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Abstract
Consensus is a classical distributed systems problem with both theo-

retical and practical interest. Asynchronous Byzantine consensus is cur-
rently at the core of some solutions for the implementation of highly-
resilient computing services. This paper surveys Byzantine consensus
in message-passing distributed systems, by presenting the main theo-
retical results in the area, the main classes of algorithms and by dis-
cussing important issues like the performance and resilience of these
algorithms.
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1 Introduction

This paper presents a survey on Byzantine consensus algorithms for distributed
systems. Consensus is a classical distributed systems problem, first introduced in
(Pease et al., 1980), with both theoretical and practical interest (Lynch, 1996;
Guerraoui and Schiper, 1997; Guerraoui et al., 2000). The problem can be stated
informally as: how to ensure that a set of distributed processes achieve agreement
on a value or an action despite a number of faulty processes.

From a theoretical point of view, the relevance of the consensus problem derives
from several other distributed systems problems being reducible or equivalent to it.
Examples are atomic broadcast (Hadzilacos and Toueg, 1994; Chandra and Toueg,
1996; Correia et al., 2006), non-blocking atomic commit (Guerraoui and Schiper,
2001), group membership (Guerraoui and Schiper, 2001), and state machine repli-
cation (Schneider, 1990). The relations between consensus and other distributed
problems are important because consensus is a deeply studied problem and many
results stated for consensus automatically apply to these other problems.

From a systems perspective, replication of components and services is an im-
portant paradigm that can be employed for information protection in critical ap-
plications, and consensus plays a fundamental role in many replication algorithms.
Therefore, it is essential that one has a good understanding on the tradeoffs and
difficulties in the design and implementation of these algorithms. Some example
solutions based on these ideas are: Bessani et al. (2008) and Yin et al. (2003)
use replication to implement fault- and intrusion-tolerant firewall devices; Cachin
et al. (2001), Castro and Liskov (2002), Chun et al. (2007) and Veronese et al.
(2009b) propose replication algorithms to implement highly-resilient services, like
data historians or DNS. Some of these can be employed for the protection of criti-
cal information infrastructures, which are used to control services of a high societal
importance, like power, water and gas (Verissimo et al., 2008; Hauser et al., 2008).

Algorithms that solve consensus vary much depending on the assumptions that
are made about the system. This paper will consider message-passing algorithms
for systems that may experience Byzantine (or arbitrary) faults in asynchronous
settings (i.e., without timing assumptions). Algorithms based on this system model
are being used as important building blocks in critical applications, often under
designations such as intrusion tolerance and Byzantine fault tolerance. In more
detail:

The message-passing model is the natural choice for algorithms that are exe-
cuted by various components spread through the infrastructure, which use mes-
sages to exchange information, transmitted through some kind of network (e.g.,
Ethernet or Wi-Fi LAN). An alternative system model would be shared-memory
(Attie, 2002; Friedman et al., 2002; Malkhi et al., 2003; Alon et al., 2005; Bessani
et al., 2009), but in the system architecture we are considering the shared memory



itself has to be implemented using message-passing algorithms. For shared mem-
ory, consensus has been shown to be universal, i.e., to be enough to implement
any shared memory object, both with crash (Herlihy, 1991) and Byzantine faults
(Malkhi et al., 2003).

Arbitrary faults, usually called Byzantine after the paper by Lamport et al.
(1982), do not put any constraints on how processes fail. This sort of assumption
or, better said, of non-assumption about how processes fail, is specially adequate
for systems where malicious attacks and intrusions can occur. For instance, an
attacker might modify the behaviour of a process that he/she controls in order
to change the outcome of the consensus algorithm, eventually causing the rest of
the system to act in an erroneous way. Interestingly, assuming Byzantine faults,
instead of the more typical assumption of crash faults, leads to more complex and
challenging algorithms.

Asynchrony might also be better described as a non-assumption about tim-
ing properties (i.e., there is no need to make assumptions about the processing
speeds of nodes and delays on message transmission). This (non-) assumption is
important because attackers can often violate some timing properties by launching
denial-of-service attacks against processes or communications. For instance, the at-
tacker might delay the communication of a process for an interval, breaking some
assumption about the timeliness of the system.

This system model – Byzantine faults and asynchrony – is very generic. Al-
gorithms in this model have to deal with uncertainty on two independent planes:
faults and time. This leads to algorithms that besides being tolerant to adverse
environments, have the virtue of also running correctly in more benign conditions,
like those in which only crash faults occur or in which delay bounds are attained.
These algorithms are however bounded by an impossibility result, which says that
consensus can not be deterministically solved in an asynchronous system if a single
process can crash (often called the Fischer-Lynch-Paterson, FLP, result (Fischer
et al., 1985)). This result has led to a large number of works that attempt to cir-
cumvent it, i.e., to slightly modify the system model in such a way that consensus
becomes solvable. Examples include randomization (Rabin, 1983; Ben-Or, 1983),
failure detectors (Chandra and Toueg, 1996; Malkhi and Reiter, 1997), partial-
synchrony (Dwork et al., 1988; Dolev et al., 1987), and hybridization/wormholes
(Correia et al., 2005; Neves et al., 2005).

