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Abstract—Despite the significant efforts put in building more
secure web applications, cases of high impact breaches continue
to appear. Vulnerabilities in web applications are often created
due to inconsistencies in the way SQL queries are believed to be
run and the way they are actually executed by a Database Man-
agement System (DBMS). This paper presents a demonstration of
SEPTIC, a mechanism that detects and blocks injection attacks
inside the DBMS. The demonstration considers a scenario of a
non-trivial PHP web application, backed by a MySQL DBMS,
which was modified to include SEPTIC. It presents how SEPTIC
blocks injection attacks without compromising the application
correctness and performance. In addition, SEPTIC is compared
to alternative approaches, such as sanitizations carried out with
standard functions provided language and a web application
firewall.

Keywords—Web applications; injection attacks; DBMS; soft-
ware security; runtime protection; security.

I. INTRODUCTION

Despite all effort put in building more secure web appli-
cations, cases of high impact breaches continue to appear. In
fact, the number of web application attacks increased by 26%
in the first quarter of 2016 [21], 87% of which were SQL
injection attacks (SQLI). SQLI attacks are performed with
different aims, often for extracting information from databases.
For example, recently, they may have been used to steal 11.5
million sensitive documents from a notorious law firm, causing
much embarrassment to many people [8]. They have also
been employed in multistage attacks to critical infrastructures,
namely to alter the levels of chemicals added to drinking water
in a water treatment facility [22].

Defending web applications from SQLI attacks has always
been an important challenge. There are two approaches that are
most common. In the first – sanitization of user inputs – devel-
opers insert in the code calls to sanitization functions provided
by the language (e.g., function mysql_real_escape_string
in PHP) or by third party libraries to process the inputs before
they are included in a query that is susceptible to exploitation
(e.g., a query executed by mysql_query). In the second –
use of protection components – systems administrators in-
stall web application firewalls (WAFs) or application delivery
controllers (ADCs) [23], [9] operating between the browser
and the application, filtering all user inputs supplied to the
application and blocking those that are considered suspicious,
or SQL proxies or database firewalls [5], operating between the
application and the Database Management System (DBMS),
filtering the queries. There are also other alternatives, such as
mechanisms that first analyse or modify the source code of the

web applications, then block injections in runtime [2], [3], [6],
[20], [10].

Although these solutions contribute to improve web secu-
rity, there are many forms of injection attacks for which it
is difficult to provide comprehensive defences. In particular,
these flaws often arise due to a semantic mismatch, i.e., a gap
between the way SQL queries are believed by developers to be
processed and the way they are actually executed by databases,
leading to subtle bugs. This mismatch leads to unexpected
vulnerabilities in the sense that mechanisms such as those
mentioned above can become ineffective, resulting in false
negatives (attacks not detected). To avoid this problem, these
attacks could be handled after the server-side code processes
the inputs and the DBMS validates the queries, reducing the
amount of assumptions that are made. The mismatch and this
solution are not restricted to web applications, meaning that the
same problem can be present in other business applications. In
fact, any class of applications that use a database as backend
may be vulnerable to injection attacks.

In this paper, we present a demonstration of a novel
mechanism that blocks injection attacks inside the DBMS,
protecting any application that uses the database. By running
the mechanism inside the DBMS, the defense is provided off-
the-shelf (without requiring installation), which may lead to
automatic protection similarly to what is currently available
for binary programs based on techniques like address space
layout randomization and canaries [17].

This mechanism is called SElf-Protecting daTabases pre-
ventIng attaCks (SEPTIC) [11]. It focuses on the main cat-
egories of attacks related with databases: SQLI attacks that
continue to be among those with highest risk and for which
new variants continue to appear; and stored injection attacks
that also involve SQL queries. For SQLI, we identify the
attacks essentially by comparing queries with query models,
taking to its full potential an idea that has been previously
used only outside of the DBMS [3], [6] and circumventing the
semantic mismatch. For stored injection, we resort to plugins
that are executed on the fly to deal with specific attacks before
data is inserted in the database.

