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José Manuel Esgalhado Valença

Paulo da Costa Luı́s da Fonseca Pinto

Maria Antónia Bacelar da Costa Lopes

Nuno Fuentecilla Maia Ferreira Neves

Julho de 2003





Resumo

A segurança de sistemas informáticos distribuı́dos tem sido em grande parte

baseada na ideia de prevenção. Têm-se tentado conceber e projectar sistemas “per-

feitos”, sem vulnerabilidades que possam ser exploradas por potenciais atacantes. A

realidade mostra que isso é impossı́vel e que os sistemas vivem num ciclo permanente:

vulnerabilidade descoberta – sistemas atacados – remendo publicado – alguns sistemas

remendados – nova vulnerabilidade descoberta – etc.

A tolerância a faltas ou, de forma mais genérica, a confiabilidade, há muito que é

encarada de uma perspectiva diferente. Nesta disciplina também se tentam construir

sistemas tão fiáveis quanto o possı́vel. No entanto, assume-se que os componentes na

prática falham, e que esses componentes que falham têm de ser usados para construir

sistemas que não falhem.

Se bem que as duas aproximações pareçam quase antagónicas, ataques e intrusões

podem ser considerados como faltas. O problema da tolerância a estes tipos de faltas

tem recebido alguma atenção ao longo dos anos mas recentemente recebeu um novo

fôlego sob a designação de tolerância a intrusões.

A presente tese insere-se neste âmbito da investigação em tolerância a intrusões em

sistemas distribuı́dos. Um dos problemas que se põe a esta aproximação, e que a tese

aborda, é o da concepção de sistemas que sejam simultaneamente eficientes e eficazes

(ou seja, seguros) dada a dificuldade em fazer hipóteses sobre os modos de falha cau-

sados pelos atacantes. A tese estuda esta problemática sob a perspectiva inovadora de

um modelo de faltas arquitecturalmente hı́brido. Este modelo considera que a maior

parte do sistema pode falhar de forma arbitrária, até maliciosa, mas que existem com-

ponentes que são por construção seguros e tempo-real. O componente explorado nesta

tese foi denominado Trusted Timely Computing Base (TTCB).

A TTCB é um componente com caracterı́sticas inovadoras. Em primeiro lugar, é

um subsistema distribuı́do com a sua própria rede segura. Em segundo lugar, é tempo-

real, ou seja, é um subsistema sı́ncrono, capaz de comportamento atempado. Em ter-



ceiro lugar, pode ser realizada usando apenas componentes COTS. A primeira parte da

tese apresenta o modelo da TTCB, a sua concretização baseada em componentes COTS

e a sua funcionalidade.

Uma vez introduzida a TTCB, é abordada a concepção de diversos componentes

de middleware tolerantes a intrusões, no sentido de validar a aproximação proposta.

Note-se que a TTCB é usada arquitecturalmente como um componente de suporte à

execução (runtime), e não como um componente da usual pilha de camadas. Este facto

dá uma grande versatilidade à arquitectura, uma vez que a TTCB pode ser utilizada

indiscriminadamente por todos ou apenas por alguns nı́veis do sistema. Então é ap-

resentado o primeiro protocolo baseado no modelo de faltas hı́brido, um protocolo de

difusão fiável. Este protocolo é eficiente e tolera qualquer número de processos mali-

ciosos, ao contrário dos protocolos do mesmo tipo na bibliografia que toleram menos

de um terço.

Um problema clássico de sistemas distribuı́dos, o consenso, é usado para apresen-

tar outra forma de usar a TTCB para suportar protocolos tolerantes a intrusões. O

protocolo apresentado é eficiente em termos de complexidade de mensagens e tempo-

ral. Serve também de oportunidade para mostrar como o resultado de impossibilidade

FLP se relaciona com os sistemas baseados na TTCB.

A comunicação em grupo é um paradigma importante para a construção de sis-

temas distribuı́dos tolerantes a faltas. A parte final da tese apresenta um sistema de

comunicação em grupo tolerante a intrusões. O sistema inclui um serviço de filiação

e uma primitiva de difusão atómica. Este sistema tem um desempenho consideravel-

mente melhor do que sistemas semelhantes na bibliografia.

PALAVRAS-CHAVE: sistemas distribuı́dos, tolerância a intrusões, comunicação

em grupo, confiabilidade, segurança, tolerância a faltas bizantinas



Abstract
Security in distributed computing systems is usually based on the idea of preven-

tion. The usual approach consists in trying to design “perfect” systems, with no vul-

nerabilities to be exploited by potential attackers. Reality shows that this is impossible

and that systems live in a permanent cycle: vulnerability discovered – systems attacked

– patch published – some systems patched – new vulnerability discovered – etc.

Fault-tolerance or, more generically, dependability, takes a different approach. This

discipline also tries to build systems as reliable as possible. However, components are

assumed to fail, and systems that do not fail have to be built using fallible components.

Although the two approaches seem almost opposite, attacks and intrusions can be

considered to be faults. The problem of tolerance of these kinds of faults has been

receiving much attention in recent years, and gained a new momentum under the des-

ignation of intrusion tolerance.

This thesis appears in the context of research on intrusion tolerance in distributed

systems. One of the problems with this approach, studied in the thesis, is the design

of systems that are simultaneously efficient and secure, given the difficulty of making

assumptions about the failure modes caused by the attacker. The thesis is based on

an architectural-hybrid fault model. This model assumes that most of the system can

fail arbitrarily, even maliciously, with the exception of a few components that are by

construction secure and real-time. The component studied in depth in the thesis is

called Trusted Timely Computing Base (TTCB).

The TTCB is a component with novel characteristics. In the first place, it is a dis-

tributed subsystem with its own secure network. Secondly, it is real-time, i.e., a syn-

chronous subsystem capable of timely behavior. Thirdly, it can be implemented using

only COTS components. The first part of the thesis presents the TTCB model, its im-

plementation based on COTS components and its services functionality.

Once the TTCB introduced, the thesis describes the design of several intrusion-

tolerant middleware components with the objective of validating the proposed ap-



proach. Note that the TTCB is used architecturally as a runtime support component,

not as a layer of the usual stack of protocols. This makes the architecture very ver-

satile since the TTCB can be used indiscriminately by all or just some of the system

layers. Then, the thesis presents a first protocol based on the hybrid fault model, a

reliable multicast protocol. This protocol is efficient and tolerates any number of ma-

licious processes, contrary to similar protocols in the literature that tolerate less than

one third.

A classical problem in distributed systems – consensus – is used to show another

way of using the TTCB to support intrusion-tolerant protocols. The protocol is efficient

in terms of message and time complexities. It also shows how the FLP impossibility

result relates to systems based on the TTCB.

Group communication is an important paradigm for the implementation of fault-

tolerant distributed systems. The final part of the thesis presents an intrusion-tolerant

group communication system. The system includes a membership service and an

atomic multicast primitive. This system has an arguably superior performance in rela-

tion to similar systems in the literature.

KEY-WORDS: distributed systems, intrusion tolerance, group communication, de-

pendability, security, Byzantine fault tolerance
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1
Introduction

The generalized use of computer networks for communication, access to commer-

cial services, research, or simply for entertainment is no longer a distant goal but be-

came a fact during the last decade. “Internet” is no longer a word reserved for com-

puter scientists and engineers, it became part of common people vocabulary. The ex-

plosion on the number of users generated a multitude of paid services and therefore

a demand for quality of service. This quality of service includes service reliability,

a property impaired by a wave of constantly increasing malicious activity: viruses,

worms, hacker attacks. . . 1

This scenario is causing a renewed interest in distributed systems security. The

classical approach to Security has mostly consisted in trying to prevent bad things

from happening. In other words, the objective has been to try and develop “perfect”

systems, systems without vulnerabilities, and to patch the vulnerabilities when they

are eventually discovered. Dependability has been defined as the property of a com-

puter system such that reliance can justifiably be placed in the service it provides to

other systems or humans. The fault tolerance of critical systems, a main paradigm in

Dependability, has taken an approach almost opposite to Security. Systems are realis-

tically assumed to be built with components that can fail, but they have mechanisms

that tolerate these faults when they happen. The objective is therefore to avoid the

system failure, i.e., its departure from the specified behavior, despite faults.