The paper is organized as follows. There are several definitions of consensus
in the literature, so Section 2 presents those that are widespread and more use-
ful. Section 3 presents the FLP impossibility result, which is a core theoretical
result in the area. Section 4 describes several ways of circumventing this result: by
sacrificing determinism, adding time to the model, augmenting the system model
with an oracle, using hybridization and modifying the problem. Section 5 discusses
the performance, scalability and resilience of consensus algorithms. Section 6 ad-
dresses the aspect of related and equivalent problems, like atomic broadcast and
membership. Section 7 concludes the paper.



2 Byzantine Consensus Definitions

This section defines the consensus problem and several of the variations considered
in the literature. We say that a process is correct if it follows its algorithm until
completion, otherwise it is said to be faulty.

The consensus problem is typically defined for a set of n known processes. An-
other important parameter, often designated with the letter f (or t), is the max-
imum number of faulty processes. There is a recent trend of research on dynamic
systems in which the number of involved processes is unknown (Mostefaoui et al.,
2005; Aguilera, 2004; Alchieri et al., 2008), but the first Byzantine consensus algo-
rithms for this system model are still starting to appear (Alchieri et al., 2008).

A binary consensus algorithm aims to achieve consensus on a binary value v ∈
{0, 1} (or {false, true} or {against, in favour}). Each process proposes its initial
value (binary) and decides on a value v. The problem can be formally defined in
terms of three properties:

• Validity: If all correct processes propose the same value v, then any correct
process that decides, decides v.

• Agreement: No two correct processes decide differently.

• Termination: Every correct process eventually decides.

The first two properties are safety properties, i.e., properties that say that some
“bad thing” cannot happen, while the last is a liveness property, i.e., a property
that states “good things” that must happen (Alpern and Schneider, 1984).

Multi-valued consensus is apparently similar to binary consensus, except that
the set of values has arbitrary size, i.e., v ∈ V and |V | > 2. However, multi-valued
consensus algorithms were studied in the literature using different Validity prop-
erties, while the Agreement and Termination properties remained essentially the
same (with minor exceptions for Termination that we will see later). Some papers
use the following Validity property (Dwork et al., 1988; Malkhi and Reiter, 1997;
Kihlstrom et al., 2003):

• Validity 1: If all correct processes propose the same value v, then any correct
process that decides, decides v.

Others use the following (Doudou et al., 1999, 2002; Baldoni et al., 2003):

• Validity 2: If a correct process decides v, then v was proposed by some pro-
cess.

Both properties are somewhat weak. Validity 1 does not say anything about
what is decided when the correct processes do not propose all the same v, while
Validity 2 does not say anything about what is the value decided (e.g., is it the
value proposed by the correct processes if all of them propose the same, or a value
proposed by a faulty process?). A definition that gives more detail about what
is decided has also been proposed (Correia et al., 2006). The definition has three
Validity properties:



• Validity 1: If all correct processes propose the same value v, then any correct
process that decides, decides v.

• Validity 2A: If a correct process decides v, then v was proposed by some
process or v = ⊥.

• Validity 3: If a value v is proposed only by faulty processes, then no correct
process decides v.

The first two are essentially the Validity properties already introduced, except
that Validity 2A allows the protective decision of a value ⊥ /∈ V . The third prop-
erty is inspired by the original definition in the context of the “Byzantine Gener-
als” metaphor used in the classical paper by Lamport et al. (1982). The definition
was “(1) All loyal generals decide upon the same plan of action; (2) A small num-
ber of traitors cannot cause the loyal generals to adopt a bad plan.”. That paper
however, considered a synchronous system, i.e., a system in which there are known
delay bounds for processing and communication.

This concern about the practical interest of multi-valued consensus defined in
terms of Validity 1 or Validity 2 has also led to the definition of vector consen-
sus (Doudou et al., 1999). The difference in relation to the previous versions of the
problem is again the Validity property. The decision is no longer a single value but
a vector with some of the initial values of the processes, at least f + 1 of which
(the majority) are from correct processes. The validity property is now stated as:

• Vector validity: Every correct process that decides, decides on a vector V of
size n:

– ∀pi
: if pi is correct, then either V[i] is the value proposed by pi or ⊥;

– at least (f + 1) elements of V were proposed by correct processes.

Vector consensus is a variation for asynchronous systems of the classical inter-
active consistency problem (Pease et al., 1980). Interactive consistency is a consen-
sus on a vector with values from all correct processes. However, in asynchronous
systems a correct process can be very slow so it is not possible to guarantee that
values from all correct processes are obtained and still ensure Termination. There-
fore, vector consensus ensures only that f + 1 of the values in the vector are from
correct processes. This is clearly more interesting than multi-valued consensus
since it tells much more about the initial values of the correct processes. Vector
consensus was proved to be equivalent to multi-valued consensus defined with the
validity properties Validity 1, Validity 2A and Validity 3 (Correia et al., 2006).

Some other variations of consensus were studied in the literature. For instance,
the k-set consensus problem in which the correct processes can decide at most k
different values (Chaudhuri, 1993; de Prisco et al., 1999). The Byzantine gener-
als with alternative plans problem takes into account the fact that processes may
have several views about what decisions/actions are acceptable and unacceptable
(Correia et al., 2008). Each process has a set of good decisions and a set of bad
decisions. The problem is to make all correct processes agree on good decisions
proposed by a correct process, and never on a bad decision.

