strong consistency has to be provided. SCFS fol-
lows this principle by applying the concept of consistency
anchors (see §2.4). Nevertheless, SCFS optionally sup-
ports weaker consistency.
Service-agnosticism. A cloud-backed file system should
rule out from its design any feature that is not supported
by the backend cloud(s). The importance of this principle
derives from the difficulty (or impossibility) of obtaining
modifications of the service of the best-of-breed commer-
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cial clouds. Accordingly, SCFS does not assume any spe-
cial feature of storage clouds, and requires only that the
clouds provide access to on-demand storage with basic
access control lists.
Multi-versioning. A shared cloud-backed file system
should be able to store several versions of the files for
error recovery [21]. An important advantage of having a
cloud as backend is the (almost) unlimited storage capac-
ity and scalability. SCFS keeps old versions of files and
deleted files until they are definitively removed by a con-
figurable garbage collector.

2.2 Goals
A primary goal of SCFS is to allow clients to share files

in a controlled way, providing the necessary mechanisms
to guarantee security (integrity and confidentiality; avail-
ability despite cloud failures is optional). An equally im-
portant goal is to increase data durability by exploiting the
resources granted by storage clouds and keeping several
versions of files.

SCFS also aims to offer a natural file system API
with strong consistency. More specifically, SCFS sup-
ports consistency-on-close semantics [26], guaranteeing
that when a file is closed by a user, all updates it saw or
did are observed by the rest of the users. Since most stor-
age clouds provide only eventual consistency, we resort to
a coordination service [14, 27] for maintaining file system
metadata and synchronization.

A last goal is to leverage the scalability of cloud of-
ferings to support large numbers of users, volume of
data, and numbers of files. However, SCFS is not in-
tended to be a “big data” file system, since file data is
uploaded/downloaded from one or more clouds; on the
contrary, a common principle for big data processing is to
take computation to the data (e.g., MapReduce systems).

2.3 Architecture Overview
Figure 2 represents the SCFS architecture with its three

main components: the backend cloud storage for main-
taining the file data (shown as a cloud-of-clouds, but a
single cloud can be used); the coordination service for
managing the metadata and to support synchronization;
and the SCFS Agent that implements most of the SCFS
functionality, and corresponds to the file system client
mounted at the user machine.

The separation of file data and metadata has been often
used to allow parallel access to files in parallel file sys-
tems (e.g., [19, 37]). In SCFS we take this concept further
and apply it to a cloud-backed file system. The fact that
a distinct service is used for storing metadata gives flex-
ibility, as it can be deployed in different ways depending
on the users needs. For instance, our general architecture
assumes that the metadata is kept in the cloud, but a large
organization could distribute the metadata service over its
own sites for disaster tolerance.
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Figure 2: SCFS architecture with its three main components.

Metadata in SCFS is stored in a coordination service.
Three important reasons led us to select this approach in-
stead of, for example, a NoSQL database or some cus-
tom service (as in other file systems). First, coordination
services offer consistent storage with enough capacity for
this kind of data, and thus can be used as consistency an-
chors for cloud storage services (see next section). Sec-
ond, coordination services implement complex replication
protocols to ensure fault tolerance for the metadata stor-
age. Finally, these systems support operations with syn-
chronization power [24] that can be used to implement
fundamental file system functionalities, such as locking.

File data is maintained both in the storage cloud and
locally in a cache at the client machine. This strategy is
interesting in terms of performance, costs and availability.
Since cloud accesses usually entail large latencies, SCFS
attempts to keep a copy of the accessed files in the user
machine. Therefore, if the file is not modified by another
client, subsequent reads do not need to fetch the data from
the clouds. As a side effect, there are cost savings as there
is no need to pay for the download of the file. On the
other hand, we follow the approach of writing everything
to the cloud (enforcing consistency-on-close semantics),
as most providers let clients upload files for free as an
incentive for the use of their services. Consequently, no
completed update is lost in case of a local failure.

It is worth to stress that the storage cloud and the coor-
dination service are external services, and that SCFS can
use any implementation of such services as long as they
are compatible (provide compliant interfaces, access con-
trol and the required consistency). We will focus the rest
of this section on the description of the SCFS Agent and
its operation principles, starting with how it implements
consistent storage using weakly consistent storage clouds.

2.4 Strengthening Cloud Consistency
A key innovation of SCFS is the ability to provide

strongly consistent storage over the eventually-consistent
services offered by clouds [35]. Given the recent interest
in strengthening eventual consistency in other areas, we
describe the general technique here, decoupled from the
file system design. A complete formalization and correct-
ness proof of this technique is presented in a companion
technical report [15].
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WRITE(id, v):

w1: h← H(v)

w2: SS.write(id|h, v)

w3: CA.write(id, h)

READ(id):

r1: h← CA.read(id)

r2: while v = null do v ← SS.read(id|h)

r3: return (H(v) = h)?v : null

Figure 3: Algorithm for increasing the consistency of the stor-
age service (SS) using a consistency anchor (CA).

