
ARTICLE IN PRESS

JID: SYSARC [m5G; December 27, 2016;21:34]

Journal of Systems Architecture 0 0 0 (2016) 1–7

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

State machine replication in containers managed by Kubernetes

Hylson V. Netto

a , c , ∗, Lau Cheuk Lung

a , Miguel Correia

b , Aldelir Fernando Luiz

c ,
Luciana Moreira Sá de Souza

a

a Universidade Federal de Santa Catarina Campus Reitor João David Ferreira Lima, Florianopolis, Santa Catarina, s/n. Brazil
b INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
c Instituto Federal Catarinense, Campus Blumenau, Blumenau, Santa Catarina, Brazil

a r t i c l e i n f o

Article history:

Received 20 April 2016

Revised 15 December 2016

Accepted 23 December 2016

Available online xxx

MSC:

00-01

99-00

Keywords:

State machine replication

Shared memory

Container

Kubernetes

Docker

a b s t r a c t

Computer virtualization brought fast resource provisioning to data centers and the deployment of pay-

per-use cost models. The system virtualization provided by containers like Docker has improved this flex-

ibility of resource provisioning. Applications that require more restrictive agreement and ordering guaran-

tees can also benefit from operating inside containers. This paper proposes the integration of coordination

services in a container management system called Kubernetes (k8s), seeking to restrict the containers’

size and to offer automatic state replication. A protocol that uses shared memory available in Kubernetes

was developed, and an evaluation was conducted to show the viability of the proposal.

© 2016 Elsevier B.V. All rights reserved.

1

d

r

m

f

e

c

t

m

p

f

g

G

(

i

l

a

w

t

i

f

i

t

u

h

c

u

c

e

b

e

s

e

h

1

. Introduction

Virtual machines [1] enable dynamic resource provisioning in

ata centers. As a consequence, users can pay only for allocated

esources. Services in data centers are being more consumed as

ore users connect to the Internet. These services are often re-

erred to as cloud computing , defined by NIST [2] as “a model for

nabling ubiquitous, convenient, on-demand network access to [...]

omputing resources [...] rapidly provisioned and released”. Con-

ainers provide faster resource allocation in comparison to virtual

achines [3] . Among the implementations of containers, Docker is

robably the most adopted [4] .

To drive the adoption of containers in clouds, companies

ounded the Cloud Native Computing Foundation (CNCF) [5] . The

oals of CNCF include creating standards for container operation.

oogle had used containers for years [6] and launched Kubernetes

also known as k8s) [7] as an initial result from CNCF. Kubernetes

s an open source management system for containers and counts
∗ Corresponding author.

E-mail addresses: hylson.vescovi@posgrad.ufsc.br (H.V. Netto),

au.lung@ufsc.br (L.C. Lung), miguel.p.correia@tecnico.ulisboa.pt (M. Correia),

ldelir.luiz@blumenau.ifc.edu.br (A.F. Luiz), luciana@pangeaware.com

(L.M. Sá de Souza).

p

t

f

a

K

ttp://dx.doi.org/10.1016/j.sysarc.2016.12.007

383-7621/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: H.V. Netto et al., State machine replication in

ture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.12.007
ith the knowledge of the engineers that created Borg [6] , a con-

ainer manager developed by Google.

Kubernetes can replicate containers to improve the availabil-

ty of applications. When a container fails, Kubernetes recreates it

rom a predefined image. However, the state of the failed container

s not restored. Applications can use external volumes to maintain

heir state, but it is necessary to protect the volumes against fail-

res. Furthermore, when providing state replication, applications

ave to handle concurrency when accessing the volume.

Algorithms derived from Paxos [8] have been proposed to repli-

ate services in sets of machines. Raft [9] and BFT-SMaRt [10] are

sed to implement State Machine Replication (SMR) [11] . Replicas

ommunicate and follow a protocol to ensure that operations are

xecuted on all replicas in the same order. These solutions can

e applied in Kubernetes at application level, i.e., inside contain-

rs. However, each replicated container has to carry the agreement

oftware and manage the interaction with it. To implement SMR in

xisting applications is not a trivial task [12] .