Applications of the fault tolerance paradigm to security have been rare until some

years ago when the approach raised attention under the designation of Intrusion Toler-
1See, e.g., the CERT Coordination Center statistics at http://www.cert.org/stats/.

1
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ance. The term Intrusion Tolerance appeared in a paper by Fraga and Deswarte (Fraga

& Powell, 1985) but was not intensely used for several years. In the meantime a

few intrusion-tolerant systems were developed (Deswarte et al. , 1991; Reiter, 1995;

Kihlstrom et al. , 2001; Dutertre et al. , 2002; Malkhi & Reiter, 1998; Castro & Liskov,

1999), and the beginning of this decade witnessed a great development in the area, for

example with the EU MAFTIA project and the US DARPA OASIS programs 2. The idea

is basically the following (Verı́ssimo et al. , 2003; Adelsbach et al. , 2002):

• to assume and accept that the systems remain to some extent vulnerable;

• to assume and accept that attacks on components can happen and some will be

successful;

• to ensure that the overall system nevertheless remains secure and operational.

Intrusion Tolerance should not be considered to be a substitute for classical Secu-

rity techniques and mechanisms, mainly based on prevention, but a complementary

approach.

1.1 Objectives

This thesis appears in the context of Intrusion Tolerance, i.e., it applies the Toler-

ance paradigm to Security. The thesis was developed within the Navigators group of

the Large-Scale Informatic Systems Laboratory (LASIGE), at the Informatics Depart-

ment of FCUL. More specifically, the thesis is part of a research effort of the Navigators

group in the above-mentioned EU MAFTIA project and the DEFEATS project 3.

Malicious faults –attacks and intrusions– are always the direct or indirect action of

a human being, since “malicious” is an assertion on the intent of that being. Since the

agent is intelligent, it is hard (or risky) to make assumptions on malicious faults. This

2See http://www.maftia.org and http://www.tolerantsystems.org.
3See http://defeats.di.fc.ul.pt/
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causes most intrusion-tolerant systems to assume an arbitrary (also called Byzantine)

fault model, i.e., to assume that faults can occur both in the domain of time (early or

delayed interactions, omissions, crashes) and in the domain of value (interactions with

wrong data or semantics).

This thesis considers a different fault model, of the class of hybrid fault models. We

consider a system composed of hosts interconnected by a network (a LAN, the Inter-

net) where malicious faults do occur, therefore we also do not make assumptions on

these faults. However, we consider the existence of a distributed subsystem that is al-

ways correct, i.e., which is not affected by malicious faults. This subsystem is called the

Trusted Timely Computing Base (TTCB). Applications run in the normal system, prone

to malicious faults, but occasionally they can use the services provided by the TTCB.

Because hybrid behavior is enforced, rather that assumed as usually done, the fault

model itself is innovative, and we call it architectural-hybrid. The first and important

consequence of this is that one can assume certain restrictions to malicious behaviors

as a natural outcome of the system’s structure and thus with high coverage.

Another facet of our work concerns the time or synchrony model. Intrusion-

tolerant systems in the literature usually consider an asynchronous time model. The

reason is that time assumptions can be hard to substantiate in highly distributed sys-

tems like the Internet. Furthermore, these assumptions can often be attacked. This

thesis is based on a different time model, a partially-synchronous model. We consider

most of the system to be asynchronous, therefore we do not make time assumptions

that may affect the safety of the applications (we make some for liveness). However,

the TTCB is synchronous, i.e., it is a real-time subsystem that executes its services

in a limited and known interval of time. The innovation is that partial synchrony is

based on the architectural hybridization of the system: the TTCB is the support of our

partially-synchronous model.

Group communication is a well known paradigm for data transmission among

distributed sets of hosts or processes (Birman & Joseph, 1987b). This paradigm has

been successfully used to support a large range of fault-tolerant applications, from
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database replication to highly available web servers (see, e.g., (Birman, 1997)). Re-

cently a few intrusion-tolerant group communication systems appeared (Reiter, 1995;

Kihlstrom et al. , 2001; Moser et al. , 2000). As a final contribution, this thesis proposes

a set of protocols for an intrusion-tolerant group communication system based on our

hybrid fault model and on our partially-synchronous model. The basic aim was to con-

tribute proof-of-concept demonstrators of the ideas just described and the innovation

lied on two aspects: (1) new algorithm design methods on hybrid distributed system

models, namely encompassing the difficulty of dealing with dual space-time realms

(the “normal” or payload system’s and the TTCB’s); (2) new protocols with Byzantine

resilience exhibiting high performance.

1.2 Contributions

Summarizing, the contributions of this thesis are the following:

• principles of modeling distributed systems subject to both accidental and mali-

cious faults, under a hybrid perspective with regard to faults and synchrony.

• The concept of architectural hybridization and its illustration through the archi-

tecture of a distributed secure and real-time subsystem, the Trusted Timely Com-

puting Base.

• New algorithm and protocol design methods using architectural-hybrid system

models, illustrated through the design of intrusion-tolerant versions of two clas-

sical distributed systems protocols, reliable multicast and consensus.

• The design of an intrusion-tolerant group communication system based on the

fault and time models mentioned. More precisely, the thesis complements the

above-mentioned reliable multicast and consensus protocols with a membership

service and a view-synchronous atomic multicast primitive, which are the main

components of that system from the user perspective.
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• A proof-of-concept implementation of the TTCB subsystem using COTS compo-

nents4, and its evaluation supporting the protocols mentioned above.

1.3 Structure of the thesis

Chapter 2 gives the context in which the thesis appears and presents related work

in the literature.

Chapter 3 presents the hybrid fault model on which the TTCB is based. The chapter

presents the TTCB model, architecture and services. It also presents the design of a

TTCB based on COTS components.

Chapter 4 shows the implementation of a classical distributed systems protocol –

reliable multicast– using our hybrid fault model. This is the first illustration of how our

model can be used to implement intrusion-tolerant protocols. The TTCB is basically

used to deliver a reliable digest of a message.

Chapter 5 gives the implementation of another classical distributed systems proto-

col, consensus. This is a more complex protocol that is normally affected by the FLP

impossibility result (Fischer et al. , 1985). The chapter shows the relation between FLP

and our system, using the results in (Dolev et al. , 1987).

Chapter 6 takes another step in terms of complexity. It presents the design of an

intrusion-tolerant membership service. This is a core service of any group communi-

cation service, since it supplies communication protocols with the information about

who are the members of a group at an instant. Failure detection is also discussed.

In Chapter 7 the thesis takes a final step towards the definition of an intrusion-

tolerant group communication system. The chapter augments the membership service

with a view-synchronous atomic multicast protocol.

4Commercial-off-the-shelf (COTS) components are hardware and software components available
commercially. These components usually do not have the dependability required by the systems that
use them.
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Chapter 8 concludes the thesis and discusses some future work.



2
Context and related work

This chapter presents the context in which the thesis appears. The document pro-

poses an architecture and protocols for Intrusion Tolerance, therefore the chapter starts

with an introduction to this discipline. The relations with Dependability and Security

are discussed. The next two sections introduce two central ideas of the thesis: hybrid

failure assumptions and time models. Then, context about intrusion-tolerant commu-

nication protocols is provided. Details on specific protocols, like reliable multicast and

consensus, are left to the chapters where protocols of those types are presented. Fi-

nally, the middleware architecture of project MAFTIA is presented, since it provides a

framework in which the protocols of the thesis fit.

2.1 Intrusion tolerance concepts and mechanisms

Three concepts stand in the core of Dependability: fault, error and failure (Laprie,

1991; Avizienis et al. , 2001). A system provides a service which is correct if it follows the

system specification. Dependability aims at avoiding the system failure, i.e., a behavior

of the system that deviates from its specification. The failure is caused by one (or more)

remote event(s) called fault(s), e.g., a bug in a program or a configuration problem. An

activated fault leads to an error, an erroneous state of the system which is liable to lead

to failure. If nothing is done the error can become visible at the system interface, a

system failure.