The approach uses two storage systems, one with lim-
ited capacity for maintaining metadata and another to save
the data itself. We call the metadata store a consistency
anchor (CA) and require it to enforce some desired con-
sistency guarantee S (e.g., linearizability [25]), while the
storage service (SS) may only offer eventual consistency.
The objective is to provide a composite storage system
that satisfies S, even if the data is kept in SS.

The algorithm for improving consistency is presented
in Figure 3, and the insight is to anchor the consistency
of the resulting storage service on the consistency offered
by the CA. For writing, the client starts by calculating a
collision-resistant hash of the data object (step w1), and
then saves the data in the SS together with its identifier id
concatenated with the hash (step w2). Finally, data’s iden-
tifier and hash are stored in the CA (step w3). One should
notice that this mode of operation creates a new version of
the data object in every write. Therefore, a garbage col-
lection mechanism is needed to reclaim the storage space
of no longer needed versions.

For reading, the client has to obtain the current hash
of the data from CA (step r1), and then needs to keep on
fetching the data object from the SS until a copy is avail-
able (step r2). The loop is necessary due to the eventual
consistency of the SS – after a write completes, the new
hash can be immediately acquired from the CA, but the
data is only eventually available in the SS.

2.5 SCFS Agent
2.5.1 Local Services

The design of the SCFS Agent is based on the use of
three local services that abstract the access to the coordi-
nation service and the storage cloud backend.
Storage service. The storage service provides an inter-
face to save and retrieve variable-sized objects from the
cloud storage. Since cloud providers are located over the
internet, SCFS overall performance is heavily affected by
the latency of remote data accesses. To address this prob-
lem, we read and write whole files as objects in the cloud,
instead of splitting them in blocks and accessing block by
block. This allows most of the client files (if not all) to be
stored locally, and makes the design of SCFS simpler and
more efficient for small-to-medium sized files.

To achieve adequate performance, we rely on two lev-
els of cache, whose organization has to be managed with
care in order to avoid impairing consistency. First, all files
read and written are copied locally, making the local disk

a large and long term cache. More specifically, the disk is
seen as an LRU file cache with GBs of space, whose con-
tent is validated in the coordination service before being
returned, to ensure that the most recent version of the file
is used. Second, a main memory LRU cache (hundreds of
MBs) is employed for holding open files. This is aligned
with our consistency-on-close semantics, since, when the
file is closed, all updated metadata and data kept in mem-
ory are flushed to the local disk and the clouds.

The actual data transfers between the various storage
locations (memory, disk, clouds) are defined by the dura-
bility levels required by each kind of system call. Ta-
ble 1 shows examples of POSIX calls that cause data to
be stored at different levels, together with their location,
storage latency and provided fault tolerance. For instance,
a write in an open file causes the data to be saved in
the memory cache, which gives no durability guarantees
(Level 0). Calling fsync flushes the data (if modified)
to the local disk, achieving the standard durability of local
file systems, i.e. against process or system crashes (Level
1). When a file is closed, the data is eventually written to
the cloud. A system backed by a single cloud provider can
survive a local disk failure but not a cloud provider fail-
ure (Level 2). However, in SCFS with a cloud-of-clouds
backend, the data is written to a set of clouds, such that
failure of up to f providers is tolerated (Level 3), being f
a system parameter (see §3.2).

Level Location Latency Fault tolerance Sys call
0 main memory microsec none write
1 local disk millisec crash fsync
2 cloud seconds local disk close
3 cloud-of-clouds1 seconds f clouds close

Table 1: SCFS durability levels and the corresponding data lo-
cation, write latency, fault tolerance and example system calls.
1Supported by SCFS with the cloud-of-clouds backend.

Metadata service. The metadata service resorts to the
coordination service to store file and directory metadata,
together with information required for enforcing access
control. In particular, it ensures that each file system ob-
ject is represented in the coordination service by a meta-
data tuple containing: the object name, the type (file, di-
rectory or link), its parent object (in the hierarchical file
namespace), the object metadata (size, date of creation,
owner, ACLs, etc.), an opaque identifier referencing the
file in the storage service (and, consequently, in the stor-
age cloud) and the collision-resistant hash (SHA-1) of the
contents of the current version of the file. These two last
fields represent the id and hash stored in the consistency
anchor (see §2.4). Metadata tuples are accessed through
a set of operations offered by the local metadata service,
which are then translated into different calls to the coor-
dination service.

To deal with bursts of metadata accesses (e.g., opening
a file with the vim editor can cause more than five stat
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calls), a small short term main memory cache (up to few
MBs for tens of milliseconds) is utilized to serve meta-
data requests. The objective of this cache is to reuse the
data fetched from the coordination service for at least the
amount of time spent to obtain it from the network. In
§4.4 we show this cache can improve the performance of
the system significantly.
Locking service. As in most consistent file systems, we
use locks to avoid write-write conflicts. The lock ser-
vice is basically a wrapper for implementing coordina-
tion recipes for locking using the coordination service of
choice [14, 27]. The only strict requirement is that the
lock entry is inserted in an ephemeral way, making the
system automatically unlock tuples if the client that cre-
ated the lock crashes. In practice, this requires locks to be
represented by ephemeral znodes in Zookeeper or timed
tuples in DepSpace, ensuring they will disappear (auto-
matically unlocking the file) in case the SCFS client that
locked it crashes before uploading its updates and releas-
ing the lock (see next section).