We enable coordination in Kubernetes using integration , an ap-

roach that is transparent to users and shows better performance

han other strategies [12,13] . Integration means building or modi-

ying a system to complement features. In this paper we present

 scheme to integrate coordination in Kubernetes. A component of

ubernetes is used as shared memory to guide the coordination.
 containers managed by Kubernetes, Journal of Systems Architec-

http://dx.doi.org/10.1016/j.sysarc.2016.12.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
mailto:hylson.vescovi@posgrad.ufsc.br
mailto:lau.lung@ufsc.br
mailto:miguel.p.correia@tecnico.ulisboa.pt
mailto:aldelir.luiz@blumenau.ifc.edu.br
mailto:luciana@pangeaware.com
http://dx.doi.org/10.1016/j.sysarc.2016.12.007
http://dx.doi.org/10.1016/j.sysarc.2016.12.007

2 H.V. Netto et al. / Journal of Systems Architecture 0 0 0 (2016) 1–7

ARTICLE IN PRESS

JID: SYSARC [m5G; December 27, 2016;21:34]

Fig. 1. Kubernetes architecture.

t

v

s

a

d

i

t

c

c

e

r

a

c

p

b

c

w

t

t

a

F

r

n

(

t

(

p

d

o

t
We created a protocol named DORADO (or D ering O ve R sh A re D

mem O ry) to do state replication in containers.

The paper is organized as follows. Section 2 presents concepts

about containers and Kubernetes. Section 3 presents our coordina-

tion scheme. Section 4 evaluates the proposal, and Section 5 dis-

cusses related work. Finally, Section 6 concludes the paper.

2. Containers and Kubernetes

Containers are virtual machines (VM) instantiated from static

images. Containers are normally stateless, in the sense that their

state is lost when they are turned off. The images are frequently

small, because only files that do not exist in its host are effectively

stored in the container image. It is possible to do so with the use a

layered file system, such as AuFS [14] . This way container creation

becomes faster and resource provisioning happens more efficiently

in comparison to traditional VMs [3] . An example of a container

manager is Docker [4] .

The advantage of containers over traditional virtual machines

was soon perceived by Google, a company that counts with 10

years of experience with containers [15] . In high-scale environ-

ments, where many containers are used, it is essential to have a

platform to manage them. Kubernetes is a container management

system developed as an evolution of Borg [6] . Other companies,

e.g., Red Hat, are also contributing for the development of Kuber-

netes, which is available in GitHub. Kubernetes is the first result of

the Cloud Native Computing Foundation (CNCF), an effort to guide

the adoption of containers in clouds.

Kubernetes inherits concepts from Borg [6] . For example, a web

server produces logs, which can be read by a log analyzer. These

applications can stay in different containers, which is useful for

software updating. However, highly coupled containers should stay

on the same machine to improve communication. A Borg feature

called Alloc maintains containers on the same machine. In Kuber-

netes, a component named POD has the same objective as Alloc .

A Kubernetes cluster is composed of machines, which can be

virtual or physical (Fig. 1). Each machine is a node . A POD is a min-

imal management unit and can accommodate one or more con-

tainers. PODs receive network address and are allocated to nodes.

Containers inside a POD share resources, such as volumes where

they can write and read data. Clients contact the cluster through a

firewall , which distributes requests to nodes according to load bal-

ancing rules. The proxy receives requests from the firewall and for-

wards them to PODs. Each node has a proxy installed. If a POD is

replicated, the proxy distributes the load among the replicas. The

kubelet manages PODs, containers, images and other elements in

the node. The kubelet forwards data about the monitoring of con-

tainers to the main node, which acts when necessary.

The management components of Kubernetes are in the main

node. The distributed watchable storage is implemented by the etcd

service 1 , which can notify other components when events such as

data creation or update happen. Components in Kubernetes access

stored data via REST API. A human operator can interact with the

cluster via the kubectl interface command, e.g., to check the health

of the cluster, or to create a POD. Other management components

of Kubernetes are out of the scope of this paper.

3. Coordination in Kubernetes

Kubernetes can replicate containers, creating or destroying

them, keeping a predefined number of replicas running. The load

balance feature improves availability. However, some applications

require stronger agreement and ordering guarantees. In collabora-

tive applications, for example, the actions of group members have
1 https://coreos.com/etcd

o

c

t

Please cite this article as: H.V. Netto et al., State machine replication in

ture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.12.007
o be coordinated. Also, in applications that replicate data to pro-

ide fault tolerance, agreement performs a central role. Protocols

uch as Raft [9] and BFT-SMaRt [10] can provide coordination at

pplication level. Nevertheless, removing the responsibility of coor-

ination from the application can reduce the size of the container

mage and the complexity of the application. It can also improve

he maintainability of the coordination software.

One characteristic of agreement protocols is the frequent ex-

hange of messages between members of the group. State repli-

ation protocols implemented using shared memory (SM) can ben-

fit from fewer message exchanged. Members of a group can only

ead and write values in the SM instead of multi-casting them to

ll members. Kubernetes uses etcd to maintain information about

ontainers. This storage component can be used as a SM to im-

lement SMR. In our proposal, we incorporate coordination in Ku-

ernetes via integration: components can be modified or new ones

an be added to the system. A similar modification was proposed

hen a consortium of companies created the FT-CORBA specifica-

ion [13] .