A fault can be internal, i.e., the failure of a component of the system, or external,

7
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caused by the system environment (e.g., electromagnetic radiation, human interfer-

ence). Faults can be classified in several types according to different criteria but one is

especially important here: in relation to intent, faults can be either accidental or inten-

tional. In the context of this thesis we consider only malicious intentional faults.

The way in which a component fails is designated its failure mode (Powell, 1992).

Failures can be omissive (the component does not do an action when it was supposed

to do) or assertive (the component does an action in a manner not specified). Omissive

failures can be classified in timing failures (late or early interactions), omission failures

(missing interactions), and crash failures (stop interacting). Assertive failures can be

syntactic (incorrect format) or semantic (incorrect meaning). Arbitrary failures are the

encompassing category: failures that can be simultaneously omissive and assertive.

From the point of view of a system, the failure of one of its components is a fault.

Therefore, we can also talk about arbitrary faults, omissive faults, etc. Malicious faults

can be simultaneously omissive and assertive. It is hard to predict or to put constrains

on malicious faults, therefore they are usually described as arbitrary faults. A partic-

ular kind of arbitrary faults are Byzantine faults after a classical paper that studied the

‘Byzantine generals problem’ (Lamport et al. , 1982). In consequence, tolerance to Byzan-

tine faults and Byzantine resilience are expressions with a similar meaning in Intrusion

Tolerance: countering a certain hardness of behavior, prototypical of a hacker, such as

sending different messages with the same identifier and/or forging messages. In this

thesis we use interchangeably the terms Byzantine and arbitrary fault/failure.

2.1.1 AVI composite fault model

Security hazards are normally classified in three broad categories –vulnerability,

attack and intrusion– which are related to the notions of fault-error-failure through the

AVI composite fault model, developed in the MAFTIA project (Verı́ssimo et al. , 2000a;

Adelsbach et al. , 2002; Verı́ssimo et al. , 2003). The model is presented in Figure 2.1.

A vulnerability is a fault in the system that can be exploited with malicious intent. A



2.1. INTRUSION TOLERANCE CONCEPTS AND MECHANISMS 9

vulnerability can be a design fault (created during the system development) or an op-

erational fault (introduced during system execution). A typical example is a software

bug, like a missing array boundary test, which can be exploited using a buffer overflow

attack 1. Another example is a privileged account with a guessable password. These

faults are usually accidental but can also be malicious, like in the case of a trapdoor left

with malicious intention.

An attack is a malicious operational interaction fault performed with the objective

of exploiting one or more vulnerabilities. Examples are port scans and hacker attempts

to guess passwords.

The event of an attack managing to exploit a vulnerability is called an intrusion, a

malicious operational fault. An example intrusion happens when a hacker manages to

guess a privileged account password, and then penetrates the system. This intrusion

causes an error (the hacker logged in) which can later cause the system failure (e.g., a

server in the host ends-up with defaced web pages).

A t t a c k e r /
D e s i g n e r /
O p e r a t o r

A t t a c k e r
a t t a c k
( f a u l t )

i n t r u s i o n  
( f a u l t )

f a i l u r ee r r o r  

v u l n e r a b i l i t y
( f a u l t )

Figure 2.1: The AVI composite fault model.

The concepts of error and failure are related to the notion of security policy. This

1The thesis mentions a few well-known attacks. No references are provided since the former are not
the outcome of scientific work, there are no obvious references and descriptions can be found in many
reference books on security.
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notion, which does not have a consensual definition, is central in security (Adelsbach

et al. , 2002). Informally, the security policy of a system can be a statement of the

security requirements of a system. Examples of items in a security policy are the min-

imum length of passwords and the machines that can be remotely accessed by a class

of users. The notion of security policy can be refined in terms of security goals and

security rules (Adelsbach et al. , 2002). Security goals are high-level statements of the

security properties that the system must guarantee. The violation of a security goal is

a failure of the system. Security rules are lower level statements of constrains that the

system should satisfy so that the security goals are not violated, therefore the rules are

usually stronger than the goals. The violation of a security rule is an error, which can

directly or indirectly lead to the failure of the system.

The AVI composite fault model is a specialization of the fault → error → failure

sequence. It describes the mechanism of intrusion in terms of three kinds of faults and

the mechanism that can lead to failure: vulnerability + attack → intrusion → error →
failure. The model gives insight into the mechanisms that can be used to tolerate these

faults avoiding failure, i.e., on how to ensure the security properties.

2.1.2 Properties

Computing systems can be characterized in terms of several properties like func-

tionality, usability, performance, cost and dependability (Avizienis et al. , 2001; Adels-

bach et al. , 2002). Dependability itself has several attributes or properties: availability,

reliability, safety, confidentiality, integrity and maintainability. Security shares three

of these properties: availability, confidentiality and integrity (Adelsbach et al. , 2002).

These dependability and security properties are also intrusion tolerance properties so

we define them here. Special emphasis is put on the security properties.

Availability is the readiness of the system to provide a correct service. Attacks

against availability are often designated Denial of Service attacks (DoS). This property

is about ‘something good’ happening, on the contrary to the other security properties,
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which are about ‘bad things’ not happening.

Confidentiality (or secrecy) is the absence of disclosure of information by unau-

thorized users. Disclosure of information is hard to detect so it is usually pre-

vented/tolerated using cryptography (Menezes et al. , 1997, Chapter 1).

Integrity is the absence of invalid system state alterations. The expression “sys-

tem state” should be taken very generically. It may include data and code in a host,

messages in the network, and hardware configuration. Invalid alteration can be due to

accidental faults (e.g., electromagnetic noise corrupting a network packet) or malicious

faults (e.g., a hacker corrupting the packet).

Authenticity is the property of data being “genuine”. If a document or a network

message identifies its author/sender, it is authentic if it was truly authored/sent by

that entity.

Several other properties are defined in the context of security. For instance, non-

repudiability is the property of the author/sender of a piece of data not being able to

deny that he authored/sent it.

Some additional dependability properties are the following. Reliability is the prop-

erty of the service delivered being correct. Safety is the absence of catastrophic con-

sequences of a failure of the system to its users or environment. Maintainability is the

property of a system being able to undergo repair and reconfiguration.

2.1.3 Mechanisms

Building a dependable computing system, as also an intrusion-tolerant system, re-

quires the combination of four types of techniques and mechanisms: fault prevention,

fault tolerance, fault removal and fault forecasting (Laprie, 1991; Avizienis et al. , 2001).

The threats against dependability (its impairments), the dependability attributes or

properties, and the mechanisms or means, are depicted in the classical dependability

tree in Figure 2.2.
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F A U L T S
E R R O R S
F A I L U R E S

A V A I L A B I L I T Y
R E L I A B I L I T Y
S A F E T Y
C O N F I D E N T I A L I T Y
I N T E G R I T Y
M A I N T A I N A B I L I T Y

F A U L T  P R E V E N T I O N
F A U L T  T O L E R A N C E
F A U L T  R E M O V A L
F A U L T  F O R E C A S T I N G

T H R E A T S

A T T R I B U T E S

M E A N S

D E P E N D A B I L I T Y

Figure 2.2: The dependability tree (Adelsbach et al. , 2002; Avizienis et al. , 2001).

Fault prevention aims to impede the occurrence or introduction of faults in the sys-

tem. Quality control techniques in the design of hardware and software are typical

fault prevention examples. Firewalls are fault prevention devices which aim to block

intrusions in subnetworks.

Fault tolerance intends to make a system continue to deliver a correct service despite

the actual presence of faults. Fault tolerance involves both error processing and fault

treatment. Error processing can be performed with error detection and recovery (e.g., in-

trusion detection and countermeasures) or with error compensation (e.g., error mask-

ing using majority voting). Fault treatment aims to avoid that faults are reactivated. It

encompasses fault diagnosis (identifying the cause) and fault isolation (exclusion of

faulty components).

Fault removal during the system development involves verification of dependability

properties (including validation of the specification) and the diagnosis and correction

of problems. During the operational life, fault removal is made in the context of system



2.1. INTRUSION TOLERANCE CONCEPTS AND MECHANISMS 13

maintenance.