It is important to remark that opening a file for read-
ing does not require locking it. Read-write conflicts
are automatically addressed by the upload/download of
whole files and the use of a consistency anchor (see §2.4)
which ensures the most recent version of file (according
to consistency-on-close) will be read upon its opening.

2.5.2 File Operations
Figure 4 illustrates the execution of SCFS when serv-

ing the four main file system calls, open, write, read and
close. To implement these operations, the SCFS Agent
intercepts the system calls issued by the operating system
and invokes the procedures provided by the storage, meta-
data and locking services.

Opening a file. The tension between provisioning strong
consistency and suffering high latency in cloud access
led us to provide consistency-on-close semantics [26] and
synchronize files only in the open and close operations.
Moreover, given our aim of having most client files (if not
all) locally stored, we opted for reading and writing whole
files from the cloud. With this in mind, the open opera-
tion comprises three main steps: (i) read the file metadata,
(ii) optionally create a lock if the file is opened for writ-
ing, and (iii) read the file data to the local cache. Notice
that these steps correspond to an implementation of the
READ algorithm of Figure 3, with an extra step to ensure
exclusive access to the file for writing.

Reading the metadata entails fetching the file metadata
from the coordination service, if it is not available in the
metadata cache, and then make an update to this cache.
Locking the file is necessary to avoid write-write conflicts,
and if it fails, an error is returned. Reading the file data
either uses the copy in the local cache (memory or disk)
or requires that a copy is made from the cloud. The local
data version (if available) is checked to find out if it corre-
sponds to the one in the metadata service. In the negative
case, the new version is collected from the cloud storage
and copied to the local disk. If there is no space for the file
in main memory (e.g., there are too many open files), the
data of the least recently used file is first pushed to disk
(as a cache extension) to release space.
Write and read. These two operations only need to inter-
act with the local storage. Writing to a file requires updat-
ing the memory-cached file and the associated metadata
cache entry (e.g., the size and the last-modified times-
tamp). Reading just causes the data to be fetched from
the main memory cache (as it was copied there when the
file was opened).
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Closing a file. Closing a file involves the synchroniza-
tion of cached data and metadata with the coordination
service and the cloud storage. First, the updated file data
is copied to the local disk and to the storage cloud. Then,
if the cached metadata was modified, it is pushed to the
coordination service. Lastly, the file is unlocked if it was
originally opened for writing. Notice that these steps cor-
respond to the WRITE algorithm of Figure 3.

As expected, if the file was not modified since opened
or was opened in read-only mode, no synchronization is
required. From the point of view of consistency and dura-
bility, a write to the file is complete only when the file is
closed, respecting the consistency-on-close semantics.

2.5.3 Garbage Collection
During normal operation, SCFS saves new versions of

the file data without deleting the previous ones, and files
removed by the user are just marked as deleted in the asso-
ciated metadata. These two features support the recovery
of a history of the files, which is useful for some applica-
tions. However, in general this can increase the monetary
cost of running the system, and therefore, SCFS includes
a flexible garbage collector to enable various policies for
reclaiming space.

Garbage collection runs in isolation at each SCFS
Agent, and the decision about reclaiming space is based
on the preferences (and budgets) of individual users. By
default, its activation is guided by two parameters defined
upon the mounting of the file system: number of writ-
ten bytes W and number of versions to keep V . Every
time a SCFS Agent writes more than W bytes, it starts
the garbage collector as a separated thread that runs in
parallel with the rest of the system (other policies are pos-
sible). This thread fetches the list of files owned by this
user and reads the associated metadata from the coordina-
tion service. Next, it issues commands to delete old file
data versions from the cloud storage, such that only the
last V versions are kept (refined policies that keep one
version per day or week are also possible). Additionally,
it also eliminates the data versions of the files removed by
the user. Later on, the corresponding metadata entries are
also erased from the coordination service.

2.6 Security Model
The security of a shared cloud storage system is a tricky

issue, as the system is constrained by the access control
capabilities of the backend clouds. A straw-man imple-
mentation would allow all clients to use the same ac-
count and privileges on the cloud services, but this has
two drawbacks. First, any client would be able to modify
or delete all files, making the system vulnerable to mali-
cious users. Second, a single account would be charged
for all clients, preventing the pay-per-ownership model.

SCFS implements the enhanced POSIX’s ACL
model [20], instead of the classical Unix modes (based on

owner, group, others). The owner O of a file can give ac-
cess permissions to another user U through the setfacl
command, passing as parameters the identifier of U , the
permissions and the file name. The getfacl command
returns the permissions of a file.

As a user has separate accounts in the various cloud
providers, and since each probably has a different identi-
fier, SCFS needs to associate with every client identifier a
list of cloud canonical identifiers. This association is kept
in a tuple in the coordination service, and is loaded when
the client mounts the file system for the first time. When
the SCFS Agent intercepts a setfacl request from a
client O to set permissions on a file for a user U , the fol-
lowing steps are executed: (i) the agent uses the two lists
of cloud canonical identifiers (of O and U ) to update the
ACLs of the objects that store the file data in the clouds
with the new permissions; and then, (ii) it also updates the
ACL associated with the metadata tuple of the file in the
coordination service to reflect the new permissions.