We propose to integrate coordination (CC) in Kubernetes with

he support of an already existing component and providing a new

lgorithm to coordinate the requests. This architecture is shown in

ig. 2 (a). In this scenario, the request is delivered by the proxy to a

eplicated container (3). Before executing the request, the coordi-

ation interacts with the SM (etcd) through a replication protocol

4). Each replicated container executes the request. Only the con-

ainer that received the request replies to the client (5), via firewall

6).

An alternative solution – that we do not explore further in the

aper – would be a full integration achieved by moving the coor-

ination (CC) to other component in Kubernetes, or creating a new

ne (Fig. 2 (b)). The client sends the request (1), which is delivered

o CC (2). A consensus protocol (DORADO, presented in this paper,

r another consensus protocol) orders the request (3), being exe-

uted in all containers (4). The CC that received the request sends

he answer (5), which is delivered to the client by the firewall (6).
 containers managed by Kubernetes, Journal of Systems Architec-

https://coreos.com/etcd
http://dx.doi.org/10.1016/j.sysarc.2016.12.007

H.V. Netto et al. / Journal of Systems Architecture 0 0 0 (2016) 1–7 3

ARTICLE IN PRESS

JID: SYSARC [m5G; December 27, 2016;21:34]

Fig. 2. Kubernetes with integrated coordination inside: (a) containers, (b) a new

component. Our approach is (a); the other one is not explored in this paper.

3

m

f

r

c

h

v

e

(

u

t

c

p

e

a

a

l

3

p

t

b

s

a

O

w

t

I

q

o

r

c

c

Fig. 3. DORADO protocol, request to leader.

Fig. 4. DORADO protocol, request to a non-leader.

a

l

a

c

l

c

c

t

I

b

e

w

t

a

i

t

l

q

i

i

c

t

i

t

n

3

l

c
.1. System model

There is a set S of replicated containers 2 , out of which a maxi-

um of f < |S| / 2 can fail by crash. Containers do not recover from

ailures, but new containers can be launched to replace failed ones,

econfiguring the system [11] . An arbitrary (but finite) number of

lients can access the system. Communication among containers

appens via shared memory (SM), implemented by the etcd ser-

ice. The SM is a key-value repository accessible via read/write op-

rations. It can notify subscribing processes about events on data

e.g., updates). Another feature of the SM is the association of an

nique identifier to each data item it stores. The SM can be dis-

ributed with Raft [9] , improving its tolerance to crash faults, at

ost of higher load on the network and delay.

Interaction between clients and containers is assumed to be

artially synchronous [16] , while communication between contain-

rs and the components of Kubernetes (SM and the API server) is

synchronous. Containers have their state replicated by executing

ll requests in the same order [11] . A coordination protocol estab-

ishes the requests order (Section 3.2).

.2. State replication protocol

In order to maintain states replicated in containers, at least two

roperties must be satisfied:

• safety: every non-faulty container executes requests it receives

in the same relative order.

• liveness: every request is eventually executed by non-faulty

containers.

A requirement to be considered is that any replica must be able

o receive requests from the client. This is important because Ku-

ernetes distributes load at node level, via the proxy component.

We designed a protocol named DORADO (orDering OveR

hAreD memOry) to order requests in Kubernetes. Fig. 3 presents

n execution of DORADO in a scenario with three replicas (S 0..2).

ne crash fault is tolerated (f = 1). Replica S 0 is the leader (box

ith dashed line) and receives the request sent by the client. In

he request phase (I), the client sends the request to some replica.

f this replica is the leader (Fig. 3), it proposes an order to the re-

uest (II), saving it in the shared memory. The leader replica is the

nly one which has the authority to define order for requests. All

eplicas will execute requests following this defined order. The SM

onfirms the saving and notifies other replicas (III-a). When repli-

as receive the notification of a request, they accept the request
2 In this paper we use the term container instead of POD.

r

c

u

Please cite this article as: H.V. Netto et al., State machine replication in

ture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.12.007
nd save their accepts in SM (III-b and III-c). After a replica col-

ects accepts from a majority of replicas, it learns the request (IV)

nd executes it. The replica that received the request informs the

lient of the result (V).

Note that at the end of phase III-b, replicas S 0 and S 1 have col-

ected accepts from a majority of replicas (including their own ac-

epts). That way phase III-c could be ignored, which means that a

rash of replica S 2 could be tolerated. A fault of replica S 1 could be

olerated if phase III-b did not happen, since phase III-c would run.

f the client does not receive the answer after some time (defined

y a timeout), it sends the request again to another replica.

If the client sent the request to a non-leader replica S 2 (I), one

xtra phase is required (Fig. 4). Next, phase w, S 2 creates an accept

ith order zero, and saves this accept in SM. Replicas will be no-

ified, but only the leader will act. The leader orders the request

nd, from that point on (phase II), the protocol flows as depicted

n Fig. 3 . Finally, in phase V replica S 2 sends the reply to the client.