A somewhat different kind of definition is the one used in the Paxos algorithms
(Lamport, 1998, 2001; Lampson, 2001; Zielinski, 2004; Martin and Alvisi, 2005;



Variation Characterization Properties that define the variation

binary agreement about a
binary value

Validity Agreement Termination

multi-valued agreement about a
value of a set with
arbitrary size

Validity 1 or Validity 2
or Validity 1 + Validity
2A + Validity 3

Agreement Termination

vector agreement about a
vector with values
from some of the pro-
cesses

Vector Validity Agreement Termination

Paxos multi-valued consen-
sus with processes
with different roles

Safety 1 + Safety 2 + Safety 3 Liveness 1 +
Liveness 2

Table 1 Summary of variations of Byzantine consensus and properties used to define
them.

Cowling et al., 2006). The idea is that processes play one or more of the following
roles: proposers (propose values), acceptors (choose the value to be decided) and
learners (learn the chosen value). The problem can be defined in terms of five
properties (Lamport, 2001; Martin and Alvisi, 2005):

• Safety 1: Only a value that has been proposed may be chosen.

• Safety 2: Only a single value may be chosen.

• Safety 3: Only a chosen value may be learned by a correct learner.

• Liveness 1: Some proposed value is eventually chosen.

• Liveness 2: Once a value is chosen, correct learners eventually learn it.

The first three properties are safety properties, while the last two are liveness
properties. This definition is interesting because it allows a simple implementation
of state machine replication in the crash failure model (Schneider, 1990; Lamport,
2001). However, in the Byzantine failure model this is more complicated because
faulty processes can deviate from the algorithm in several ways (Castro and Liskov,
2002; Martin and Alvisi, 2005).

A summary of the different variations of Byzantine consensus and of the prop-
erties that are used to define them can be found in Table 1.

3 FLP Impossibility

The most cited paper about consensus is probably the one that proves the im-
possibility of solving consensus deterministically in an asynchronous system if a
single process can crash (Fischer et al., 1985). This result is often called the FLP
impossibility result, after its authors’ names, Fischer, Lynch and Paterson. The
consensus definition used to prove the result is even weaker than the first defini-
tion in Section 2: validity is more relaxed and termination is only required for a
single process.

The idea is that the uncertainty in terms of timeliness (asynchrony) combined
with the uncertainty in terms of failure (even if failures are only crashes and only
one process can fail) does not allow any deterministic algorithm to guarantee that



a decision is reached. More precisely, the reason for the impossibility is that in
an asynchronous system it is impossible to differentiate a crashed process from
another that is simply slow (or connected by a slow network link). In the years
that followed the statement and proof of this result, a few alternative proofs have
been given (a discussion on these related results can be found in (Lynch, 1989)).

The FLP result indicates when consensus is not solvable. However, from a prac-
tical point of view it is more important to know when it can be solved. A first
detailed study of this issue was presented by Dolev, Dwork and Stockmeyer for
crash faults (Dolev et al., 1987). The paper identified five relevant parameters that
affect solvability: synchrony/asynchrony of the processes; synchrony/asynchrony of
the communication; ordered/unordered message delivery; broadcast/point-to-point
communication; and atomic/not-atomic receive and send. This lead to 32 different
models. The paper showed that different degrees of synchronism allow determinis-
tic algorithms to tolerate different numbers of crash faults (there is no equivalent
study for Byzantine faults).

To solve consensus, an algorithm has to circumvent the FLP impossibility re-
sult. This word, circumvent, is quite imprecise so it is important to discuss its
meaning. The idea is to slightly modify either the system model or the problem
definition considered in (Fischer et al., 1985) to allow the problem to be solvable.
These modifications change the conditions in which FLP was proven so, to be pre-
cise, the result simply no longer applies. However, researchers in the area prefer to
call it “circumventing” the result, to pass the idea that the conditions are close to
those in which the result applies.

An observation about FLP with interesting practical consequences is that if we
discard one of the properties that define consensus, we can enforce the two others.
This observation lead researchers to design consensus algorithms in the following
way:

• the algorithm solves consensus if the technique used to circumvent FLP
works as expected;

• the algorithm always satisfies the safety properties, even if the technique used
to circumvent FLP does not work as assumed (Guerraoui, 2000; Guerraoui
and Raynal, 2004).

The idea is that if something bad happens, like an additional timing assump-
tion not being satisfied, the algorithm may not terminate, but Validity and Agree-
ment properties will always be enforced. This notion has been called indulgence
in the context of system models augmented with eventual failure detectors (Guer-
raoui, 2000; Guerraoui and Raynal, 2004), but almost all consensus algorithms sat-
isfy it. The only exceptions that we are aware of are the randomized algorithms in
(Toueg, 1984; Canetti and Rabin, 1993), which always terminate but only satisfy
Agreement with a certain probability.