Notice that we do not trust the SCFS Agent to imple-
ment the access control verification, since it can be com-
promised by a malicious user. Instead, we rely on the ac-
cess control enforcement of the coordination service and
the cloud storage.

2.7 Private Name Spaces
One of the goals of SCFS is to scale in terms of users

and files. However, the use of a coordination service (or
any centralized service) could potentially create a scala-
bility bottleneck, as this kind of service normally main-
tains all data in main memory (e.g., [14, 27]) and requires
a distributed agreement to update the state of the repli-
cas in a consistent way. To address this problem, we take
advantage of the observation that, although file sharing
is an important feature of cloud-backed storage systems,
the majority of the files are not shared between different
users [18, 30]. Looking at the SCFS design, all files and
directories that are not shared (and thus not visible to other
users), do not require a specific entry in the coordination
service, and instead can have their metadata grouped in a
single object saved in the cloud storage.

This object is represented by a Private Name Space
(PNS) abstraction. A PNS is a local object kept by the
SCFS Agent’ metadata service, containing the metadata
of all private files of a user. Each PNS has an associated
PNS tuple in the coordination service, which contains the
user name and a reference to an object in the cloud stor-
age. This object keeps a copy of the serialized metadata
of all private files of the user.

Working with non-shared files is slightly different from
what was shown in Figure 4. When mounting the file sys-
tem, the agent fetches the user’s PNS entry from the coor-
dination service and the metadata from the cloud storage,
locking the PNS to avoid inconsistencies caused by two
clients logged as the same user. When opening a file, the
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user gets the metadata locally as if it was in cache (since
the file is not shared), and if needed fetches the data from
the cloud storage (as in the normal case). On close, if the
file was modified, both the data and the metadata are up-
dated in the cloud storage. The close operation completes
when both updates finish.

When permissions change in a file, its metadata can be
removed (resp. added) from a PNS, causing the creation
(resp. removal) of the corresponding metadata tuple in the
coordination service.

With PNSs, the amount of storage used in the coordi-
nation service is proportional to the percentage of shared
files in the system. For example, in a setup with 1M files
where only 5% of them are shared (e.g., the engineering
trace of [30]): (i) Without PNSs, it would be necessary 1M
tuples of around 1KB, for a total size of 1GB of storage
(the approximate size of a metadata tuple is 1KB, assum-
ing 100 byte file names); (ii) With PNSs, only 50 thou-
sand tuples plus one PNS tuple per user would be needed,
requiring a little over 50MB of storage. Even more im-
portantly, by resorting to PNSs, it is possible to reduce
substantially the number of accesses to the coordination
service, allowing more users and files to be served.

3 SCFS Implementation
SCFS is implemented as a user space file system based

on FUSE-J, which is a wrapper to connect the SCFS
Agent to the FUSE library. Overall, the SCFS implemen-
tation comprises 6K lines of commented Java code, ex-
cluding any coordination service or storage backend code.
We opted to develop the SCFS in Java mainly because
most of the backend code (the coordination and storage
services) were based on Java and the high latency of cloud
accesses make the overhead of using a Java-based file sys-
tem comparatively negligible.

3.1 Modes of Operation
Our implementation of SCFS supports three modes of

operation, based on the consistency and sharing require-
ments of the stored data.

The first mode, blocking, is the one described up to this
point. The second mode, non-blocking, is a weaker ver-
sion of SCFS in which closing a file does not block until
the file data is on the clouds, but only until it is written
locally and enqueued to be sent to the clouds in back-
ground. In this model, the file metadata is updated and
the associated lock released only after the file contents are
updated to the clouds, and not when the close call returns
(so mutual exclusion is preserved). Naturally, this model
leads to a significant performance improvement at cost of
a reduction of the durability and consistency guarantees.
Finally, the non-sharing mode is interesting for users that
do not need to share files, and represents a design similar
to S3QL [6], but with the possibility of using a cloud-of-
clouds instead of a single storage service. This version

does not require the use of the coordination service, and
all metadata is saved on a PNS.

3.2 Backends
SCFS can be plugged to several backends, including

different coordination and cloud storage services. This
paper focus in the two backends of Figure 5. The first one
is based on Amazon Web Services (AWS), with an EC2
VM running the coordination service and file data being
stored in S3. The second backend makes use of the cloud-
of-clouds (CoC) technology, recently shown to be prac-
tical [8, 11, 12]. A distinct advantage of the CoC back-
end is that it removes any dependence of a single cloud
provider, relying instead on a quorum of providers. It
means that data security is ensured even if f out-of 3f+1
of the cloud providers suffer arbitrary faults, which en-
compasses unavailability and data deletion, corruption or
creation [12]. Although cloud providers have their means
to ensure the dependability of their services, the recurring
occurrence of outages, security incidents (with internal or
external origins) and data corruptions [17, 22] justifies the
need for this sort of backend in several scenarios.
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BFT$SMaRt*

DepSky*
S3(

EC2(

AWS%Backend% CoC%Backend%

S3(

DS% DS%

DS%DS% RS(

WA(

GS(

S3(

Figure 5: SCFS with Amazon Web Services (AWS) and Cloud-
of-Clouds (CoC) backends.