Replicas have to wait for a majority of accepts before replying

o the client. This happens because during view changes a new

eader has to define the order of requests considering the last re-

uest already ordered and executed. As in a membership service it

s necessary that every two consecutive views intersect [17] to sat-

sfy the safety property (Section 3.1), a replica can only reply to the

lient when it is aware that a majority of replicas already knows

hat answer. The consistency of the system is satisfied because the

ntersection of any majority quorum with the overall group con-

ains at least one element of the minority group. If a minority

umber of replicas fail, consistency and liveness are ensured.

.2.1. Leader election

Protocols that use sequencers have to use timers to check the

eader’s progress [18] . In DORADO, timers are activated when repli-

as realize the existence of a request P . This can happen when a

eplica receives P from the client or when a replica receives notifi-

ations about P from the SM. When a timer expires and P remains

nordered, the replica will save a leader election solicitation (LESO)
 containers managed by Kubernetes, Journal of Systems Architec-

http://dx.doi.org/10.1016/j.sysarc.2016.12.007

4 H.V. Netto et al. / Journal of Systems Architecture 0 0 0 (2016) 1–7

ARTICLE IN PRESS

JID: SYSARC [m5G; December 27, 2016;21:34]

4

w

p

R

i

U

s

T

i

c

p

D

t

t

H

a

t

b

t

n

p

t

a

4

w

t

v

b

w

t

r

m

a

t

t

S

r

w

o

a

t

t

e

w

e

a

a

l

w

fl

T

3 https://hub.docker.com/r/hvescovi/replicatedcalc/
4 https://github.com/hvescovi/learnGo/
5 Cf. http://github.com/coreos/etcd/tree/master/raft
6 We checked the dirty information at /proc/meminfo.
in SM. The SM notifies the replicas, which will save LESOs in the

SM and create new notifications.

When a replica collects LESOs from a majority of replicas, the

election can be decided. The new leader will be the first replica

that saved a LESO in SM. To avoid possible network message inver-

sions and to deal with concurrency, the replica reads from SM the

complete set of LESOs. This way, it is possible to define precisely

the first replica that voted for election.

3.2.2. Replication over etcd

In this section we clarify some aspects about the execution of

DORADO over etcd . The etcd service includes the Raft algorithm,

which can be enabled to replicate the service and ensure the con-

sistency of the data it stores. Kubernetes accesses etcd through the

API Server component, which deals with concurrent requests that

come from other components (e.g., kubelets). DORADO accesses

etcd to persist requests coming from clients, and to broadcast mes-

sages to replicas. When executing SMR, the concurrency rule is

that all replicated containers have to execute all requests in the

same order. In this context, the ordering provided by etcd is not

enough to define the order of requests. Consider two facts:

• Fact 1 : The notification mechanism of etcd does not deliver

messages using total order.

• Fact 2 : The UID generated (by etcd) for values under a key is

monotonic but is not ensured to be sequential. Data created in

other keys can create jumps in the UID perceived by a client

listening for updates in a key.

When clients send requests concurrently, the UIDs of data saved

in etcd (propose, accept) could be used to decide the order of re-

quests. However, because of Fact 1, replicas might be notified with

gaps between the received UIDs. It is not possible to wait for no-

tifications inside the gaps because of the Fact 2 (how many notifi-

cations should be expected?). We solved this issue in leader elec-

tions by reading all storage before the definition of the new leader

(Section 3.2.1), but this strategy is only suitable because election is

not a frequent operation. It is not reasonable to apply this solution

to order requests because of the high volume of data (proposes,

accepts) to be reloaded.

DORADO uses the UID to decide election (Section 3.2.1). The

UID consistency is maintained by Raft when the storage is repli-

cated. Consequently, only during elections Raft is essential for en-

suring the correctness of elections in DORADO. In normal opera-

tion DORADO has its own leader which defines the order of re-

quests.

4. Evaluation

In this section we evaluate DORADO. Preliminary tests indicated

a high activity in the hard disk of the main node. This activity

came from the usage of etcd as SM. In order to reduce latency,

a virtual disk was mounted in RAM and etcd was configured to

store data on the virtual disk. Although persistence could be com-

promised with a virtual disk, similar benefits (e.g., lower latency)

might be obtained with SSD disks. A first question to answer is if

the usage of SM on a virtual disk (RAM) will provide lower latency

than the usage of the SM on a hard disk.