SEPTIC is demonstrated with a non-trivial web applica-
tion backed by a database, which corresponds to a com-
mon deployment scenario. In particular, the demonstration
is based based in the following elements: a web application
programmed in PHP, the language most used in development
of this sort of programs; the Apache web server, also one
of the most commonly utilized web servers; and a MySQL



backend database, which is probably the most popular open-
source DBMS. The demonstration illustrates how SEPTIC
blocks injection attacks without compromising the application
correctness and performance. The main objectives are:

1) To show example attacks that can take advantage
of the semantic mismatch to circumvent protection
mechanisms, such as those implemented in the appli-
cation by resorting to PHP sanitization functions and
protection components such as the popular ModSe-
curity WAF [23];

2) To present the operation of the SEPTIC mechanism
implemented inside MySQL to prevent injection at-
tacks, solving the semantic mismatch problem and
blocking attacks that attempt to exploit it;

3) To show that SEPTIC is effective and more accurate
than other commonly employed mechanisms, and
that applications are no longer compromised when
SEPTIC is in use.

The paper is organized as follows. Section II presents an
overview of the SEPTIC mechanism, including its features
and modules, detection examples and impact caused in the
MySQL performance. Section III presents the scenario, which
corresponds to an usual interaction between web applications
and databases. This section also explains attacks that exploit
flaws originating from the semantic mismatch. Section IV
presents the phases of the demonstration based on the scenario.
The paper ends with conclusions and discussion in Section V.

II. SEPTIC MECHANISM

This section presents the SEPTIC mechanism, giving a
general overview of its functionality and features. There is
a description of the four modules that compose it, together
with the operation modes and actions. Some examples of
attack detection are included and there is a discussion on the
performance impact in MySQL.

A. Overview

SEPTIC operates inside of the DBMS to detect and block
injection attacks at runtime. Normally, prior to the execution
of a query transmitted by an application, the DBMS parses and
validates the received information. SEPTIC runs right before
the execution step, after all potential modifications have been
applied to the queries. It analyzes the queries to determine if
they are malicious, flagging them as attacks and then possibly
stopping their processing.

SEPTIC detects SQLI and stored injection attacks. To find
SQLI attacks, it compares the structure of the query currently
being processed with a query model previously learned. If
the structure does not match the model, then this indicates
that the query was somehow changed, maybe to cause some
(malicious) unexpected behavior. For stored injection attacks,
SEPTIC applies plugins to check if the user inputs provided to
INSERT and UPDATE commands are erroneous. In the current
implementation there are plugins capable of discovering the
following classes of attacks: stored (persistent) XSS, remote
and local file inclusion (RFI and LFI), and OS and remote
command execution (OSCI and RCE).

SEPTIC has two main modes of operation: (1) training
mode (or learning mode), to learn the query models of the
queries issued by the application; (2) normal mode, to find,
block, and log attacks. The normal mode can be set up as
being detection(-only) or prevention. In the detection mode, the
attacks are not blocked but only logged; in prevention mode,
they are both stopped and logged. The natural order of using
SEPTIC is to first run in learning mode and then later on put
it in normal mode.

SEPTIC is composed of 4 modules, as shown in Figure 1
and explained in more detail in Section II-C.
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Fig. 1: Overview of the SEPTIC modules and data flow.

Before being executed in normal mode, SEPTIC has to be
trained in order to learn the query models of the queries issued
by application. In training mode only the QS&QM manager
and ID generator modules are used. For each query, the first
component receives a validated query (Q validated) by the
DBMS and creates its model, whereas the second component
produces its ID. Then, the query model and the ID are stored
in the QM learned store.

When the mechanism is in normal mode, the QS&QM
manager receives a validated query, extracts its query structure
(QS), and requests a query identifier (ID) from the ID genera-
tor. Then, it obtains the query model (QM) associated to that
ID. Next, the attack detector module looks for SQLI and stored
injection attacks, by comparing the QS with the QM and by
applying plugins, respectively. The attacks are registered by
the logger module. In case SEPTIC does not know a QM for
that ID, the QS&QM manager creates a QM, associates the
QM with that ID, and stores it in the QM learned store. The
logger also saves information that a new model was created.

SEPTIC was developed in C. In our prototype, a few lines
of code were added to a single MySQL file, and the rest of
the code was included in two new files that were linked with
the rest of the DBMS.

B. Features

SEPTIC has a set of important features, which we present
by comparing them with other mechanisms used to detect
SQLI attacks. Notice that none of these mechanism operate
inside the DBMS, but typically between the application and
the DBMS.