Coordination services. The current SCFS prototype sup-
ports two coordination services: Zookeeper [27] and
DepSpace [14] (in particular, its durable version [13]).
These services are integrated at the SCFS Agent with sim-
ple wrappers, as both support storage of small data entries
and can be used for locking. Moreover, these coordina-
tion services can be deployed in a replicated way for fault
tolerance. Zookeeper requires 2f + 1 replicas to tolerate
f crashes through the use of a Paxos-like protocol [27]
while DepSpace uses either 3f + 1 replicas to tolerate
f arbitrary/Byzantine faults or 2f + 1 to tolerate crashes
(like Zookeeper), using the BFT-SMaRt replication en-
gine [3]. The evaluation presented in this paper is based
on the non-replicated DepSpace in the AWS backend and
its BFT variant in the CoC backend.

Cloud storage services. SCFS currently supports Ama-
zon S3, Windows Azure Blob, Google Cloud Storage,
Rackspace Cloud Files and all of them forming a cloud-
of-clouds backend. The implementation of single-cloud
backends is simple: we employ the Java library made
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available by the providers, which accesses the cloud stor-
age service using a REST API over SSL. To implement
the cloud-of-clouds backend, we resort to an extended
version of DepSky [12] that supports a new operation,
which instead of reading the last version of a data unit,
reads the version with a given hash, if available (to imple-
ment the consistency anchor algorithm - see §2.4). The
hashes of all versions of the data are stored in the Dep-
Sky’s internal metadata object, stored in the clouds.

Figure 6 shows how a file is securely stored in the
cloud-of-clouds backend of SCFS using DepSky (see [12]
for details). The procedure works as follows: (1) a ran-
dom key K is generated,(2) this key is used to encrypt the
file and (3) the encrypted file is encoded and each block
is stored in different clouds together with (4) a share of
K, obtained through secret sharing. Stored data security
(confidentiality, integrity and availability) is ensured by
the fact that no single cloud alone has access to the data
since K can only be recovered only with two or more
shares and that quorum reasoning is applied to discover
the last version written. In the example of the figure,
where a single faulty cloud is tolerated, two clouds need
to be accessed to recover the file data.

Storage(Services(
Client(

1

2. encrypt 

1. gen. key 
1(

File 
Data 

22(

33(

44(

4. secret sharing 

3. erasure coding 

Figure 6: A write in SCFS using the DepSky protocols.

4 Evaluation
This section evaluates SCFS using the AWS and CoC

backends, operating in different modes, and comparing it
with other cloud-backed file systems. The main objective
is to understand how SCFS behaves with some representa-
tive workloads and to shed light on the costs of our design.

4.1 Setup & Methodology
Our setup considers a set of clients running on a cluster

of Linux 2.6 machines with two quad-core 2.27 GHz Intel
Xeon E5520, 32 GB of RAM and a 15K RPM SCSI HD.
This cluster is located in Portugal.

For SCFS-AWS (Figure 5, left), we use Amazon S3
(US) as a cloud storage service and a single EC2 instance
hosted in Ireland to run DepSpace. For SCFS-CoC, we
use DepSky with 4 storage providers and run replicas of
DepSpace in four computing cloud providers, tolerating
a single fault both in the storage service and in the co-
ordination service. The storage clouds were Amazon S3
(US), Google Cloud Storage (US), Rackspace Cloud Files
(UK) and Windows Azure (UK). The computing clouds

were EC2 (Ireland), Rackspace (UK), Windows Azure
(Europe) and Elastichosts (UK). In all cases, the VM in-
stances used were EC2 M1 Large [2] (or similar).

The evaluation is based on a set of benchmarks fol-
lowing recent recommendations [34], all of them from
Filebench [4]. Moreover, we created two new benchmarks
to simulate some behaviors of interest for cloud-backed
file systems.

We compare six SCFS variants considering different
modes of operation and backends (see Table 3) with two
popular open source S3-backed files systems: S3QL [6]
and S3FS [5]. Moreover, we use a FUSE-J-based local
file system (LocalFS) implemented in Java as a baseline to
ensure an apples-to-apples comparison, since a native file
system presents much better performance than a FUSE-J
file system. In all SCFS variants, the metadata cache expi-
ration time was set to 500 ms and no private name spaces
were used. Alternative configurations are studied in §4.4.

Blocking Non-blocking Non-sharing
AWS SCFS-AWS-B SCFS-AWS-NB SCFS-AWS-NS
CoC SCFS-CoC-B SCFS-CoC-NB SCFS-CoC-NS

Table 3: SCFS variants with different modes and backends.

4.2 Micro-benchmarks
We start by running six Filebench micro-

benchmarks [4]: sequential reads, sequential writes,
random reads, random writes, create files and copy files.
The first four benchmarks are IO-intensive and do not
consider open, sync or close operations, while the last
two are metadata-intensive. Table 2 shows the results for
all considered file systems.