Resource allocation is faster using containers than using virtual

machines [3] . Also, the usage of shared memory in DORADO sim-

plifies the communication, which can benefit network load when

the number of replicas increases. That way, we can conjecture the

throughput of the system will not fall down abruptly when scal-

ing up the number of replicas. As a second question we evaluate if

the throughput decreases gradually as more replicas enter in the

system.
Please cite this article as: H.V. Netto et al., State machine replication in

ture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.12.007
.1. Environment and implementation

The experiments were executed in a cluster of four computers

ith Kubernetes 1.1.7. A fifth computer acted as client. All com-

uters had CPUs Intel i7 3.5 GHz, QuadCore, cache L3 8MB, 12GB

AM, and 1TB HD 7200 RPM. An Ethernet network 10/100 Mbits

solated from external traffic was used to connect the computers.

buntu Server 14.04.3 64 bits was used, with kernel 3.19.0-42.

The DORADO protocol was implemented in Go language, ver-

ion 1.4.2. The evaluated application maintains a shared counter.

hree commands were used (in a round-robin fashion): get and

nc return and increase the value, respectively, and dou divides the

ounter by 2 if the value of the counter is greater than 30. Our ap-

lication is called replicatedcalc . The container image is available in

ocker Hub. 3 The source code is in GitHub. 4

Limitations: DORADO uses a garbage collector in the SM to avoid

he unlimited growth of the data and a checkpointing mechanism

o limit the amount of messages required to restore the state.

owever, the current prototype does not contain these two mech-

nisms. Therefore the experiments measure the performance be-

ween them and garbage collection actions, with would normally

e executed periodically (e.g., every several minutes).

Raft was not active in the experiments so etcd was not dis-

ributed (it was being executed only in the main node of Kuber-

etes). However, if running, Raft can batch messages to improve

erformance and reduce network communication. Batching means

o gather multiple requests in one message. This feature is avail-

ble in the implementation of Raft used in etcd . 5

.2. Experiments

To investigate the first question, the main node of Kubernetes

as provided with a virtual disk of 4GB in RAM (tmpfs file sys-

em). We executed the experiment using etcd with hard disk and

irtual disk. The second question motivates variations in the num-

er of replicas (1 to 15), with n = 2 f + 1 . The number of clients

as varied from 1 to 64, doubling in each variation. We measured

he latency perceived by each client in milliseconds and the du-

ation of each experiment in seconds. Multiple threads simulated

ultiple clients accessing the system. The requests and replies had

pproximately 100 bytes. Each client made 50 requests to the sys-

em. Clients only send a new request after receiving the reply to

he previous one.

Latency increases as more replicas enter the system (Fig. 5).

olid bars represent execution with RAM disk and transparent bars

epresent execution with hard disk. As expected, latency is lower

hen using RAM disk. However, as more clients access simultane-

usly the system, the difference of latency decreases. We present

n explanation for this behavior. Hard drives have rotating disks, so

he heads have to move to handle random access, causing high la-

encies [19] . Although we use etcd mostly for writing, during the

xperiments we noted that etcd did not use cache, flushing all

rite operations. 6 To ensure persistence, extra time is required,

ven for 2 or 32 simultaneous requests. This overhead is notice-

ble when few clients access the system. For many simultaneous

ccesses (more than 16 clients in our experiments), the additional

atency overlaps the time to process many requests, not interfering

ith the total latency, for both media used in the SM.

Following latency trends, the media used in SM has lower in-

uence in throughput as more clients access the system (Fig. 6).

hroughput decreases as more replicas enter the system.
 containers managed by Kubernetes, Journal of Systems Architec-

https://hub.docker.com/r/hvescovi/replicatedcalc/
https://github.com/hvescovi/learnGo/
http://github.com/coreos/etcd/tree/master/raft
http://dx.doi.org/10.1016/j.sysarc.2016.12.007

H.V. Netto et al. / Journal of Systems Architecture 0 0 0 (2016) 1–7 5

ARTICLE IN PRESS

JID: SYSARC [m5G; December 27, 2016;21:34]

Fig. 5. Latency observed by clients.

Fig. 6. Throughput of the system.

5

H

p

t

v

p

c

o

p

p

l

a

c

o

b

p

o

K

d

l

(

t

i

w

c

D

m

f

e

a

a

s

t

n

s

p

c

r

h

t

r

c

c

t

t

p

6

g

m

s

q

n

c

c

p

n

b

r

b

a

A

m

V

M

7 http://blog.kubernetes.io/2016/01/simple- leader- election- with- Kubernetes.html
8 http://mesos.apache.org
9 http://www.docker.com/products/docker-swarm
. Related work

There is a long literature in fault tolerance for crash failures.

owever, to the best of our knowledge, this work is the first to

rovide crash fault tolerance and coordination taking into account

he lightweight nature of containers as virtual machines. We de-

eloped a light protocol which leverages an already existing com-

onent. That way, the code inside containers (and the size of the

ontainer image) can be reduced. We discuss some recent work

n fault-tolerant replication and describe the aspects closer to our

roposal [9,12,20–22] .