Fault forecasting involves the evaluation of the history of fault occurrence and ac-

tivation in the system. This evaluation can be qualitative (identification of the faults,

components where they occur, environmental causes) and quantitative (probability,

how dependability attributes are affected).

A t t a c k e r /
D e s i g n e r /
O p e r a t o r

i n t r u s i o n  
t o l e r a n c e

i n t r u s i o n  
p r e v e n t i o n

A t t a c k e r
a t t a c k
( f a u l t )

v u l n e r a b i l i t y
p r e v e n t i o n

a t t a c k  
p r e v e n t i o n

v u l n e r a b i l i t y
r e m o v a l

i n t r u s i o n  
( f a u l t )

f a i l u r ee r r o r  

v u l n e r a b i l i t y
( f a u l t )

Figure 2.3: Intrusion tolerance mechanisms and the AVI model.

The AVI composite fault model in Figure 2.3 shows how a combination of these

techniques can be used to handle security hazards (Verı́ssimo et al. , 2000a; Adelsbach

et al. , 2002; Verı́ssimo et al. , 2003). Let us take as an example a distributed service

implemented by a set of servers interconnected by a LAN. Let us assume also that

clients make requests to the service through the Internet.

A first step to protect this setting is to prevent some attacks from occurring. Attack

prevention includes inserting a firewall between the system and the Internet (to filter

incoming traffic) and physically locking the system in a room. These techniques are

not enough since, e.g., the firewall does not obstruct attacks directed to the ports of the

service themselves.

On the side of vulnerabilities, the first set of techniques to apply is vulnerability
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prevention using adequate design practices. Vulnerability removal includes ‘patching’

the system (introducing software corrections), disabling unused network services, and

shadowing password files.

All these mechanisms do intrusion prevention but some attacks may still be able to

activate vulnerabilities causing an intrusion, therefore we still need intrusion tolerance.

All the fault tolerance techniques indicated above can be used. Error detection can be

performed by an Intrusion Detection System (Denning & Neumann, 1985; Denning,

1987). Countermeasures include disabling ports or filtering the malicious traffic in a

firewall. Fault treatment might include removing corrupted servers or creating new

firewall rules. Error masking can also be made using state machine replication.

Intrusion Detection Systems (IDSs) (Denning, 1987; Debar et al. , 1999; McHugh, 2001)

are security devices much used in private networks nowadays. IDSs have generically

the objective of detecting attacks/intrusions, although some also perform countermea-

sures. IDSs can be classified in knowledge-based and behavior-based. The former

have a database that describes known attacks and intrusions, and use that information

to perform the detection. The latter have data about what is normal or expected behav-

ior, and detect deviations from it. IDSs can also be host-based (detect intrusions in the

host) or network-based (detect malicious activity in a network). IDSs suffer from two

problems: false negatives and false positives. A false negative (or miss) is the omission

of the detection of an intrusion, e.g., because there was no information about it in the

(knowledge-based) IDSs database. False positives (or false alarms) are alarms that do

not correspond to a real attack/intrusion. Current IDSs typically generate large quan-

tities of these alarms with the hope of not missing real malicious activity, but with the

inconvenient of making the life of the system manager difficult.

The state machine replication approach is especially important in distributed systems

fault tolerance (error masking) so let us describe it briefly (Lamport, 1978; Schneider,

1990). The approach is based on a client-server model in which the server has several

replicas. All replicas start with the same state, and the state changes are deterministic.

The clients’ requests are delivered to all (non-failed) replicas in the same order. There-
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fore, after executing the same request all replicas have the same state and provide the

same result if requested. This trivially tolerates replica crash faults and a voting of the

results returned can be used to handle arbitrary faults. Some systems based on this

approach are presented later.

Fault forecasting is not shown in the figure because it can and should be done for all

the faults considered. For instance, the incidence of attacks and intrusions, and their

effect on the correctness of the service, should be assessed periodically. The results of

this analysis could be used, for instance, to reconfigure the system with more servers.

Cryptography has been used in the last few thousand years to protect information

from disclosure (Menezes et al. , 1997, Chapter 1). In modern computer security, cryp-

tography is an indispensable omnipresent building block. Classical cryptography, or

symmetric-key cryptography, uses a key to encrypt and decrypt data. If the key is known

only by who encrypts and who decrypts the data, it is ‘hard’ for a third entity to

discover the text (the data) having only the ciphertext (encrypted data) and the en-

cryption/decryption algorithm. Cryptography was revolutionized in the 70s with the

notion of public-key cryptography (Diffie & Hellman, 1976), and the first encryption al-

gorithm of this new kind, RSA (Rivest et al. , 1978). Public-key cryptography uses pairs

of keys (private, public). The process that generates a pair never discloses the private

key, but provides the public key to other processes. Only the process with the private

key can: (1) decrypt ciphertext encrypted with the public key; and (2) encrypt data that

can be decrypted with the public key.

2.1.3.1 Fault independence

State machine replication is a technique for error masking in distributed systems. If

one third of the replicas (or more) fail in a Byzantine way in a system with unbounded

communication delays, the service can fail, i.e., deliver incorrect results (Castro &

Liskov, 1999). This maximum number of faulty replicas (one third) can be increased by

proactively recovering their state, e.g., by periodically resetting some replicas (Castro

& Liskov, 2000). However, even using proactive recovery the limit of corrupted repli-
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cas between recoveries remains the same. This bound requires fault independence,

i.e., that intrusions in replicas occur independently. Achieving this independence is far

from trivial because replicas may have the same vulnerabilities that may be exploited

almost simultaneously with identical attacks.

The AVI model helps our reasoning here: independent intrusions should normally

be the consequence of independent vulnerabilities, since it is difficult to substantiate

assumptions about the independence of attacks. An approach to independent vulner-

abilities is to have different replicas: all replicas should have different code, run on

different operating systems, have different root and user passwords, etc. A solution

for the implementation of different replica code is software diversity obtained using

N-version programming (Avizienis, 1985; Lyu et al. , 1992). The approach consists

in making independent implementations, perhaps in different languages, of software

with the same functionality. Code obfuscation is a technique which tries to make re-

verse engineering of code hard for the attacker (Hohl, 1998; Collberg et al. , 1998b;

Collberg et al. , 1998a; Wang et al. , 2001). Code obfuscation can be parameterized

giving different implementations of the same program. A powerful solution for vul-

nerability independence would be to have encrypted executable code, however only a

preliminary solution for polynomial functions is available (Sander & Tschudin, 1998).

2.1.4 Coverage and trust

A system is dependable if it does not fail. However, in practice the probability of

failure cannot be reduced to zero. This reality is caught by the notion of assumption

coverage (Powell, 1992; Verı́ssimo et al. , 2003).

A given system, its environment, and the accompanying mechanisms and proto-

cols, imply the set of possible failures (P), in the universe of all failures (U): all that can

possibly go wrong, even if with the tiniest probability (Figure 2.4). On the other hand,

by assuming a given behavior of the system we stipulate assumed failure modes (A).

We would wish that A = P . Unfortunately, this may be too expensive to accom-
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U  -  u n i v e r s e  o f  f a i l u r e s
P  -  p o s s i b l e  f a i l u r e s

A  -  a s s u m e d  f a i l u r e s

( 1  -  a s s u m p t i o n  c o v e r a g e )

Figure 2.4: System/component assumption coverage.

plish, apart from the fact that P is seldom well defined. That is, we have in fact strictly

A ⊂ P . This is normally satisfactory, if P − A has an acceptably low probability of

occurring. As shown in the figure, the assumption coverage is the complement of that

probability: the probability of, given a failure, it not occurring in the region P −A. As-

sessing the assumption coverage of a design consists of verifying whether this prob-

ability is acceptably low. This assessment follows a separation of concerns between

environmental and operational assumptions (Powell, 1992).

Environmental assumptions are assumptions about the expected behavior of the en-

vironment where the system will run (network, hardware, attackers,. . . ). The environ-

mental assumption coverage (Pre) is the probability that the environmental assumptions

H hold in the presence of failures, i.e., it is the conditional probability of the set of

assumptions H holding when any failure f occurs: Pre = Pr(H|f).