• Server-side language independence – SEPTIC re-
quires minimal and optional support at server-side



language engine (SSLE) level to obtain the external
identifiers (unlike [18], [14], [7], [25]);

• No client configuration – the DBMS client connectors
do not need reconfiguration to use SEPTIC, as it is
inside the DBMS;

• Client diversity – several DBMS clients of different
types may be connected to a single DBMS server with
SEPTIC;

• No application source code modification – the pro-
grammer does not need to make changes to the web
application source code to use the mechanism (unlike
[6], [2], [3], [20], [25]);

• No application source code analysis – SEPTIC does
not need to do source code analysis to find the queries
in the source code of the web application (unlike [6],
[1]);

• Learning – SEPTIC is able to learn the query models
in training mode or incrementally in normal mode
(see Section II-E). Similarly to GreenSQL [5] and
Percona Tools [12], it needs information on the queries
that it will be monitored to be able to detect attacks.
However, SEPTIC has two different ways of learning
that information, whereas these systems have only one
(during a training phase).

C. Modules

SEPTIC contains four main modules, which are presented
in the following paragraphs:

1) QS&QM manager: MySQL parses and validates a
query, storing the query elements in a stack data structure.
SEPTIC receives this structure and creates another stack with
that data, the query structure (QS). Each node of the stack
represents a query element belonging to a category (e.g.,
field, function, operator) and information about it – data type
(e.g., integer, string) and data (e.g., user inputs). Each node
of the stack has one of the following formats: 〈ELEM TYPE,
ELEM DATA〉 or 〈DATA TYPE, DATA〉.

Figure 2(a) depicts as an example the QS for
the query SELECT * FROM tickets WHERE reservID =
’ID34FG’ AND creditCard = 1234. This query returns all
data associated with a flight ticket, after an user provided the
ticket reservation ID and the last four digits of the credit card
number. The figure shows from bottom to top the SQL clauses
and its elements. As we can observe, each element (a line in the
figure) is represented either as ELEM TYPE or as DATA TYPE.

After the QS is built, the QS&QM manager requests from
the ID generator module an identifier for the query (ID). Next,
it searches the QM learned store for a query model (QM) with
the same identifier. If the QM is found, the QS and the QM are
sent to the attack detector module and the query processing
continues from there. Otherwise, the QM of the query is built
from the QS, and is associated with the previously created ID.
Finally, it is stored in the QM Learned store.

To create the QM from the QS the following operation is
performed: DATA information, in all 〈DATA TYPE, DATA〉 nodes
of the QS, are replaced by a special value ⊥. Figure 2(b) shows
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Fig. 2: QS and QM of a query.

the QM for the query presented above, where we can observe
these substitutions.

2) ID generator: SEPTIC is first trained to learn the query
models of the queries issued by the application, associating to
each a unique ID. Later on, in normal mode, for each query
received, it is necessary to compute a query identifier and look
(in QM Learned store) if there is a query model with this ID.

The ID is formed by composing distinct types of in-
formation related to the query. We call identifiers to these
information types. One of these identifiers may be (optionally)
provided by the application or SSLE (e.g., PHP Zend) and the
other is (mandatorily) created by SEPTIC. The first identifier
can take an arbitrary value defined by the programmer. It
is sent to MySQL inside a comment (i.e., /* external
identifier */) that is concatenated with the query. The
second identifier is produced by SEPTIC based on the QM
in order to ensure uniqueness.

The ID generator receives a request from the QS&QM
manager module. First, it determines if the query comes with
an identifier (an external identifier), which is then retrieved.
Second, it creates its own (internal) identifier. The ID is the
concatenation of both identifiers (or just the internal identifier
in case the other does not exist).

3) Attack detector: This module is executed only during
the normal mode of operation. It performs two kinds of attack
discovery, namely SQLI and stored injection detection.

• SQLI detection – is implemented by comparing the
query structure with the query model. The module
executes an algorithm with two steps: (1) it verifies
if the number of nodes of QS and QM are equal;
(2) checks, for each node of QS, if its element is
equal to the corresponding node in the QM. Step (2)
is only carried out if step (1) does not fail. An attack
is detected if any of these steps fails. In such case,
the logger module is triggered. Otherwise, the query
is delivered to MySQL to be executed.

• Stored injection detection – is performed for INSERT
and UPDATE commands. The module executes two
steps per query: (1) a lightweight checking of the user
input is done to determine if it contains characters
associated with malicious actions (e.g., ’<’ and ’>’
for stored XSS), which are then used to find out the



potential type of attack; (2) a more precise validation
is run, tailored to confirm with higher certainty the
attack. The second step is executed only if the first
flags problems. If an attack is detected, the logger
module is activated; otherwise, the query execution
proceeds.