There are several ways to look into the techniques to circumvent FLP. We use
a classification in five types of techniques, which we present in more detail in the
following section:

• techniques that sacrifice determinism, leading to probabilistic algorithms;

• techniques that add time to the model;



Technique Sub-technique Positive Negative References

sacrifice de-
terminism

randomization
w/local coin

no timing as-
sumptions

high expected
number of
rounds

Ben-Or (1983); Bracha (1984)

randomization
w/shared coin

no timing
assumptions,
low number of
rounds

expensive cryp-
tography

Rabin (1983); Toueg (1984);
Ben-Or (1985); Canetti and
Rabin (1993); Cachin et al.
(2000); Friedman et al.
(2005)

add time partial syn-
chrony

efficient if the
network is sta-
ble

termination is
delayed if net-
work is unsta-
ble

Dwork et al. (1988)

timed asyn-
chrony

not studied for
Byzantine con-
sensus

Cristian and Fetzer (1998);
Fetzer and Cristian (1995)

add oracle failure detectors efficient algo-
rithms

Chandra and Toueg (1996);
Malkhi and Reiter (1997);
Kihlstrom et al. (2003);
Doudou et al. (1999); Bal-
doni et al. (2003); Doudou
et al. (2005); Friedman et al.
(2005); Correia et al. (2010)

hybridization wormhole efficient algo-
rithms, lower
number of
processes

wormhole has
to be tamper-
proof

Verissimo (2006); Correia
et al. (2005); Neves et al.
(2004, 2005); Correia et al.
(2010)

change the
problem

condition based
approach

different prob-
lem

Mostefaoui et al. (2003b,
2004); Friedman et al. (2002)

Table 2 Summary of the techniques used to circumvent the FLP impossibility result
in asynchronous Byzantine consensus algorithms.

• techniques that enrich the system model with an oracle;

• techniques that use hybridization;

• techniques that enrich the problem definition.

A summary of their characteristics can be found in Table 2.

4 Circumventing FLP

The following sections introduce the techniques to circumvent FLP and algorithms
that use them.

4.1 Sacrificing Determinism

The FLP impossibility result applies to deterministic algorithms, therefore a solu-
tion to circumvent it is by using randomization to design probabilistic algorithms.
More specifically, the idea is to substitute one of the properties that define consen-
sus by a similar property that is satisfied only with a certain probability. For the
reasons mentioned above when discussing indulgence, almost all algorithms choose
to modify the Termination property, which becomes:

• P-Termination: Every correct process eventually decides with probability 1.

The single exceptions that we are aware of, already mentioned above, do not
modify Termination but Agreement, so agreement on the decided value is reached
with a certain probability (Toueg, 1984; Canetti and Rabin, 1993).



Randomized Byzantine consensus algorithms have been around since Ben-Or’s
and Rabin’s seminal papers (Ben-Or, 1983; Rabin, 1983). Virtually all random-
ized consensus algorithms are based on a random operation, tossing a coin, which
returns values 0 or 1 with equal probability.

These algorithms can be divided in two classes, depending on how the tossing
operation is done: there are those that use a local coin mechanism in each process
(starting with Ben-Or’s work (Ben-Or, 1983)), and those based on a shared coin
that gives the same values to all processes (initiated with Rabin’s work (Rabin,
1983)).

Typically, local coin algorithms are simpler but terminate in an expected expo-
nential number of communication steps (Ben-Or, 1983; Bracha, 1984), while shared
coin algorithms require an additional coin sharing scheme but can terminate in an
expected constant number of steps (Ben-Or, 1985; Cachin et al., 2000; Canetti and
Rabin, 1993; Friedman et al., 2005; Rabin, 1983; Toueg, 1984). The original Rabin
algorithm required a trusted dealer to distribute key shares before the execution
of the algorithm (Rabin, 1983). This unpractical operation is no longer needed in
newer algorithms (Canetti and Rabin, 1993; Cachin et al., 2000).

Randomized consensus algorithms have often been assumed to be inefficient
due to their high expected message and time complexities, so they have been
largely overlooked as a solution for the deployment of fault-tolerant distributed
systems. Nevertheless, two important points have been chronically ignored. First,
consensus algorithms are not usually executed in oblivion, but are run in the con-
text of a higher-level problem (e.g., atomic broadcast) that can provide a friendly
environment for faster termination (e.g., many processes proposing the same value
can lead to a quick termination). Second, for the sake of theoretical interest, the
proposed adversary models usually assume a strong adversary that completely con-
trols the scheduling of the network and decides which processes receive which mes-
sages and in what order. In practice, a real adversary usually does not possess
this ability, but if it does, it will probably perform simpler attacks like blocking
the communication entirely. Therefore, in practice, the network scheduling can be
“nice” and lead to a fast termination. Two papers show that this is true and that
these algorithms can be practical (Moniz et al., 2006b,a).

A flavour of how randomized binary consensus works can be obtained from Al-
gorithm 1. This is a somewhat informal presentation of one of the two seminal
algorithms of the kind, which solves binary consensus defined in terms of the prop-
erties Validity, Agreement and P-Termination. Remember that V = {0, 1}, that
n is the number of processes that execute the algorithm and that f is the max-
imum of those that can be faulty. This algorithm requires n ≥ 5f + 1, which is
sub-optimal. It assumes authenticated channels, i.e., that correct processes can
not be impersonated. The algorithm uses a local coin, which is tossed in line 18.
The basic idea of the algorithm is that processes disseminate an estimate of the
value to be decided, and change of estimate or make a decision when they receive
enough identical estimates from enough processes. Details about the algorithm can
be found in the original paper that presents it (Ben-Or, 1983).