On the other hand, operational assumptions concern the behavior of the system, i.e.,

how the system will run given the environmental assumptions. The operational assump-

tion coverage (Pro) gives the probability of the system properties S holding, considering

that the environmental assumptions hold: Pro = Pr(S|H). In the context of intrusion
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tolerance, Pro gives the probability that the system resists the fault it is assumed to han-

dle (e.g., it tolerates the faults it should tolerate). If the algorithm(s) and its implemen-

tation are proven correct we expect a coverage Pro = 1, except when the algorithms

themselves are probabilistic.

The overall assumption coverage gives the probability that the system tolerates a

fault:

Pr(S|f) = Pro × Pre = Pr(S|H)× Pr(H|f) (2.1)

This formula assumes that any violation of the environmental assumptions leads to

the system failure, since it takes into account the complete term Pre. This is not always

true but is, nevertheless, a common assumption (Babaog̃lu, 1987; Powell, 1992). It

makes even more sense in the context of malicious faults, which are caused by an

intelligent being with the intention of provoking the system failure.

In security, the notion of trustworthiness gives the extent to which a component or

system meets a set of security properties. If we generalize this notion to the other

dependability properties then trustworthiness becomes essentially synonymous of de-

pendability.

The notions of trust and trustworthiness are related. Trust is the accepted depen-

dence of a component on the properties of another component or system. A compo-

nent A trusts a component B if A relies on a set of properties of B in order to provide

a correct service. For instance, A provides a correct service if the cryptographic primi-

tives provided by B satisfy the property of integrity. This notion can be generalized to

include not only malicious but also accidental faults. A trusts B if A makes a set of as-

sumptions about the way in which B can fail generically, not only in terms of security

properties.

The notion of trust is a means of separation of concerns. When a programmer

designs a component A relying on B (e.g., a runtime environment), he can trust B

to have a certain set of properties and focus on the design of A. Building B to be



2.2. HYBRID FAILURE ASSUMPTIONS 19

trustworthy/dependable is a problem that can be dealt with separately. In other words,

A makes assumptions about B to substantiate A’s correct operation. On the other hand,

the way in which B is built to substantiate those assumptions concerns another design

step, probably, and recursively, by trusting some other underlying component C. Or

alternatively, B might be a COTS, built by other designers. Naturally, a component A

should trust another component B only to the extent of B’s trustworthiness. If B is not

as trustworthy as A trusts it, the dependability of A that is, the trustworthiness of A, is

compromised. This gap can be caught by the notion of assumption coverage.

2.2 Hybrid failure assumptions

A crucial aspect of any fault- or intrusion-tolerant system is the type of fault model

(or set of failure assumptions) upon which the system architecture is conceived and

component interactions are defined (Verı́ssimo et al. , 2000a; Adelsbach et al. , 2002).

Controlled failure assumptions specify qualitative and quantitative bounds on com-

ponent failures. For example, the fault model can specify that there are only crash

failures (e.g., crash of hosts) or omission failures (e.g., loss of packets in the network).

This approach can be realistic since it represents well how common systems work un-

der the presence of accidental faults only. However, it is very difficult to model the

behavior of an attacker, so specifying bounds on component failures in the presence of

malicious faults can create a problem of assumption coverage.

Arbitrary failure assumptions, on the other hand, specify no qualitative or quantita-

tive bounds on failures of the components. However, bounds on the number of com-

ponents of the system which can fail are inevitable, e.g., “only less than one third of

the components can fail”. Arbitrary failure assumptions are usually costly to handle,

both in terms of performance and algorithm complexity.

Hybrid failure assumptions combine controlled and arbitrary failure assumptions.

The idea is to allocate different assumptions to different subsets of components of the
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system. A number of systems and protocols based on this type of model can be found

in the literature (Meyer & Pradhan, 1987; Powell et al. , 1988; Lincoln & Rushby, 1993;

Verı́ssimo et al. , 1997).

With hybrid assumptions some parts of the system can be assumed to exhibit fail-

controlled behavior, whilst the remainder of the system is still allowed to fail arbitrar-

ily. This is advantageous in modular and/or distributed system architectures subjected

to malicious faults. However, this approach is only feasible when the fault model is

well substantiated, that is, when the behavior assumed for every single subset of the

system can be modeled and/or enforced with high coverage. As a matter of fact, a

system normally fails by its weakest link, and naive assumptions about a component’s

behavior can be an easy target to attackers.

There is a body of research on hybrid fault models for consensus and diag-

nosis algorithms, assuming different failure type distributions for different partici-

pants (Meyer & Pradhan, 1987; Lincoln & Rushby, 1993; Walter et al. , 1994; Kieckhafer

& Azadmanesh, 1995). For instance, some participants are assumed to behave arbitrar-

ily while others are assumed to fail only by crashing. This kind of assumptions lies on

evidence arising from statistical analysis of systems under accidental faults and as such

is hard to substantiate under the presence of malicious faults like attacks performed by

a hacker. The hybrid failure assumptions we are interested in, follow the lines of ear-

lier works such as (Powell et al. , 1988; Verı́ssimo et al. , 1997). They might best be

described as architectural hybridization, where failure assumptions are in fact enforced by

the architecture and construction of the system components, and thus substantiated.

This is case of the TTCB, the component that supports the architectural-hybrid model

proposed in the thesis.

2.3 Time and synchrony models

Research in distributed systems algorithms has been based on several synchrony

models (Verı́ssimo et al. , 2000a; Adelsbach et al. , 2002). In the two extremes of the
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synchrony spectrum there are the asynchronous model and the synchronous model.

2.3.1 Asynchronous and synchronous time models

The asynchronous model is time-free, i.e., does not allow any time specifications and

cannot address timed problems. Distributed systems based on this model typically

have the following characteristics:

• Unbounded or unknown processing delays

• Unbounded or unknown message delivery delays

• Unbounded or unknown local clock drift rates

The synchronous model, on the other hand, assumes that the system has strict time

properties:

• Known bound for processing delays by correct processors

• Known bound for message delay between correct processors

• Known bound for the difference and drift rate among local clocks

The synchronous model is not particularly useful for intrusion tolerance for two

reasons. First, it is too strong for generic networks such as the Internet, especially the

second property. Second, assumptions about time are frequently vulnerable to attacks,

compromising the dependability of the system. All three properties can be vulnerable:

processors, messages and clocks can, for example, be delayed by an attacker.

Although the asynchronous model is adequate to describe any network, its lack

of time properties constrains its usability for many practical applications. Practical

systems have some sort of limit of time to deliver their service.
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2.3.2 Partial synchrony

In order to address the limitations of these two extremes, several intermediate

models were developed. All these models consider a system that is essentially asyn-

chronous but extend it in some way or make additional assumptions. The timed-

asynchronous model (Cristian & Fetzer, 1998) extends the asynchronous model with

local hardware clocks (with bounded drift) and assumes enough synchrony, e.g., to

detect timing failures. The quasi-synchronous model (Verı́ssimo & Almeida, 1995) as-

sumes that the synchrony bounds have a probabilistic nature, and is extended with a

synchronous communication channel with limited bandwidth connecting the proces-

sors. The asynchronous model with failure detectors tries to provide the minimum

degree of synchronism necessary to deterministically solve consensus in distributed

systems with crash failures (Chandra & Toueg, 1996; Chandra et al. , 1996). This syn-

chronism is abstracted by the notion of unreliable (crash) failure detectors.

These intermediate models can be designated as partially-synchronous. The expres-

sion was originally introduced in a study of the degree of synchronism necessary to

solve consensus deterministically in the presence of crash failures (Dwork et al. , 1988).

Communication was said to be partially-synchronous in two conditions: if there was

a maximum but unknown communication delay ∆; or if there was a known ∆ which

would eventually hold from some instant on.

An important objective of these models is to circumvent the FLP impossibil-

ity result, which states that no deterministic protocol can solve consensus in an

asynchronous system if a single process can fail by crashing (Fischer et al. , 1985).

This result was further detailed to several situations (Dolev et al. , 1987): syn-

chronous/asynchronous processors/processes, ordered/unordered message delivery,

broadcast/point-to-point communication and atomic/not-atomic receive and send.