Systems can be improved with reliable components. For exam-

le, wormholes can be used as trusted components to provide re-

iable message broadcast [20] . In BAMCast [22] , a reliable channel

mong replicas is created using distributed shared registers. This
Please cite this article as: H.V. Netto et al., State machine replication in

ture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.12.007
hannel has bounded delay and is used to execute critical parts

f the BAMCast consensus protocol. Both works reduced the num-

er of replicas required to provide Byzantine fault tolerance. In our

roposal, the usage of shared memory allowed the development

f a simpler protocol. The SM is an already existing component in

ubernetes that uses Raft to tolerate crash faults.

The development of a protocol in a layered fashion creates a

ecoupling between components, allowing the technological evo-

ution of these same components. For example, virtual machines

VM) can provide a SM abstraction by sharing folders, although

his reduces fault tolerance [22,23] . In that case, if some VM are

nside the same host, less communication among the nodes net-

ork will be required to keep the SM consistent. Notice that typi-

ally this host (main node) will be different from the hosts where

ORADO is executed (nodes).

Gaios [21] is an enhanced version of Paxos. The main improve-

ent consists in organizing disk access efficiently. Cache is used

or writing in-memory, data being written to the disk in a disk-

fficient order at checkpoint times. However, the state can be dam-

ged if many faults occur simultaneously. In DORADO all requests

re persisted in SM before execution, ensuring durability and con-

istency despite major failures. Furthermore, in our experiments,

he disk had impact on performance only in low contention sce-

arios.

Raft [9] is a consensus protocol designed to be easy to under-

tand and implement. In Raft the registration of new requests (ap-

end of entries in log) follows only from the leader to other repli-

as. In DORADO, not only the leader can receive requests, but any

eplica. Raft uses randomized timeouts in leader election and the

eartbeat mechanism simplifies conflicts resolution. Leader elec-

ion in DORADO has deterministic criteria, and heartbeats are not

equired.

CRANE [12] makes Paxos transparent for applications. It inter-

epts requests to execute them on the same order in all repli-

as. DORADO proposes a transparent coordination using integra-

ion, instead of interception. The integration approach is used in

his paper because it presents a better performance than other ap-

roaches (interception and service) [13] .

. Conclusions

This paper presents the DORADO protocol, a first step for inte-

rating coordination services in Kubernetes, a container manage-

ent system. DORADO’s design is simpler than others as it uses

hare memory to mediate communication and persist data. Re-

uests can be sent to any replicated container, matching the cloud

ature in regard to load balancing.

Future steps in this work include moving coordination to a

omponent in Kubernetes, which will actually reduce the size of

ontainers. This could be done moving the coordination to the

roxy , or using a leaderless protocol as EPaxos [24] to avoid the

ecessity of choosing a proxy-leader. Another improvement would

e to take the leader election out of the SM, so that it runs sepa-

ately from etcd and Raft is no longer needed. Kubernetes itself can

e used for doing leader election. 7

The extension of DORADO to the Byzantine domain should be

 challenge, because there are issues to be solved about isolation.

dditional security layers are required to protect containers against

alicious actors [15] . However, the execution of containers inside

M could result in excessive overheads.

DORADO could be implemented in systems like Apache

esos 8 and Docker Swarm

9 , which use ZooKeeper and Consul,
 containers managed by Kubernetes, Journal of Systems Architec-

http://blog.kubernetes.io/2016/01/simple-leader-election-with-Kubernetes.html
http://mesos.apache.org
http://www.docker.com/products/docker-swarm
http://dx.doi.org/10.1016/j.sysarc.2016.12.007

6 H.V. Netto et al. / Journal of Systems Architecture 0 0 0 (2016) 1–7

ARTICLE IN PRESS

JID: SYSARC [m5G; December 27, 2016;21:34]

[

[

[

respectively, to maintain the state of the cluster. ZooKeeper and

Consul have similar features to etcd . ZooKeeper can be used to

obtain sequential numbers with the sequential flag that provides

unique znode names [25] . This feature might be leveraged to de-

velop a new protocol to define the ordering of requests based on

destination agreement [18] .

Acknowledgments

This work was supported by national funds through Fun-

dação para a Ciência e a Tecnologia (FCT) with reference

UID/CEC/50021/2013 and CNPq 455303/2014-2. This work was par-

tially supported by FAPESC/IFC through project n

o 0 0 0 01905/2015.

Miguel Correia is bolsista CAPES/Brasil (project LEAD CLOUDS).

Sadly during the final revision of this paper the second author,

our advisor, colleague, and friend Lau Cheuk Lung was deceased

due to sudden health complications. We take this opportunity to

pay a small homage to a great researcher and professor who influ-

enced many students and colleagues during his career.