Algorithm 1 A randomized binary consensus algorithm by Ben-Or (1983).
1: estimate = my proposal
2: loop
3: /* phase 1 */
4: send estimate to all processes
5: wait until messages from n− f processes are received
6: if there are more than (n + f)/2 messages with the same estimate v then
7: estimate to send = v
8: else
9: estimate to send = “no estimate”

10: /* phase 2 */
11: send estimate to send to all processes
12: wait until messages from n− f processes are received
13: if there are at least f + 1 messages with the same estimate v ∈ V then
14: estimate = v
15: if there are more than (n + f)/2 messages with the same estimate v ∈ V then
16: decide v
17: else
18: estimate = 0 or 1 with probability 1/2

4.2 Adding Time to the Model

The notion of partial synchrony was introduced by Dwork, Lynch and Stock-
meyer in (Dwork et al., 1988). A partial synchrony model captures the intuition
that systems can behave asynchronously (i.e., with variable/unknown process-
ing/communication delays) for some time interval, but that they eventually sta-
bilize and start to behave (more) synchronously. Therefore, the idea is to let the
system be mostly asynchronous but to make assumptions about timing properties
that are eventually satisfied. Algorithms based on this model are typically guaran-
teed to terminate only when these timing properties are satisfied.

Dwork et al. introduced two partial synchrony models, each one extending the
asynchronous model with a timing property:

• M1: For each execution, there is an unknown bound on the message delivery
time ∆, which is always satisfied.

• M2: For each execution, there is an unknown global stabilization time GST,
such that a known bound on the message delivery time ∆ is always satisfied
from GST onward.

Chandra and Toueg proposed a third model, which is similar but weaker
(Chandra and Toueg, 1996):

• M3: For each execution, there is an unknown global stabilization time GST,
such that an unknown bound on the message delivery time ∆ is always sat-
isfied from GST onward.

Two Byzantine consensus algorithms based on M1 and M2 are presented in the
original paper by Dwork et al. (1988). These algorithms are based on a rotating
coordinator, meaning that in each round there is a special process (the coordinator)



that tries to impose the value to be decided. In Algorithm 1 in every phase all
processes would send their estimate to all others. On the contrary, in algorithms
based on a rotating coordinator the communication pattern can differ depending
on the phase. This difference in clear in the abstract representation of Dwork et
al.’s algorithms that can be found in Algorithm 2. These algorithms manage to
progress and terminate when the system becomes stable, i.e., when the system
starts to behave synchronously. There is still no algorithm or proof that M3 allows
Byzantine consensus to be solved, although it has been shown to be enough to
solve crash-tolerant consensus (Chandra and Toueg, 1996).

Algorithm 2 Structure of the partially synchronous consensus algorithms of
Dwork et al. (1988).
1: initialization
2: loop
3: /* trying phase 1 – all-to-all */
4: send estimate to all processes
5: wait for a certain time that messages from n− f processes are received
6: /* trying phase 2 – coordinator-to-all */
7: if I am the coordinator of the round then
8: send estimate to all processes
9: wait for a certain time that the coordinator’s message is received

10: /* trying phase 3 – all-to-coordinator */
11: if the coordinator’s message is received and the estimate found acceptable then
12: send “estimate accepted” to the coordinator
13: if I am the coordinator of the round then
14: wait for a certain time that messages from n− f processes are received
15: /* lock-release phase – all-to-all */
16: send estimate to all processes
17: wait for a certain time that messages from n− f processes are received

The timed asynchronous model enriches the asynchronous system model with
hardware clocks that can be used to detect the violation of time bounds (Cristian
and Fetzer, 1998). Cristian and Fetzer have shown that it is possible to solve con-
sensus in this model, although the problem of Byzantine consensus has not been
studied (Fetzer and Cristian, 1995).

4.3 Augmenting the System Model with an Oracle

The original idea of circumventing FLP using oracles was introduced by Chandra
and Toueg (Chandra and Toueg, 1996). The oracle in that case is a failure de-
tector, i.e., a component that gives hints about which processes are failed or not
failed. Remember that the FLP result derives from the impossibility of distinguish-
ing if a process is faulty or simply very slow. Therefore, intuitively, having a hint
about the failure/crash of a process may be enough to circumvent FLP. Notice
however that augmenting the system model with a failure detector is equivalent to
modifying the time model since (useful) failure detectors cannot be implemented
in asynchronous systems. In fact, timing assumptions, like those made in partial
synchrony models, are usually necessary (e.g., Chandra and Toueg show that the



weaker failure detector to solve consensus can be implemented in model M3). The
single exception, is the implementation of failure detectors based on some order
pattern in the messages exchanged that was proposed in (Mostefaoui et al., 2003a).

Next we present failure detectors. Other types of oracles have been presented
in the literature, but they have not been used with Byzantine faults. Examples in-
clude the Ω detector, which provides hints about who is the leader process (Chan-
dra et al., 1996), and ordering oracles, which provide hints about the order of
messages broadcasted (Pedone et al., 2002).

The original idea of failure detectors was to detect or, more precisely, to suspect
the crash of a process. Each process has attached a failure detector module and
the set of all these modules formed the failure detector.

Several works have been applying the idea of Byzantine failure detectors to
solve consensus (Baldoni et al., 2003, 2008; Correia et al., 2010; Doudou et al.,
1999, 2005; Friedman et al., 2005; Kihlstrom et al., 2003; Malkhi and Reiter, 1997).
The main differences in relation to crash failure detectors is that (1) Byzantine
failure detectors can neither be made completely independent of the algorithm in
which they are used (Doudou et al., 2002), nor (2) detect all Byzantine faults, only
certain subsets (Kihlstrom et al., 2003).