4) Logger: This module is used to register the events
observed by SEPTIC, namely an attack being discovered or
a new query reaches the database (in which case there is no
query model). The module is activated by the attack detector
and QS&QM manager modules.

An attack record contains the query received by MySQL,
the query identifier, its query model, and the step of the
algorithm that found the problem (these two last items are
registered for a SQLI attack). For a new observed query, the
logger registers the received query, the query model and its
query identifier.

D. Attack detection examples

This section presents two detection examples to illustrate
the process.

1) SQLI attack detection: Consider the query SELECT *
FROM tickets WHERE reservID = ? AND creditCard
= ?, based on the example introduced previously. It
accepts two inputs represented by a question mark. The
corresponding query model is shown in Figure 2(b).
Consider a second-order SQLI attack: (1) a malicious user
provides an input that leads the application to insert
concat(ID34FG,U+02BC-- ) in the database, i.e.,
ID34FG’-- with the prime represented in Unicode as
U+02BC; (2) later this data is retrieved from the database and
inserted in the reservID field in the query above, resulting in
the query SELECT * FROM tickets WHERE reservID =
concat(ID34FG,U+02BC-- ) AND creditCard = 0; (3)
MySQL parses and validates the query, decoding U+02BC into
a prime, and the resulting query becomes SELECT * FROM
tickets WHERE reservID=ID34FG. This attack modifies
the structure of the query. Figure 3 presents the QS for this
query. When the query is issued, SEPTIC compares the QS
with the QM during structural verification (first step). This
comparison shows that they do not match as the number of
nodes is different, detecting the attack.
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Fig. 3: QS of query SELECT * FROM tickets WHERE
reservID = ? AND creditCard = ? with ID34FG’-- as
reservID.

As a second example consider a syntax mimicry attack,
i.e., an attack that reproduces the structure of the original
query. The attacks is against the query above and the malicious

input ID34FG’ AND 1=1-- is inserted in the reservID field.
The resulting query is SELECT * FROM tickets WHERE
reservID=ID34FG AND 1=1. Figure 4 represents the query
structure of this query. When the query is issued, SEPTIC
compares QS with QM (Figure 4 with Figure 2(b)). First,
it checks that they match, as the number of items of both
structures is equal; then, it observes that the 〈INT ITEM, 1〉
node from QS (fourth row in Figure 4) does not match with
the 〈FIELD ITEM, CREDITCARD〉 node from QM (fourth row
in Figure 2(b)). The attack is flagged due to this difference.
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Fig. 4: QS of query with ID34FG’ AND 1=1 input as re-
servID.

2) Stored XSS attack detection: Consider a web ap-
plication that registers new users. Consider also that
a malicious user inserts as his first name <script>
alert(’’Hello!’’);</script>, which is a JavaScript
code. When SEPTIC receives the query, it does the filtering
step (first step) and finds two characters associated with XSS,
’<’ and ’>’. So, it calls the plugin that detects stored XSS
attacks. This plugin inserts this input in a web page and calls
an HTML parser. Then, it finds that the input contains a script
and flags a stored XSS attack.

E. Operation modes and actions

As mentioned above, before performing the detection of
attacks, SEPTIC has to learn query models of the queries that
might be called in the application. Therefore, SEPTIC has two
main operation modes: training mode and normal mode.

• Training mode – for each different query that SEPTIC
receives, the QS&QM manager and ID generator
modules work together to create the query model,
the query identifier, and associate them. Then, the
QS&QM manager stores the query model in the QM
Learned store.
There are several options to trigger the queries. This
can be made with application unit tests, manually
by the programmer/administrator, or by using the
septic training module. This module runs externally
to SEPTIC and currently supports normal web appli-
cations. It works like a crawler, navigating in the appli-
cation looking for forms, to then inject benign inputs
that eventually are inserted in queries transmitted to
MySQL.