The results for sequential and random r/w show that
the behavior of the evaluated file systems is similar, with
the exception of S3FS and S3QL. The low performance
of S3FS comes from its lack of main memory cache for
opened files [5], while S3QL’s low random write perfor-
mance is the result of a known issue with FUSE that
makes small chunk writes very slow [7]. This bench-
mark performs 4KB-writes, much smaller than the rec-
ommended chunk size for S3QL, 128KB.

The results for create and copy files show a difference
of three to four orders of magnitude between the local or
single-user cloud-backed file system (SCFS-*-NS, S3QL
and LocalFS) and a shared or blocking cloud-backed file
system (SCFS-*-NB, SCFS-*-B and S3FS). This is not
surprising, given that SCFS-*-{NB,B} access the coor-
dination service in each create, open or close operation.
Similarly, S3FS accesses S3 in each of these operations,
being even slower. Furthermore, the latencies of SCFS-*-
NB variants is dominated by the coordination service ac-
cess (between 60-100 ms per access), while in the SCFS-
*-B variants such latency is dominated by the read/write
operations in the cloud storage.
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Micro-benchmark #Operations File size
SCFS-AWS SCFS-CoC

S3FS S3QL LocalFS
NS NB B NS NB B

sequential read 1 4MB 1 1 1 1 1 1 6 1 1
sequential write 1 4MB 1 1 1 1 1 1 2 1 1
random 4KB-read 256k 4MB 11 11 15 11 11 11 15 11 11
random 4KB-write 256k 4MB 35 39 39 35 35 36 52 152 37
create files 200 16KB 1 102 229 1 95 321 596 1 1
copy files 100 16KB 1 137 196 1 94 478 444 1 1

Table 2: Latency of several Filebench micro-benchmarks for SCFS (six variants), S3QL, S3FS and LocalFS (in seconds).

4.3 Application-based Benchmarks
In this section we present two application-based bench-

marks for potential uses of cloud-backed file systems.
File Synchronization Service. A representative work-
load for SCFS corresponds to its use as a personal cloud
storage service [18] in which desktop application files
(e.g., xlsx, docx, pptx, odt) are stored and shared. A new
benchmark was designed to simulate the opening, saving
and closing actions on a text document (odt file) in the
OpenOffice application suite.

The benchmark follows the behavior observed in traces
of a real system, which are similar to other modern desk-
top applications [23]. Typically, the files managed by the
cloud-backed file system are just copied to a temporary
directory on the local file system where they are manipu-
lated as described in [23]. Nonetheless, as can be seen in
the benchmark definition (Figure 7), these actions (espe-
cially save) still impose a lot of work on the cloud-backed
file system.

Open Action: 1 open(f,rw), 2 read(f), 3-5 open-write-close(lf1), 6-8
open-read-close(f), 9-11 open-read-close(lf1)

Save Action: 1-3 open-read-close(f), 4 close(f), 5-7 open-read-
close(lf1), 8 delete(lf1), 9-11 open-write-close(lf2), 12-14 open-
read-close(lf2), 15 truncate(f,0), 16-18 open-write-close(f), 19-
21 open-fsync-close(f), 22-24 open-read-close(f), 25 open(f,rw)

Close Action: 1 close(f), 2-4 open-read-close(lf2), 5 delete(lf2)

Figure 7: File system operations invoked in the personal stor-
age service benchmark, simulating an OpenOffice text document
open, save and close actions (f is the odt file and lf is a lock file).

Figure 8 shows the average latency of each of the three
actions of our benchmark for SCFS, S3QL and S3FS, con-
sidering a file of 1.2MB, which corresponds to the aver-
age file size observed in 2004 (189KB) scaled-up 15% per
year to reach the expected value for 2013 [10].

Figure 8(a) shows that SCFS-CoC-NS and S3QL ex-
hibit the best performance among the evaluated file sys-
tems, having latencies similar to a local file system (where
a save takes around 100 ms). This shows that the added
dependability of a cloud-of-clouds storage backend does
not prevent a cloud-backed file system to behave similarly
to a local file system, if the correct design is employed.

Moreover, these results shows that SCFS-*-NB re-
quires substantially more time for each phase due to the
number of accesses to the coordination service, especially
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Figure 8: Latency of a personal storage service actions (see
Figure 7) in a file of 1.2MB. The (L) variants maintain lock files
in the local file system. All labels starting with CoC or AWS
represent SCFS variants.

to deal with the lock files used in this workload. Nonethe-
less, saving a file in this system takes around 1.2 s, which
is acceptable from the usability point of view. A much
slower behavior is observed in the SCFS-*-B variants,
where the creation of a lock file makes the system block
waiting for this small file to be pushed to the clouds.