Malkhi and Reiter presented a binary consensus algorithm based on a rotating
coordinator. The leader/coordinator waits for a number of proposals from the oth-
ers, chooses a value to be broadcasted and then waits for enough acknowledgments
to decide (Malkhi and Reiter, 1997). If the leader is suspected by the failure detec-
tor, a new one is chosen and the same procedure is applied. The same paper also
described a hybrid algorithm combining randomization and an unreliable failure
detector. The algorithm by Kihlstrom et al. also solves the same type of consensus
but requires weaker communication primitives and uses a failure detector that de-
tects more Byzantine failures, such as invalid and inconsistent messages (Kihlstrom
et al., 2003).

Doudou and Schiper presented an algorithm for crash fault-tolerant vector con-
sensus based on a muteness failure detector, which detects if a process stops send-
ing messages to another one (Doudou et al., 1999). This algorithm is also based
on a rotating coordinator that proposes an estimate that the others broadcast and
accept, if the coordinator is not suspected. This muteness failure detector was used
to solve Byzantine multi-valued consensus (Doudou et al., 2002). Another efficient
algorithm based on a muteness failure detector was presented by Friedman et al.
(2005).

Baldoni et al. described a vector consensus algorithm based on two failure de-
tectors (Baldoni et al., 2003). One failure detector detects if a process stops send-
ing messages (muteness) while the other detects other Byzantine failures. This
latter detector is implemented using an interesting solution based on a finite-state
automaton that monitors the behaviour of the algorithm.

All algorithms based on failure detectors that we are aware of are indulgent,
i.e., they satisfy the safety properties of consensus (Validity and Agreement) even
if the failure detector does not behave “nicely”. Examples of undesirable behaviour
of a failure detector are not detecting a subset of Byzantine behaviour or the mute-
ness of a process.



4.4 Hybridization and Wormholes

Wormholes are extensions to a system model with stronger properties than the rest
of the system. Wormholes are materialized as enhanced components that provide
processes with a means to obtain a few simple privileged functions with “good”
properties otherwise not guaranteed by the normal environment (Verissimo, 2003,
2006). For example, a wormhole can provide timely or secure functions in, re-
spectively, asynchronous or Byzantine systems. The Trusted Platform Module is a
commercial component that can be considered to be a (secure) wormhole (Trusted
Computing Group, 2006). This way of modelling systems contrasts with work on
failure detectors, which tries to abstract the minimum requirements on hints about
failures to solve consensus. The idea is more generic and has to do with what are
the distributed system models that allow to have desirable levels of predictability
in systems that are mostly uncertain in terms of properties like time and security
(Verissimo, 2006).

Wormholes are closely related to the notion of architectural hybridization, a
well-founded way to substantiate the provisioning of those “good” properties on
“weak” environments. In the case that we are interested in here, we assume that
the system is essentially asynchronous and Byzantine, so when implementing the
model we should not simply postulate that parts of it behave in a timely or secure
fashion, or these assumptions might naturally fail. Instead, those parts should be
built in a way that our claim is guaranteed with high confidence.

The first paper that presented a consensus algorithm based on a wormhole
(Correia et al., 2005) used a specific wormhole, a device called Trusted Timely
Computing Base (TTCB) (Correia et al., 2002). Technically, the TTCB is a se-
cure real-time and fail-silent distributed component. Applications implementing
the consensus algorithm run in the normal system, i.e., in the asynchronous Byzan-
tine system. However, the TTCB is locally accessible to any process, and at certain
points of the algorithm the processes can use it to execute correctly (small) crucial
steps. The consensus algorithm relies mostly on a TTCB service called Trusted
Block Agreement Service, which essentially makes an agreement on small values
proposed by a set of processes. The idea is to use this service to make agreement
on the hash of the value proposed by the majority of the processes. Later, a sim-
pler multi-valued consensus algorithm and a vector consensus based on the TTCB
were also proposed (Neves et al., 2004, 2005).

Another version of the TTCB was used to implement atomic broadcast and
state machine replication with only 2f + 1 replicas (Correia et al., 2004). Although
that paper did not present an algorithm for solving consensus, a multi-valued con-
sensus with Validity 2 can be trivially implemented on top of that atomic broad-
cast: each process proposes a value by atomic broadcasting it; the first value de-
livered is the result of the consensus. It is also simple to see that the scheme can
not be used to implement consensus based on Validity 1 or vector consensus.

More recently, Chun et al., proposed the Attested Append-Only Memory
(A2M), another wormhole used to implement state machine replication with only
2f + 1 replicas (Chun et al., 2007). Like the TTCB, the A2M has to be tamper-
proof, but it is local to the computers, not distributed. Replicas using the A2M
are forced to commit to a single, monotonically increasing sequence of operations.
Since the sequence is externally verifiable, faulty replicas can not present different



sequences to different replicas. Veronese et al. presented an even simpler wormhole
that also allows implementing state machine replication with only 2f + 1 repli-
cas, the Unique Sequential Identifier Generator (USIG) (Veronese et al., 2009a,b).
This component contains only a counter and a few cryptographic functions that
are used to associate sequence numbers to certain operations done by the replicas,
e.g., producing a signed certificate that proves unequivocally that the number is
assigned to that message. Levin et al. proposed a similar component, TrInc, which
might also be used to implement state machine replication (Levin et al., 2009). All
these state machine replication algorithms might be used to implement consensus
in the way explained in the previous paragraph.