This paper has shown that different degrees of synchronism allow deterministic proto-

cols to tolerate different numbers of faults. FLP can also be circumvent by probabilistic

protocols or using randomization (Rabin, 1983; Ben-Or, 1983; Bracha & Toueg, 1985)

(see Chapter 5).
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2.3.3 The Timely Computing Base

The Timely Computing Base (TCB) model provides architectural support for

partial-synchrony models (Verı́ssimo et al. , 2000b; Verı́ssimo & Casimiro, 2002). The

TCB is a synchronous distributed subsystem. Some hosts have a local TCB module

and these modules are interconnected by a control channel. The TCB can be inserted

in systems with unreliable timeliness, possibly asynchronous.

The TCB provides three services which can be used by the applications to perform

time-related operations: timing failure detection, duration measurement and timely

execution. The TCB assumes a benign fault model, i.e., accidental faults only. An

implementation based on COTS components is available (Casimiro et al. , 2000).

The objective of the TCB is not to make applications synchronous or timely. Appli-

cations run mostly outside the TCB so their timeliness is constrained by the degree of

synchronism of the ‘outside’ system. However, applications can use the TCB services

to tolerate timing faults.

Several example applications supported by the TCB were proposed. A fail-safe ap-

plication goes to a safe state when a fault occurs. The TCB supports both the detection

of timing failures and the change to the safe state in a timely way, two operations that

cannot be done in purely asynchronous systems (Verı́ssimo et al. , 2000b). There is a

considerable literature on the adaptation of quality of service to a changing environ-

ment (Talley & Jeffay, 1994; Correia & Pinto, 1995; Bom et al. , 1998). These applications

that adapt to timing failures have been designated time-elastic and the TCB can be used

to guarantee that safety is satisfied when these failures occur (Casimiro & Verı́ssimo,

2001). Yet another class of applications – time-safe – can use the TCB to mask timing

failures using replication (Casimiro & Verı́ssimo, 2002).
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2.4 Intrusion-tolerant group communication

Group communication is a well known paradigm for fault tolerance in distributed

systems (see, e.g., the recent survey (Chockler et al. , 2001)). This paradigm has been

used successfully to support a large range of applications, from database replication to

highly available web services (see, e.g., (Birman & Joseph, 1987a; Birman, 1997)).

Group communication systems (GCSs) provide reliable communication primitives

between sets of hosts or processes. A GCS has two fundamental components: the

membership service and the multicast (or communication) service.

The membership service is the component in charge of keeping a list of the group

members (hosts or processes). This service processes request to join or leave the group,

and removes faulty members.

The multicast service provides communication primitives. The basic multicast prim-

itive is reliable multicast, also called Byzantine agreement in the context of malicious fail-

ures (Hadzilacos & Toueg, 1994; Lamport et al. , 1982). The problem can be informally

defined in terms of two properties (Bracha & Toueg, 1985): all correct processes in the

group deliver the same messages; if a correct sender transmits a message then all cor-

rect processes in the group deliver this message. Reliable multicast does not impose

an order for messages to be delivered, therefore, there are several variants of it with

different orders of delivery. FIFO multicast imposes FIFO order: if a process multicasts

a message M before M’ then all correct processes deliver M before M’. Causal multi-

cast delivers messages according to the relation of potential causality. A message M

precedes, or is potentially causally related to, a message M’ (M → M’) iff: (1) a pro-

cess sends M’ after M; or (2) M is delivered to the sender of M’ before it sends M’; or

(3) there is a message M” such that M → M” and M” → M’. Atomic multicast deliv-

ers messages in total order: any two messages delivered to any two correct processes

are delivered in the same order to both. These orders can be combined resulting in

multicast primitives with stronger orders. An example is causal atomic multicast that

delivers messages both in causal and total orders.
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The view-synchronous semantics defines how the membership and the communi-

cation services interact. This semantics states, informally, that all correct group mem-

bers deliver the same messages in the same group membership (Birman & Joseph,

1987b; Birman & Joseph, 1987a). Several variants of this semantics were defined,

e.g., extended virtual-synchrony (Moser et al. , 1994) and weak and strong virtual-

synchrony (Friedman & van Renesse, 1996) 2.

Most works in group communication consider only crash failures. A few examples

based on the asynchronous model are Isis (Birman & Joseph, 1987b), Transis (Amir

et al. , 1992), Totem (Moser et al. , 1996) and NavTech (Rodrigues & Verı́ssimo, 2000).

An example for the synchronous model is (Cristian, 1991).

Some of these group systems have evolved to support a stronger model, which as-

sumes that the communication can be attacked in the network, but hosts continue to

be assumed secure. These systems provide a secure islands model (Reiter et al. , 1992)

in which every process equally trusts another. This model is not intrusion-tolerant. It

requires the operating system and the GCS software to be part of a Trusted Computing

Base (National Computer Security Center, 1983), i.e., that intrusions in the hosts are

prevented (Reiter et al. , 1994). If a process is malicious the secure group abstraction

does not hold. For instance, the content of the communication can be disclosed, cor-

rect processes will not necessarily deliver the same messages, order properties can be

violated, etc. Although not intrusion-tolerant, work based on the secure islands model

handled important issues such as join authorization and key distribution, therefore we

survey three of these systems below: Horus, Ensemble and Secure Spread.

More recently, interest emerged in GCSs for environments that might suffer arbi-

trary faults, i.e., intrusion-tolerant GCSs. The systems that we are aware of are only

three: Rampart, SecureRing and SecureGroup. All these systems consider the asyn-

chronous model. We present them below, without delving into the details of the pro-

2View synchrony was originally called virtual-synchrony since the objective was to give to some
extent the idea that events occurred synchronously in all processes (Birman & Joseph, 1987a). This
intuition did not fit well with a second generation of group communication systems that supported
partitionable groups, therefore the more general definition and designation of view synchrony.



26 CHAPTER 2. CONTEXT AND RELATED WORK

tocols that are left for the appropriate chapters of the thesis.

Finally we present a few intrusion-tolerant systems: Enclaves, BFT, and Pha-

lanx/Fleet. They are not dynamic GCSs in the same sense as the others but they are

distributed and therefore involve communication among groups of processes or hosts.

2.4.1 Horus

Horus, an extension of Isis, is the first work on security for GCSs that we are aware

of (Reiter et al. , 1994; Reiter et al. , 1992). Horus assumes a primary-partition model, i.e.,

if two sets of processes become unable to communicate among them due to a network

partition, one set is considered to be ‘the group’ while the processes in the other set are

considered failed and removed. An attacker can view all network traffic and engage

in any active network attack3 and in any passive attack except traffic analysis4. This

attack model in the network is virtually the same for all systems considered in the

thesis. Horus makes two assumptions about the operating system: that it authenticates

securely the user identifiers of local processes; and that it provides protected private

address spaces and private authentic message passing between the local system and

user processes. These assumptions are satisfied by common operating systems (OSs),

like Unix, if the OS itself is not corrupted.

Horus security is implemented in two protocol layers: a transport layer (MUTS)

whose objective is to provide reliable, sequenced multicast between sites; and a session

layer (VSYNC) that implements the process group and view synchrony abstractions on

the top of MUTS. Horus uses several cryptographic keys. The site keys are asymmetric

key pairs associated to every host and used for initial key distribution. The group keys

3Active attacks are attacks in which the attacker modifies transmitted data. They can be of several
kinds. In a masquerade attack the attacker impersonates at least one of the communication entities. In
a replay attack the attacker retransmits a previously transmitted valid message. Modification attacks
involve the modification of a valid transmitted message. A denial of service attack consists in disrupting
the communication (Menezes et al. , 1997, Chapter 1).

4A passive attack is an attack that does not interfere with the communication. A traffic analysis attack
consists in getting information from traffic even if not being able to read it, e.g., because it is encrypted.
The attacker can see the source and destination of messages, how many messages are sent, patterns of
traffic, etc. (Menezes et al. , 1997, Chapter 1).
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are also asymmetric key pairs that are used to authenticate groups (the public key is

incorporated into the group address). The communication keys are symmetric keys

used by MUTS to distribute the connection keys. The latter are symmetric keys shared

by every pair of hosts and used to secure their communication. Keys are always kept

exclusively in volatile memory in order to be deleted in case the host crashes. Keys are

always the same during the group lifetime; there is no rekey protocol. Communication

and connection keys are generated in background by a user level service, the group

key service, that stores them in the VSYNC layer for future use. This takes the costly

generation of keys away from the group creation sequence of operations, reducing the

delay of this operation.