We observed that most of these operations’ latency
comes from the manipulation of lock files. However, these
files do not need to be stored in the SCFS partition, since
the locking service already prevents write-write conflicts
between concurrent clients. We modified the benchmark
to represent an application that writes lock files locally (in
/tmp), just to avoid conflicts between applications in the
same machine. The (L) variants of Figure 8 present results
with such local lock files. These results show that remov-
ing the lock files makes the cloud-backed system much
more responsive. The takeaway here is that the usability
of blocking cloud-backed file systems could be substan-
tially improved if applications take into consideration the
limitations of accessing remote services.
Sharing files. Personal cloud storage services are of-
ten used for sharing files in a controlled and convenient
way [18]. We designed an experiment for comparing
the time it takes for a shared file written by a client to
be available for reading by another client, using SCFS-
*-{NB,B}. We did the same experiment considering a
Dropbox shared folder (creating random files to avoid
deduplication). We acknowledge that the Dropbox de-
sign [18] is quite different from SCFS, but we think it is
illustrative to show how a cloud-backed file system com-
pares with a popular file synchronization system.

The experiment considers two clients A and B deployed
in our cluster. We measured the elapsed time between the
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Figure 9: Sharing file 50th and 90th latency for SCFS (CoC B
and NB, AWS B and NB) and Dropbox for different file sizes.

instant client A closes a variable-size file that it wrote to a
shared folder and the instant it receives an UDP ACK from
client B informing the file was available. Clients A and B
are Java programs running in the same LAN, with a ping
latency of around 0.2 milliseconds, which is negligible
considering the latencies of reading and writing. Figure 9
shows the results of this experiment for different file sizes.

The results show that the latency of sharing in SCFS-*-
B is much smaller than what people experience in current
personal storage services. These results do not consider
the benefits of deduplication, which SCFS currently does
not support. However, if a user encrypts its critical files
locally before storing them in Dropbox, the effectiveness
of deduplication will be decreased significantly.

Figure 9 also shows that the latency of the blocking
SCFS is much smaller than the non-blocking version with
both AWS and CoC backends. This is explained by the
fact that the SCFS-*-B waits for the file write to complete
before returning to the application, making the benchmark
measure only the delay of reading the file. This illustrates
the benefits of SCFS-*-B: when A completes its file clos-
ing, it knows the data is available to any other client the
file is shared with. We think this design can open interest-
ing options for collaborative applications based on SCFS.

4.4 Varying SCFS Parameters
Figure 10 shows some results for two metadata-

intensive micro-benchmarks (copy and create files) for
SCFS-CoC-NB with different metadata cache expiration
times and percentages of files in private name spaces.

As described in §2.5.1, we implemented a short-lived
metadata cache to deal with bursts of metadata access op-
erations (e.g., stat). All previous experiments used an
expiration time of 500 ms for this cache. Figure 10(a)
shows how changing this value affects the performance of
the system. The results clearly indicate that not using such
metadata cache (expiration time equals zero) severely de-
grades the system performance. However, beyond some
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Figure 10: Effect of metadata cache expiration time (ms) and
PNSs with different file sharing percentages in two metadata in-
tensive micro-benchmarks.

point, increasing it does not bring much benefit either.
Figure 10(b) displays the latency of the same bench-

marks considering the use of PNS (see §2.7) with dif-
ferent percentages of files shared between more than one
user. Recall that all previous results consider full-sharing
(100%), without using PNS, which is a worst case sce-
nario. As expected, the results show that as the number
of private files increases, the performance of the system
improves. For instance, when only 25% of the files are
shared – more than what was observed in the most recent
study we are aware of [30] – the latency of the bench-
marks decreases by a factor of roughly 2.5 (create files)
and 3.5 (copy files).

4.5 SCFS Operational Costs
Figure 11 shows the costs associated with operating and

using SCFS. The fixed operational costs of SCFS com-
prise mainly the maintenance of the coordination service
running in one or more VMs deployed in cloud providers.
Figure 11(a) considers two instance sizes (as defined in
Amazon EC2) and the price of renting one or four of them
in AWS or in the CoC (one VM of similar size for each
provider), together with the expected memory capacity (in
number of 1KB-metadata tuples) of such DepSpace setup.
As can be seen in the figure, a setup with four Large in-
stances would cost less than $1200 in the CoC per month
while a similar setup in EC2 would cost $749. This differ-
ence of $451 can be seen as the operational cost of tolerat-
ing provider failures in our SCFS setup, and comes mainly
from the fact that Rackspace and Elastichosts charge al-
most 100% more than EC2 and Azure for similar VM in-
stances. Moreover, such costs can be factored among the
users of the system, e.g., for one dollar per month, 2300
users can have a SCFS-CoC setup with Extra Large repli-
cas for the coordination service. Finally, it is worth to
mention that this fixed cost can be eliminated if the orga-
nization using SCFS hosts the coordination service in its
own infrastructure.