4.5 Modifying the Problem

“If you can’t beat them join them”. Last but not the least, this section describes
how FLP can be circumvented by weakening the very definition of consensus, i.e.,
by modifying it. Currently, we are aware of a single type of algorithm that fits in
this category in the system model that we consider in the paper: algorithms based
on the condition based approach (Mostefaoui et al., 2003b, 2004; Friedman et al.,
2002). For crash faults, there is also k-set consensus, which allows k different values
to be decided (Chaudhuri, 1993).

Consensus algorithms based on the condition-based approach terminate if the
initial values of the processes satisfy certain conditions, but satisfy the safety prop-
erties – Validity and Agreement – even if the conditions are not valid. Let us
define the input vector for an execution of a consensus algorithm as the vector I
in which each I[i] is the initial value of process pi. The condition based approach
identifies sets of input vectors for which the consensus algorithm terminates (be-
sides satisfying Validity and Agreement). Conditions on input vectors were shown
to be directly related to error correcting codes. In fact, crash failures correspond
to erasure errors in the context of error correcting codes, while Byzantine failures
correspond to corruption errors (Friedman et al., 2002).

An argument in favour of this sort of trade-off between Termination and con-
ditions on input vectors is made in (Friedman et al., 2002). A first reason is that
it makes sense to use the approach to efficiently solve consensus problems in which
the initial values really satisfy the conditions, but to guarantee safety even if this
assumption does not hold. A second reason is that the conditions can serve as a
guideline that allows the designer to augment the system (modifying the system
model) with the minimum synchrony needed to ensure the solvability of the prob-
lem.

The single paper about the condition based approach that we are aware of that
deals with Byzantine failures is (Friedman et al., 2002). This paper presents simple
algorithms to solve multi-valued and k-set consensus.

5 Evaluating Consensus Algorithms

Byzantine distributed algorithms have been evaluated using several different met-
rics. Ultimately, the objectives are to understand how an algorithm works and how
it behaves in practice:



• How will it perform? Or, more precisely, what will be its latency (time
needed to run) and throughput (number of executions per unit of time)?

• How will it scale, i.e., what is the relation between its performance and the
number of processes executing it?

• What will be its resilience, i.e., how many faulty processes will it tolerate?

5.1 Performance and Scalability

The first two parameters are usually evaluated theoretically in terms of time, mes-
sage and communication complexities. In asynchronous systems, time complexity
is usually measured in terms of the maximum number of asynchronous steps. An
asynchronous step involves a process sending a message and receiving one or more
messages sent by the other processes. The message complexity is measured by
the number of messages sent and the communication complexity by the number
of bits sent. Cryptographic operations often have some impact in the processing
time, especially public-key cryptography operations, so the evaluation should also
take into account, e.g., the number of signatures made and evaluated. It has been
shown that the minimum number of asynchronous steps for Paxos consensus is two
(Dutta et al., 2005; Martin and Alvisi, 2005).

These metrics are not so simple to assess as it may seem, since they usually
depend on the occurrence of faults. Therefore, the evaluations should consider at
least two cases: failure-free executions and executions in which the maximum num-
ber of processes (f) is faulty (Byzantine). Other aspects, like the correct processes
having the same initial value, can influence the performance evaluation and should
also be taken into account.

For randomized algorithms, these parameters can only be stated probabilisti-
cally, so often the metrics considered are the expected number of asynchronous
steps, messages sent, and bits sent. The literature usually assesses these values
in the worst case, i.e., with the most unfavourable combination of initial values,
failures and network scheduling of the messages.

Despite the importance of these theoretical metrics, it has been argued that
they may not reflect correctly the behaviour of the algorithms in practice (Keidar,
2002). Some authors have shown that randomized binary consensus algorithms
that in theory run in high numbers of steps, in practice may execute in only a few
communication steps under realistic conditions (Moniz et al., 2006b).

5.2 Resilience

The third parameter above, resilience, can be assessed precisely for an algorithm.
The optimal resilience for Byzantine consensus in all system models without worm-
holes that we are aware of is n/3, i.e., less than n/3 out of n processes can fail
for the algorithm to run correctly (Lamport et al., 1982; Bracha, 1984; Dwork
et al., 1988; Correia et al., 2006). Baldoni et al. present an algorithm that assumes
f ≤ min(b(n− 1)/2c, C), where C is the maximum number of faulty processes al-
lowed by the certification algorithm (Baldoni et al., 2003). However, they point
out that known certification techniques assume n− C = d 2n+1

3 e, so their algorithm
also requires n ≥ 3f + 1.