References

[1] G.J. Popek , R.P. Goldberg , Formal requirements for virtualizable third genera-
tion architectures, Commun. ACM 17 (7) (1974) 412–421 .

[2] P. Mell , T. Grance , The NIST definition of cloud computing, Technical Report,

National Institute of Standards & Technology, 2011 . SP 800-145.
[3] W. Felter , A. Ferreira , R. Rajamony , J. Rubio , An updated performance com-

parison of virtual machines and Linux containers, in: Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and Software,

2015, pp. 171–172 .
[4] R. Peinl , F. Holzschuher , F. Pfitzer , Docker cluster management for the cloud –

survey results and own solution, J. Grid Comput. (2016) 1–18 .

[5] A. Sill , Emerging standards and organizational patterns in cloud computing,
IEEE Cloud Comput. 2 (4) (2015) 72–76 .

[6] A. Verma , L. Pedrosa , M. Korupolu , D. Oppenheimer , E. Tune , J. Wilkes , Large-s-
cale cluster management at Google with Borg, in: Proceedings of the 10th Eu-

ropean Conference on Computer Systems, 2015 .
[7] D. Bernstein , Containers and cloud: from LXC to Docker to Kubernetes, IEEE

Cloud Comput. 1 (3) (2014) 81–84 .

[8] L. Lamport , The part-time parliament, ACM Trans. Comput. Syst. 16 (2) (1998)
133–169 .
Please cite this article as: H.V. Netto et al., State machine replication in

ture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.12.007
[9] D. Ongaro , J. Ousterhout , In search of an understandable consensus algo-
rithm, in: Proceedings of the USENIX Annual Technical Conference, 2014,

pp. 305–320 .
[10] A. Bessani , J. Sousa , E.E.P. Alchieri , State machine replication for the masses

with BFT-SMART, in: Proceedings of the Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, 2014, pp. 355–362 .

[11] F.B. Schneider , Implementing fault-tolerant services using the state machine
approach: a tutorial, ACM Comput. Surv. 22 (4) (1990) 299–319 .

[12] H. Cui , R. Gu , C. Liu , T. Chen , J. Yang , Paxos made transparent, in: Proceedings

of the ACM Symposium on Operating Systems Principles, 2015, pp. 105–120 .
[13] A.N. Bessani , J. da Silva Fraga , L.C. Lung , E.A.P. Alchieri , Active replication

in CORBA: standards, protocols, and implementation framework, in: On the
Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE, 2004,

pp. 1395–1412 .
[14] D. Merkel , Docker: lightweight Linux containers for consistent development

and deployment, Linux J. 2014 (239) (2014) .

[15] B. Burns , B. Grant , D. Oppenheimer , E. Brewer , J. Wilkes , Borg, Omega, and
Kubernetes, Commun. ACM 59 (5) (2016) 50–57 .

[16] C. Dwork , N. Lynch , L. Stockmeyer , Consensus in the presence of partial syn-
chrony, J. ACM 35 (2) (1988) 288–323 .

[17] G.V. Chockler , I. Keidar , R. Vitenberg , Group communication specifications: a
comprehensive study, ACM Comput. Surv. 33 (4) (2001) 427–469 .

[18] X. Défago , A. Schiper , P. Urbán , Total order broadcast and multicast algorithms:

taxonomy and survey, ACM Comput. Surv. 36 (4) (2004) 372–421 .
[19] F. Chen , D.A. Koufaty , X. Zhang , Understanding intrinsic characteristics and sys-

tem implications of flash memory based solid state drives, ACM SIGMETRICS
Perform. Eval. Rev. 37 (2009) 181–192 .

[20] G.S. Veronese , M. Correia , A.N. Bessani , L.C. Lung , P. Verissimo , Efficient Byzan-
tine fault tolerance, IEEE Trans. Comput. 62 (1) (2013) 16–30 .

[21] W.J. Bolosky , D. Bradshaw , R.B. Haagens , N.P. Kusters , P. Li , Paxos replicated

state machines as the basis of a high-performance data store., in: Proceedings
of the Symposium on Networked Systems Design and Implementation, 2011,

pp. 141–154 .
22] M.R.X. Silva , L.C. Lung , L. Q. Magnabosco , L. O. Rech , BAMcast: byzantine fault-

-tolerant consensus service for atomic multicast in large-scale networks, in:
Proceedings of the IEEE Symposium on Computers and Communications, 2013,

pp. 324–329 .

23] F. Dettoni , L.C. Lung , M. Correia , A.F. Luiz , Byzantine fault-tolerant state ma-
chine replication with twin virtual machines, in: Proceedings of the IEEE Sym-

posium on Computers and Communications, 2013, pp. 398–403 .
[24] I. Moraru , D.G. Andersen , M. Kaminsky , There is more consensus in egalitar-

ian parliaments, in: Proceedings of the ACM Symposium on Operating Systems
Principles, 2013, pp. 358–372 .