Besides the fixed operating costs, each SCFS user has
to pay for its usage (executed operations and storage
space) of the file system. Figure 11(b) presents the cost
of reading a file (open for read, read whole file and close)
and writing a file (open for write, write the whole file,
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VM Instance EC2 EC2×4 CoC Capacity
Large $6.24 $24.96 $39.60 7M files
Extra Large $12.96 $51.84 $77.04 15M files

(a) Operational costs/day and expected coordination service capacity.
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Figure 11: The (fixed) operational and (variable) usage costs
of SCFS. The costs include outbound traffic generated by the
coordination service protocol for metadata tuples of 1KB.

close) in SCFS-CoC and SCFS-AWS (S3FS and S3QL
will have similar costs). The cost of reading a file is the
only one that depends on the size of data, since providers
charge around $0.12 per GB of outbound traffic, while in-
bound traffic is free. Besides that, there is also the cost
of the getMetadata operation, used for cache valida-
tion, which is 11.32 microdollars (µ$). This corresponds
to the total cost of reading a cached file. The cost of writ-
ing is composed by metadata and lock service operations
(see Figure 4), since inbound traffic is free. Notice that
the design of SCFS exploits these two points: unmodified
data is read locally and always written to the cloud for
maximum durability.

Storage costs in SCFS are charged per number of files
and versions stored in the system. Figure 11(c) shows
the cost/version/day in SCFS-AWS and SCFS-CoC (con-
sidering the use of erasure codes and preferred quo-
rums [12]). The storage costs of SCFS-CoC are roughly
50% more than of SCFS-AWS: two clouds store the half
of the file each while a third receives an extra block gen-
erated with the erasure code (the fourth cloud is not used).

It is also worth to mention that the cost of running the
garbage collector corresponds to the cost of a list opera-
tion in each cloud (≤ µ$1/cloud), independently of the
number of deleted files/versions. This happens because
all used clouds do not charge delete operations.

5 Related Work
The literature about distributed file systems is vast and

rich. In this section we discuss only a subset of the works
we think are most relevant to SCFS.
Cloud-backed file systems. S3FS [5] and S3QL [6]
are two examples of cloud-backed file systems. Both
these systems use unmodified cloud storage services (e.g.,
Amazon S3) as their backend storage. S3FS employs a
blocking strategy in which every update on a file only re-

turns when the file is written to the cloud, while S3QL
writes the data locally and later pushes it to the cloud.
An interesting design is implemented by BlueSky [36],
another cloud-backed file system that can use cloud stor-
age services as a storage backend. BlueSky provides a
CIFS/NFS proxy (just as several commercially available
cloud storage gateways) to aggregate writings in log seg-
ments that are pushed to the cloud in background, im-
plementing thus a kind of log-structured cloud-backed
file system. These systems differ from SCFS in many
ways (see Figure 1), but mostly regarding their lack of
controlled sharing support for geographically dispersed
clients and dependency of a single cloud provider.
Cloud-of-clouds storage. The use of multiple (unmod-
ified) cloud storage services for data archival was first
described in RACS [8]. The idea is to use RAID-like
techniques to store encoded data in several providers to
avoid vendor lock-in problems, something already done
in the past, but requiring server code in the providers [28].
DepSky [12] integrates such techniques with secret shar-
ing and Byzantine quorum protocols to implement single-
writer registers tolerating arbitrary faults of storage
providers. ICStore [11] showed it is also possible to
build multi-writer registers with additional communica-
tion steps and tolerating only unavailability of providers.
The main difference between these works and SCFS(-
CoC) is the fact they provide a basic storage abstraction (a
register), not a complete file system. Moreover, they pro-
vide strong consistency only if the underlying clouds pro-
vide it, while SCFS uses a consistency anchor (a coordi-
nation service) for providing strong consistency indepen-
dently of the guarantees provided by the storage clouds.
Wide-area file systems. Starting with AFS [26], many
file systems were designed for geographically dispersed
locations. AFS introduced the idea of copying whole files
from the servers to the local cache and making file updates
visible only after the file is closed. SCFS adapts both these
features for a cloud-backed scenario.

File systems like Oceanstore [29], Farsite [9] and
WheelFS [33] use a small and fixed set of nodes as lock-
ing and metadata/index service (usually made consistent
using Paxos-like protocols). Similarly, SCFS requires
a small amount of computing nodes to run a coordina-
tion service and simple extensions would allow SCFS
to use multiple coordination services, each one dealing
with a subtree of the namespace (improving its scal-
ability) [9]. Moreover, both Oceanstore [29] and Far-
site [9] use PBFT [16] for implementing their metadata
service, which makes SCFS-CoC superficially similar to
their design: a limited number of nodes running a BFT
state machine replication algorithm to support a meta-
data/coordination service and a large pool of untrusted
storage nodes that archive data. However, on the contrary
of these systems, SCFS requires few “explicit” servers,
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and only for coordination, since the storage nodes are re-
placed by cloud services like Amazon S3. Furthermore,
these systems do not target controlled sharing of files and
strong consistency, using thus long-term leases and weak
cache coherence protocols. Finally, a distinctive feature
of SCFS is that its design explicitly exploit the charging
model of cloud providers.

6 Conclusions
SCFS is a cloud-backed file system that can be used

for backup, disaster recovery and controlled file sharing,
even without requiring trust on any single cloud provider.
We built a prototype and evaluated it against other cloud-
backed file systems and a file synchronization service,
showing that, despite the costs of strong consistency, the
design is practical and offer control of a set of tradeoffs
related with security, consistency and cost-efficiency.
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