As mentioned in the Section 4.4, using wormholes it is possible to design Byzan-
tine consensus algorithms with better resilience, n/2, or n ≥ 2f + 1. That section
mentioned a few state machine replication algorithms that might be used to imple-
ment consensus with this resilience. However, to the best of our knowledge, (Cor-
reia et al., 2010) is the only work that presents a complete asynchronous Byzantine
consensus algorithms with this resilience. The paper shows that the impossibil-
ity of improving the resilience of consensus from n/3 to n/2 without a wormhole
comes from an important component of most of these algorithms, a reliable broad-
cast algorithm. The reliable broadcast problem consists essentially in guaranteeing
that when a process sends a message, all processes deliver that message, or possi-
bly no message at all if the sender is faulty (Bracha, 1984). The paper shows that
using a variation of the USIG wormhole it is possible to design a reliable broad-
cast algorithm that imposes no bounds on the number of faulty processes, unlike
previous existing algorithms that require n ≥ 3f + 1 (Bracha, 1984; Reiter, 1994).
Using this reliable broadcast algorithm it is possible to implement consensus with
only n = 2f + 1 processes. The same paper presents a methodology to transform
asynchronous crash consensus algorithms into asynchronous Byzantine consensus
algorithms with different characteristics keeping the number of processes of n ≥
2f + 1.

In relation to resilience, it is important to note that there is no point in making
assumptions about the maximum number of processes that can be faulty if there
are common modes of failure, i.e., if some faults can affect all processes (Powell,
1992). For the Byzantine failure model, common modes of failure are caused by
identical bugs or vulnerabilities in all (or several) processes (Verissimo et al., 2009).
Some degree of independence of failure of processes can be enforced by using di-
versity of design (Littlewood and Strigini, 2004; Obelheiro et al., 2006; Deswarte
et al., 1998).

6 Related and Equivalent Problems

In the introduction, we mentioned that there are several distributed systems prob-
lems equivalent to consensus. In this section we give more details about this issue.

Given two distributed problems A and B, a transformation from A to B is an
algorithm that converts any algorithm that solves A into an algorithm that solves
B (Hadzilacos and Toueg, 1994). Problems A and B are said to be equivalent if
there is a transformation from A to B and a transformation from B to A. An
equivalence is always proven considering a certain system model, and may not exist
if the model is modified.

The first equivalences and transformations were established for the crash fail-
ure model. In this model, multi-valued consensus has been proved to be equivalent
to atomic (or total order) broadcast (Hadzilacos and Toueg, 1994; Chandra and
Toueg, 1996). Transformations from consensus to several problems were also pre-
sented: non-blocking atomic commit (Guerraoui and Schiper, 2001), group mem-
bership (Guerraoui and Schiper, 2001), and state machine replication (Schneider,
1990). Only some of these equivalences/transformations extend to the Byzantine
failure model. For instance, non-blocking atomic commit commits a transaction
if all resources say ‘commit’ and aborts it one or more say ‘abort’. With Byzan-



tine failure model, a faulty process can simply abort all transactions preventing
the system from working as expected, so clearly there is no transformation from
consensus to non-blocking atomic commit.

The equivalence of (Byzantine) atomic broadcast and consensus has been first
proved for systems with signatures in (Cachin et al., 2001). A similar result but
without the requirement of signatures has been proved in (Correia et al., 2006).
Both proofs are independent of the technique used to circumvent FLP. Atomic
broadcast, or total order broadcast, is the problem of delivering the same messages
in the same order to all processes.

We are not aware of transformations from Byzantine consensus to other dis-
tributed systems problems. However, there is probably a transformation from vec-
tor consensus to group membership. A group membership algorithm makes agree-
ment about a sequence of views, which are numbered events with the identifiers
of the members of a group of processes (see, e.g., the survey in (Chockler et al.,
2001)). The view can be modified by events like the addition of members to a
group, the removal of failed members, and the removal of members by their own
initiative. The Byzantine-resilient membership algorithms available give this intu-
ition that a transformation might be defined (Reiter, 1996; Kihlstrom et al., 2001;
Correia et al., 2007).

Several transformations from a variation of (Byzantine) consensus to another
were presented in the literature. Turpin and Coan presented a transformation
from binary to multi-valued consensus for synchronous systems (Turpin and Coan,
1984). Toueg and Cachin et al. presented similar transformations for asynchronous
systems, both requiring signatures (Toueg, 1984; Cachin et al., 2001). Transfor-
mations from binary to multi-valued consensus, and from multi-valued to vector
consensus, without signatures, were presented in (Correia et al., 2006).

7 Conclusion

Consensus is an important problem in distributed systems since it can be con-
sidered to be the “greatest common sub-problem” of several others (Mostefaoui
et al., 2000). In this paper a short survey about research on consensus in asyn-
chronous message-passing systems prone to Byzantine faults was provided. The
paper started by discussing the more common variations and definitions of Byzan-
tine consensus found in the literature. Then, it presented the FLP impossibility
result, which albeit being a negative result, ended up being a driving force of re-
search in area. The following section presented several classes of consensus algo-
rithms classifying them in terms of the way in which they circumvent FLP. The
paper ended with a discussion about the performance, scalability and resilience of
consensus algorithms, and the relation between consensus and other problems like
atomic broadcast.

Algorithms that solve the several variations of this problem and the equiva-
lent problem of atomic broadcast are currently being used as fundamental building
blocks in secure and intrusion-tolerant applications. Like previously crash fault-
tolerant consensus, Byzantine fault-tolerant consensus is becoming an important
component of distributed systems. This, in fact, is the current and probably ma-



jor future trend in the area: the design of new algorithms and the adaptation of
previous ones to solve real, practical problems.
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