25] P. Hunt , M. Konar , F.P. Junqueira , B. Reed , Zookeeper: wait-free coordination for

internet-scale systems., in: Proceedings of the USENIX Annual Technical Con-
ference, 2010 .
 containers managed by Kubernetes, Journal of Systems Architec-

http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0004
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0004
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0004
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0004
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0005
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0005
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0007
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0007
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0008
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0008
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0009
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0009
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0009
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0010
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0010
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0010
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0010
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0012
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0012
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0012
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0012
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0012
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0012
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0014
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0014
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0016
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0016
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0016
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0016
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0017
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0017
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0017
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0017
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0018
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0018
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0018
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0018
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0019
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0019
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0019
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0019
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0020
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0020
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0020
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0020
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0020
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0020
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0025
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0025
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0025
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0025
http://refhub.elsevier.com/S1383-7621(16)30275-2/sbref0025
http://dx.doi.org/10.1016/j.sysarc.2016.12.007

H.V. Netto et al. / Journal of Systems Architecture 0 0 0 (2016) 1–7 7

ARTICLE IN PRESS

JID: SYSARC [m5G; December 27, 2016;21:34]

ring (2001), and received the MsC Degree in Electrical Engineering (2003). He is cur-

ch is about Distributed Systems and Fault Tolerance. He is professor at Instituto Federal

gineering from the Federal University of Santa Catarina (UFSC), Brazil, in 2001. He is an

ent (INE), UFSC. He is currently doing research in fault tolerance, security in distributed
associate professor in the Department of Computer Science, Pontifical Catholic University

 research fellow at the University of Texas at Austin, working in the Nile Project. From

 the Department of Informatics, University of Lisbon, Portugal.

erior Técnico (IST) of the Universidade de Lisboa (ULisboa), in Lisboa, Portugal. He is a

GSD). He is currently the coordinator of the Master Degree (MSc) in Information Systems
ience from the University of Lisboa Faculty of Sciences. He has been involved in several

rusion tolerance and security, including the SafeCloud, PCAS, TCLOUDS, ReSIST, CRUTIAL,

ublications and is Senior Member of the IEEE. His main research interests are: security,
thms, computer networks, cloud computing, and critical infrastructure protection.

 (2001), with specialization in Computer Networks and Distributed Systems at UFSC. He
D Degree in Engineering of Automation and Systems (2015). He worked as consultor of

10 years and has an Oracle OCP certification. Now he is professor at Instituto Federal

ed Systems, Fault Tolerance, Distributed Algorithms, Data bases and Information Systems.

 of Automation and Control (2002) and has the Master Degree in Electrical Engineering
ultät für Informatik pela Universität Karlsruhe(2009). Her areas of interest are Distributed

e is now in a Post-Doc at UFSC.
Hylson Vescovi Netto is graduated in Computer Enginee

rently pursuing his PhD studies at UFSC. His main resear
Catarinense since 2005.

Lau Cheuk Lung received the PhD degree in electrical en

associate professor in the Informatics and Statistic Departm
systems, and middleware. From 2003 to 2007, he was an

of Paraná, Brazil. From 1997 to 1998, he was an associate
2001 to 2002, he was a postdoctoral research associate in

Miguel Correia is an Associate Professor at Instituto Sup

researcher at INESC-ID in the Distributed Systems Group (
and Computer Engineering. He has a PhD in Computer Sc

international and national research projects related to int

and MAFTIA European projects. He has more than 100 p
intrusion tolerance, distributed systems, distributed algori

Aldelir Fernando Luiz is graduated in Computer Science
has the Master Degree in Informatics (2009) and the Ph

database and information systems at TOTVS S/A during

Catarinense. His main research intererests are in Distribut

Luciana Moreira Sá de Souza is graduated in Engineering
(2005), both at UFSC. She obtained the PhD Degree in Fak

Systems, Fault Tolerance and Wireless network sensors. Sh
Please cite this article as: H.V. Netto et al., State machine replication in containers managed by Kubernetes, Journal of Systems Architec-

ture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.12.007

http://dx.doi.org/10.1016/j.sysarc.2016.12.007

	State machine replication in containers managed by Kubernetes
	1 Introduction
	2 Containers and Kubernetes
	3 Coordination in Kubernetes
	3.1 System model
	3.2 State replication protocol
	3.2.1 Leader election
	3.2.2 Replication over etcd

	4 Evaluation
	4.1 Environment and implementation
	4.2 Experiments

	5 Related work
	6 Conclusions
	 Acknowledgments
	 References