• Normal mode – in which SEPTIC can operate in
detection or prevention mode. The difference between



Query model Attack detection Query
T I Log SQLI Stored Inj Log Drop Exec

Training x x
Prevention x x x x x x
Detention x x x x x x
T: training I: incremental

TABLE I: Operation modes and actions taken by SEPTIC.

these two modes resides in executing or not the query
when an attack is found. In the former, the query is
executed, whereas for the latter it is not, dropping
the query and blocking the attack. In both modes the
attack is logged.
For each query that SEPTIC receives, the QS&QM
manager and ID generator modules work together to
create the query structure and get the query identifier.
Next, the QS&QM manager gets the query model
identified by the query identifier. If a query model
exists, then the attack detector is activated to perform
the SQLI and stored injection detection algorithms
described above, and logger acts if an attack is found.
If a query model does not exist for that query iden-
tifier, the QS&QM manager creates the query model,
stores it with the query identifier, and the logger regis-
ters this event. This action corresponds to an incremen-
tal training because the query models are learned and
stored gradually. Later, the programmer/administrator
will have to decide if the query model comes from a
malicious or a benign query. In the latter case, it is
saved together with the other QM already known.

Table I summarizes the operation modes and the actions
taken by SEPTIC. The last two rows show the prevention and
detection modes included in the normal operation mode. As
one can observe in the last two columns for these modes, the
difference between them is the execution or not of queries
when attacks are flagged.

F. Performance impact in MySQL

We studied the impact of the SEPTIC in MySQL when
setup in the four configurations of detection, i.e., turning on
and off the detection of SQLI and stored injection attacks.
We performed these evaluations using three real web appli-
cations, namely PHP Address Book [13], refbase [16], and
ZeroCMS [26]. To automate the experiments, we resorted to the
BenchLab, a benchmarking testbed for web applications [4].

The experimental environment was based on a network
with six machines with identical characteristics (Intel Pentium
4 CPU 2.8 GHz (1-core and 1-thread) with 2 GB of RAM, 80
GB of hard disk SCSI, and 1 Gb ethernet card, running Linux
Ubuntu 14.04). These machines belong to a computational
cluster dedicated to large-scale experiments of distributed
systems, the Quinta cluster [15]. The Quinta is comprised
of 38 physical machines aggregated in four different clusters,
each one composed by identical machines. Our experiments
were realized in the R cluster, which contains eleven machines.
From the six computers that we used from cluster R, two of
them performed the server roles, whereas the other four were
the clients. A server machine contained the MySQL DBMS
with the SEPTIC mechanism installed, and the other machine

had installed the Apache web server and the PHP Zend to run
those three web applications. The Apache Tomcat was also
necessary to run the BenchLab server. The four client machines
had installed the Firefox web browser and the BenchLab client.
They run workloads previously recorded and stored by the
BenchLab server, i.e., a sequence of requests made to the web
applications. These requests forced the web applications to
execute of queries in MySQL.

We evaluated SEPTIC with its four combinations of pro-
tections turned on and off (SQLI and stored injection on/off)
and compared them with the original MySQL without SEPTIC
installed. For that purpose, we created several scenarios, vary-
ing the number of client machines (1 to 4) and browsers (1 to 5
browsers per machine). We also created three workloads from
the web applications, one of each application. The ZeroCMS
workload had 26 requests to the web application with queries
of several types (SELECT, UPDATE, INSERT and DELETE)
and downloading of web objects (e.g., images, css). The other
two application workloads were similar but for PHP Address
Book it had 12 requests, while for refbase it had 14 requests.

The evaluation started with one machine running one
browser executing the refbase workload, next we gradually
increased the number of machines (one by one) running one
browser. On a second phase, we evaluated the same workload
with four machines running two browsers each one (8 in the
total), then we incremented to 12, 16 and 20 browsers. The
last two batteries of experiments, we had all machines with all
browsers running the other two workloads, respectively. On
all experiments, each browser executed the workload in a loop
many times, sending the requests one by one.

Figure 5 depicts the results of the experimental evaluation
for the three web applications and 20 browsers in 4 machines.
The figure shows how the average latency overhead varied
from 0.5% to 2.2%, depending if SEPTIC was configured
with both detections disabled (NN) or both enabled (YY). The
figure also shows that the overhead of all applications is similar
for each SEPTIC configuration. With SEPTIC set up to detect
only SQLI (YN), the overhead was only 0.8%. These values
suggest that it is feasible to run SEPTIC by default inside
MySQL as there is a very limited impact on performance.

III. APPLICATION SCENARIO

We consider the WaspMon web application [24]. It is a
real open source web application that can manage the energy
consumption in devices (e.g., of a household or a factory).
This sort of application is included in typical smart power
grid scenarios. For serious forms of vulnerabilities, it can cause
problems not only to the owner of the devices but in extreme
cases could create power imbalances in the grid.