The secure islands model requires that only trusted processes in trusted hosts join

groups. This is achieved with a secure join protocol. The most important task of this

protocol is to authenticate the process attempting to join, but the joining process has

also to authenticate the group. Authentication is often used to distribute a symmetric

key to encrypt the session communication but this is not the case with Horus. When

a process tries to join a group it is identified by its site address and the process owner.

Authorization to join is granted by the group members considering these two pieces of

information. On the other hand, a joining process verifies the authenticity of the group

by challenging the contact site to prove the possession of the private key of the group.

Horus uses an hierarchical key distribution scheme. It uses a trusted authentication

service to distribute the public keys that correspond to each site’s private key (site

keys). A preliminary design of the authentication service was presented in (Reiter &

Birman, 1994). A site in which a process creates a group uses those keys to distribute

a communication key for the group and the private group key to the new members.

Every site in which a process needs to send a message to the group creates a connection.

The connection key is given to the other group sites using the communication key. The

connection key is used to secure regular communication.

To secure the communication inside the secure island the first step needed is to

authenticate messages sent. The objective is to detect attempts to insert, change and
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replay valid group messages, or to impersonate a group member (there can also be

the need for secrecy which is achieved with conventional message encryption). This

detection can be used to discard messages modified or forged. In Horus message au-

thentication and encryption is handled by the MUTS layer. Messages carry a message

authentication code (MAC) obtained using a hash function whose result is encrypted

with the connection key. A hash function is basically a one-way function that com-

presses its input and produces a fixed sized digest (e.g., 128 bits). Horus makes the

usual assumption that an attacker is unable to subvert the cryptographic properties of

the hash function, such as weak and strong collision resistance (Menezes et al. , 1997,

Chapter 9). The message is also encrypted with the connection key, in case privacy

is requested. Replays are detected because each message carries a unique sequence

number.

2.4.2 Ensemble

Ensemble is an evolution of Horus, which also provides the secure islands abstrac-

tion (Rodeh et al. , 2001a). Ensemble security extends Horus mainly in two aspects: it

handles group partitions and the associated security issues; and it has a rekeying pro-

tocol executed whenever a member joins or leaves a group. This protocol is necessary

in order to guarantee the confidentiality of the communication before the join and after

leaving, in relation to the new/past members. An efficient rekey protocol is described

in (Rodeh et al. , 2001b).

In Ensemble, communication is mostly encrypted and signed using a symmetric

encryption key shared by all group members, the group key. Every member has also an

asymmetric key pair used for authentication and for signing and encrypting messages

in special cases. A situation in which these pairs are used occurs when two partitions

need to merge. They have to use these keys because they may not have the same group

key.

Ensemble allows the definition of different communication semantics by com-
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posing protocol layers in stacks. Ensemble security is implemented by three layers,

from bottom to top: Encrypt, Rekey and Exchange. The Encrypt layer optionally en-

crypts/decrypts user messages using the group key. The Rekey layer handles the dis-

tribution of cryptographic keys. The Exchange layer handles security when there are

several group components due to network partitions. When a partition occurs Ensem-

ble elects a new leader for each “rebel” partition and each component starts operating

independently. Ensemble tries to detect the reestablishment of communication using

gossip messages, which are multicasted periodically. Whenever possible, the compo-

nents are merged back into a single group. In the general case, different components

have different group keys and so they cannot communicate (except with gossip mes-

sages). When a merge occurs, Ensemble rekeys some of the components so that they

all start to share the same group key.

2.4.3 Secure Spread

Spread security (Amir et al. , 2000; Amir et al. , 2001) differs from Ensemble and

Horus mostly in the following aspects:

• Security in Horus and Ensemble is integrated in the GCS stack of protocols. On

the contrary, Spread security is implemented as a layer on the top of the other

GCS layers. This allows some flexibility in the implementation, which can be

integrated either in the Spread daemon or in a separate library (Amir et al. , 2000).

• Horus and Ensemble’s key generation is centralized. Spread’s is decentralized:

all group members collectively generate the group key.

Secure Spread’s key management uses project Cliques’s protocol suite for group

key agreement (Amir et al. , 2000; Steiner et al. , 2000; Ateniese et al. , 2000). This means

that keys –shared secrets– are cooperatively generated by several group members as a

function of information provided by each of these members. Cliques is contributory

in the sense that each member equally contributes to the key. Every group member is
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equally trusted. Cliques is an extension of the Diffie-Hellman key exchange technique

in which two processes agree on a shared key, without sharing any previous secret

and with an attacker possibly watching every message exchanged (Diffie & Hellman,

1979). Cliques provides initial key agreement and auxiliary key agreement protocols.

The latter are more efficient but require a previously shared key. Communication in

Secure Spread is protected in a similar way to Ensemble, i.e., using the group key.

There is some additional interesting work on group key management in the context

of Internet multicast. Special emphasis is put in the scalability of key distribution for a

‘large’ number of processes (Wong et al. , 1998; Gong, 1994; Canetti et al. , 1999; Mittra,

1997; Hardjono et al. , 1999).

2.4.4 Rampart

Rampart is an intrusion-tolerant GCS (Reiter, 1995; Reiter, 1996a). It tolerates at-

tacks and intrusions in the network and hosts. The motivation for Rampart was the

need in Horus for high integrity services, which had also to be highly available (Reiter

et al. , 1994). The objective of Rampart is precisely to support the implementation of

this kind of services using the state machine replication approach.

Rampart has a membership protocol, which handles group joins and leaves, and

removes failed processes from groups (Reiter, 1996b). The service is implemented by

a three-phase commit style protocol. Processes in a group send failure suspicions to

a leader that tries to change the membership when it received enough. The sender

uses digital signatures (Menezes et al. , 1997, Chapter 11) to prove that it received the

suspicions. These signatures are calculated with a public-key cryptography algorithm

(e.g., RSA) which is the protocol performance bottleneck.

Rampart relies on two basic assumptions: (i) every server has a private key and

all other servers the corresponding public key; (ii) there is a message transport facility

that provides a point-to-point, reliable authenticated communication channel between

each pair of servers. This channel guarantees that if both the sender and the recipient
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are correct, the recipient eventually delivers the message sent. This transport layer is

the Horus MUTS layer.

Rampart provides a reliable multicast primitive based on a simple echo proto-

col (Reiter, 1994). The sender multicasts the message which is ‘echoed’ by the recip-

ients with their signature. When the sender has enough echoes is multicasts a commit

message with the signatures it received. The objective of Rampart is to implement state

machine replication, which requires atomic multicast. Rampart implements this pro-

tocol on the top of reliable multicast. Messages are ordered by a process of the group,

the sequencer, which reliably multicasts the ordering to the others (Reiter, 1994).

A replicated service in Rampart is implemented as a group of servers (Reiter, 1995).

Clients are outside the group so they cannot atomically multicast to the replicas di-

rectly. Therefore, clients send requests to one member of their choice, which forwards

these requests to all members using atomic multicast. This allows a good throughput

but a malicious server can deny the service to a client or corrupt the request. Both

problems have to be detected by the client and a new server chosen. The first problem

requires the use of timeouts, while the second can be solved by authenticating requests

at the application layer.

The output of the service has to be voted so that the results provided by correct

servers prevail over those returned by malicious servers. Rampart implemented two

solutions. In the first, the client receives individual results from the servers and per-

forms the voting. In the second, the voting is executed by the servers using a (k,n)-

threshold signature scheme (Reiter & Birman, 1994; Desmedt & Frankel, 1989). This

scheme generates a public key and n shares of the corresponding private key. Each

share can be used to obtain a partial signature of a message and any k of those partial

signatures form a full signature that can be verified using the public key. This scheme

is intrusion-tolerant but has poor performance (Reiter, 1995).