In our scenario, the web application is programmed in PHP
and runs in an Apache web server with Zend and employs a
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Fig. 5: Overhead of SEPTIC with the applications PHP
Address Book, refbase and ZeroCMS.

background database managed by the MySQL DBMS. The
application allows the users to insert and retrieve data with
forms in web pages. These forms lead to reads and writes in
the background database by invoking SQL queries. The web
application is accessed through a web browser and is supposed
to be utilized by different users from distinct locations.

The main supported queries allow the insertion in the
database of data collected from the devices and to later read
this data for the user to check it. This supports for instance the
tracking of the device history, and eventually take some action
on it (e.g., disconnect the device, re-schedule the device for a
new data collect).

The programmer was careful and used PHP sanitization
functions (e.g., mysql_real_escape_string) to check all
inputs before inserting them in queries. Therefore, this web
application is apparently protected from the attacks we aim
to demonstrate. In the demonstration we also consider as
an alternative layer of protection the ModSecurity WAF [23]
(version 2.9.1, configured with OWASP Core Rule Set (CRS)
3.0). ModSecurity is the most popular WAF, widely adopted by
industry. It is integrated in the Apache web server and checks
the requests incoming from the browsers to the web server
before they reach the web application(s).

A. Attack scenario.

The attack scenario is depicted in Figure 6. The web ap-
plication is accessed by an user through a browser from some
place using a network connection. The web server receives
HTTP/HTTPS requests and sends them to the application. The
application uses the user inputs that come in the requests,
includes them in queries, and requests the execution of queries
to the MySQL DBMS. MySQL processes the queries and
returns the results to the application, which forwards them to
the browsers/users.

An attacker will scan the application, looking for entry
points in forms, to later inject malicious inputs, i.e., making
injection attacks in an attempt to compromise the application.

We can consider two kinds of vulnerabilities in the appli-
cation, depending on the sanitization (or not) of user inputs
included in the queries. An attacker will easily exploit vulner-
abilities associated to queries that use unsanitized user inputs,
performing SQLI attacks and the first step of stored attacks
(storing of the malicious inputs in the database). The second
kind of vulnerabilities are more troublesome because the user

MySQL

web
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browser
accessing to

web application 

attacker

Fig. 6: Attack to the web application and database.

inputs are sanitized, i.e., the application is supposedly secure.
Also, the application can be behind of a protection mechanism
such as ModSecurity. The attacker injects inputs in a way
that circumvents these security measures. These cases are
related with the exploitation of the semantic mismatch problem.
These attacks are not easily detected, passing unnoticed by the
protection mechanisms.

In the demonstration we consider only these cases of
injection attacks – when protections are in place – since
the first ones (unsanitized inputs) are commonly known. The
activation of SEPTIC inside of the MySQL will block these
attacks, thus defending the application, i.e., the application is
safeguarded from the injection attacks.

IV. THE DEMONSTRATION

The demonstration is based on the application scenario
described in the previous section. The setup is presented in
Figure 7. It involves two computers and one Ethernet switch.
One of the computers represents the web and DBMS servers,
containing two virtual machines, one per server. The other
computer takes the role of a client. In this way, the com-
puters represent the following entities: MySQL DBMS server,
including the SEPTIC mechanism (1 virtual machine); Apache
web server with ModSecurity, Zend engine, and the web
application (1 virtual machine); a browser to access the web
application and other tools to perform SQLI attacks, such as
sqlmap tool [19] (probably, the most used tool for testing web
applications against SQLI vulnerabilities and used by hackers
and professionals) (1 machine). The displays from SEPTIC and
ModSecurity are used to show the events related to these two
protection mechanisms. For SEPTIC, we developed a register
of events that logs all actions taken by the mechanism, such as
query model creation, query processing, and attack detection.
It was inserted in the logger module.

The demonstration has five phases. The first shows the
exploitation of the semantic mismatch problem, although the
application is protected with the sanitization functions it in-
cludes out-of-the-box. In the second phase, the protection of
the application is enhanced with the ModSecurity WAF. The
next three phases are dedicated to SEPTIC, from its training
to attack detection.

A. Attacks with sanitization function protection

In the first phase there are no external protection mech-
anisms enabled. The application is only protected by the
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Fig. 7: The setup of the demonstration, including example
displays.

sanitization functions from the PHP language. We illustrate
that the application contains vulnerabilities – is attackable –
even with its entry points sanitized.

The attacker uses the browser and/or the sqlmap tool to
access the application, and inserts erroneous data that reaches
the queries. Then these queries are sent to MySQL and are
executed. The results of the attacks are showed in the browser
and/or console, respectively, as the response of the database
and application.

B. Attacks with additional ModSecurity protection

In the second phase, we activate ModSecurity to show if
it can improve the protection of the application. After turning
on ModSecurity and restarting the web server, the attacks per-
formed in the previous phase are executed again. Some those
that were previously successful are blocked by ModSecurity,
whereas others are not, corresponding to ModSecurity false
negatives. This is observed in two ways: the blocked attacks
appear in the ModSecurity log, whereas the effect of those that
pass the protection mechanism have their outcome shown in
the browser. At the end of these experiments, ModSecurity is
disabled and the web server restarted.

C. Training SEPTIC

In this third phase, SEPTIC is configured for training
mode operation, the MySQL server is restarted to assume
this configuration, and the SEPTIC status display notifies that
SEPTIC operates now in that mode.

We illustrate the training of SEPTIC by inserting benign
inputs in application forms in the browser. These inputs reach
existing queries in the application and the queries are sent to
MySQL. SEPTIC, for each new query received, creates its
query model and stores it with a query identifier. SEPTIC
events display logs with the addition of the query models for
each new query. We also illustrate that for a query processed
twice by SEPTIC, the query model is created and stored
only once. This happens because SEPTIC only creates query
models when it does not have stored any model with the
produced query identifier. This is shown in the SEPTIC events
display, which does not notify any query model addition the

second time. All query models are in memory and are stored
persistently. Also, after the query models are built, the queries
are executed by MySQL as expected (with benign inputs).

D. SEPTIC protection

In this phase SEPTIC is set to normal mode, more con-
cretely to prevention mode (blocks and logs attacks). Then,
MySQL is restarted to assume the new configuration, the
persistent query models are loaded and SEPTIC status display
notifies this change.

Using the same injection attacks performed in the firsts
two phases, we illustrate that SEPTIC detects and blocks
all of them (i.e., no false negatives). The actions taken by
SEPTIC are registered in the events register. It registers: query
structure construction, query identifier generation, query model
discovery, comparison of both structures, attacks detected, and
the type of attack (SQLI or stored injection). For the SQLI
attacks, it also logs if they are structural or syntactical, i.e.,
in which step of the SQLI detection algorithm discovered the
attack.

When SEPTIC flags an attack, we observe that the attack
is blocked, the query is dropped and its execution is stopped
in MySQL. This action is visible in the browser. Moreover, we
show that the injection of benign inputs does not break any
step of the detection algorithms used by SEPTIC, meaning
that queries are executed as expected and SEPTIC does not
interfere with the normal processing inside of MySQL (i.e.,
no false positives).

E. ModSecurity versus SEPTIC

Finally, in this last phase we filter the results of both ex-
ternal protection mechanisms, looking for the attacks detected
by both. We observe that ModSecurity does not protect the
application from all injected attacks. For SEPTIC we observe
that all attacks are detected and no false positives are reported.

V. CONCLUSIONS AND DISCUSSION

The demonstration described in this paper illustrates, in
the first place, how injection attacks can compromise an
application developed following secure coding best practices
(sanitization of entry points before they reach a sensitive sink)
and pass barriers of protection that are put before the user
inputs reach the application (web application firewalls). These
attacks have the aim of inserting or retrieving data to/from the
application database. We consider a specific class of attacks
that exploit semantic mismatch flaws, which appear due to a
gap on the way SQL queries are believed to be run and the
way they are actually executed by databases. For this purpose,
we use a non-trivial PHP web application implementing entry
point sanitization and ModSecurity.

In second place, the demonstration shows the protection of
the web application using our own mechanism, SEPTIC [11].
This mechanism runs inside of the DBMS, which is MySQL
in its first implementation. Running SEPTIC inside the DBMS
allows it to handle queries just before execution. Therefore,
adding SEPTIC to MySQL mitigates the semantic mismatch
problem.



In the original paper about SEPTIC we report an ex-
perimental comparison between SEPTIC and several other
protection mechanisms, showing that SEPTIC provides better
protection [11]. Moreover, we also show that its overhead is
low.
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