Rampart’s protocols were re-implemented more recently in the context of project

ITUA with the objective of measuring the performance costs of intrusion tolerance (Ra-

masamy et al. , 2002).
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2.4.5 SecureRing and SecureGroup

Two intrusion-tolerant GCSs were designed at UCSB Computer Networks & Dis-

tributed Systems Lab.: SecureRing and SecureGroup. SecureGroup has approximately

the same performance in the presence and absence of attacks. SecureRing performs

better when there are no attacks.

SecureRing provides reliable totally ordered delivery of messages in the presence

of arbitrary faults (Kihlstrom et al. , 2001). The network is assumed not to partition so

persistent disruption of the communication is handled as a host failure. SecureRing is

inspired in the Totem single-ring protocols (Moser et al. , 1996).

SecureRing is designed for LANs and relies on a logical ring imposed on the com-

munication medium, which controls the multicasting of messages. The system is com-

posed of a message delivery protocol, a membership protocol, a Byzantine failure de-

tector, and a message diffusion protocol. The message delivery protocol is used to

deliver regular messages (application data) and configuration change messages (infor-

mation about changes in the membership) in total order. Only the host with the token

can multicast. The token, which is signed, is used to distribute digests of the messages

(which therefore do not need to be signed, with performance benefits). The mem-

bership protocol reconfigures the system when one or more hosts exhibit detectable

Byzantine failures. When failures are detected the protocol forms a new ring with

the hosts that seem to be correct. Detectable Byzantine failures are detected using an

unreliable Byzantine failure detector (Kihlstrom et al. , 2003). The message diffusion

protocol is used to broadcast special messages, e.g., for a host that needs to join to

send a request to the group. The protocol is basically a reliable broadcast protocol,

i.e., it guarantees that if a correct process delivers a message then all correct processes

deliver it.

SecureGroup is the other intrusion-tolerant GCS designed at UCSB (Moser et al. ,

2000; Moser & Melliar-Smith, 1999), this one inspired in the crash-tolerant Trans/Total

suite of protocols (Melliar-Smith et al. , 1990). SecureGroup is also suited for LANs and
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provides totally ordered delivery of messages.

The system is composed of three protocol layers, from bottom to top: Secure Trans,

Secure Total and Secure Membership. Secure Trans reliably broadcasts messages to all

processors. It uses a combination of piggybacked positive and negative acknowledg-

ments to avoid the need for a separate acknowledgment from every recipient. Mes-

sages are digitally signed. Secure Total totally orders the messages delivered by Secure

Trans without additional transmission of messages. Secure Total goes on ordering and

delivering messages even if there are failed, possibly malicious, processors. This is a

difference in relation to SecureRing and Rampart, which have to remove failed pro-

cessors from the membership. The Secure Membership protocol works on the top of

Secure Total therefore it is simpler than other similar protocols.

2.4.6 Enclaves

Enclaves is a middleware for ‘group-oriented’ applications. Enclaves is not a typ-

ical GCS in the sense of the systems above because it does not provide strong com-

munication semantics, like reliable multicast, atomic multicast and view synchrony.

The multicast primitive provided is best-effort, i.e., there are no guarantees of delivery.

The purpose of Enclaves is not to support reliable services but collaboration between

humans, assuming that they can tolerate some message losses. The initial versions of

Enclaves aimed to secure the communication but relied on a leader so they were not

intrusion-tolerant (Gong, 1997; Dutertre et al. , 2001). The discussion below is about

the current intrusion-tolerant version (Dutertre et al. , 2002).

Enclaves has special processes called leaders. These leaders communicate over

an asynchronous network and can fail arbitrarily. The system tolerates f malicious

leaders out of a total of 3f + 1. The leaders are in charge of performing the group and

key management operations. Any modification to the group membership requires an

agreement between the nonfaulty leaders.

Normal members (non-leaders) request to join and are removed by the leaders. The
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group members share a group key. A new group key is generated whenever the mem-

bership changes. Intrusion-tolerant key generation is obtaining making each leader

generate a share of the group key, using a scheme that allows the reconstruction of the

key with f + 1 shares. A member joins the group contacting 2f + 1 leaders, to which it

remains attached, for instance to receive key changes.

2.4.7 BFT

BFT is a distributed error masking algorithm (Castro & Liskov, 1999; Castro &

Liskov, 2000; Castro & Liskov, 2001). The objective is to support the implementation

of efficient intrusion-tolerant services using state machine replication. A service is im-

plemented as a set of servers which process the requests from the clients. The service

tolerates f malicious servers out of 3f + 1. BFT is not a full-fledged GCS since it does

not have a membership service and does not provide generic group communication

primitives.

The algorithm runs basically this way: a client sends a request to the pri-

mary/leader; the primary atomically multicasts the request to the backups (the other

servers); all replicas execute the request and send the result to the client; the client

waits for f + 1 replies with the same result, which is the result of the operation. The

service does not tolerate faulty clients. Therefore, clients are authenticated and that

authentication is used to control the access to shared information.

BFT has better performance than Rampart and SecureRing because it does not use

digital signatures in normal operation. Instead, it uses message authentication codes

(MACs), which are obtained with symmetric-key cryptography (Castro & Liskov,

1999). Symmetric-key cryptography operations are usually about three orders of mag-

nitude faster than public-key cryptography operations.
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2.4.8 Phalanx and Fleet

Quorum systems are an alternative to the state machine replication approach to im-

plement fault-tolerant systems. Malkhi and Reiter were, to the best of our knowledge,

the first to present a study of their application to tolerate arbitrary faults (Malkhi &

Reiter, 1997a). They proposed several variants of the scheme (Malkhi & Reiter, 1997a;

Malkhi et al. , 1997a; Malkhi et al. , 1997b; Alvisi et al. , 1999) and used it to build a

dependable data repository that supports shared data abstractions: Phalanx (Malkhi

& Reiter, 1998). They assume asynchronous communication and that any two correct

processes can communicate over an authenticated and reliable channel (this can be

obtained with mechanisms described in Section 2.4.1).

Quorum systems are quite different from state machine replication. In quorum

systems only a subset of the servers has to receive the requests so these systems are

more scalable and available than systems based on state machine replication. However,

the applications for quorum systems are not the same. Phalanx provides data stores

(read/write operations) and locks, not a generic service as BFT. A generic service can

be implemented using reads/writes/locks but the rate of locks will probably be high

and the system performance arguably low.

A quorum system, for a universe of servers, is a set of subsets of servers – quorums

– in which each subset intersects with all others. Operations are done in just one quo-

rum. The intersection of quorums guarantees that operations performed in different

quorums are consistently seen across the system. Quorum systems tolerant to arbi-

trary faults need a stronger intersection: the intersection of each pair of quorums has

to contain a minimum number of correct servers in order to guarantee consistency of

the replicated data as seen by clients.

Fleet builds on Phalanx but provides support for generic objects instead of just

read/write operations on variables (Malkhi et al. , 2001). Fleet provides support for

persistent objects, i.e., objects that tolerate crashes and Byzantine faults of some of the

servers that keep their state.
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2.5 MAFTIA middleware

Malicious- and Accidental-Fault Tolerance for Internet Applications (MAFTIA) is a

recently finished EU IST project. The project had the objective of systematically inves-

tigating the ‘tolerance paradigm’ for constructing large-scale dependable distributed

applications. The project had a comprehensive approach that included both accidental

and malicious faults. This section introduces the middleware of MAFTIA since it is the

framework in which the protocols presented in the thesis were developed. We start

with a brief introduction about the project.

2.5.1 MAFTIA project

MAFTIA project followed three main lines of action5:

• definition of an architectural framework and a conceptual model;

• the design of mechanisms and protocols;

• formal validation and assessment.

The first line aimed to develop a coherent set of concepts for an architecture able

to tolerate malicious faults (Adelsbach et al. , 2002). Work has been done on the def-

inition of a core set of intrusion tolerance concepts, clearly mapped into the classical

dependability concepts. The AVI composite fault model presented above was defined

in this context. Other relevant work included the definition of synchrony and topo-

logical models, the establishment of concepts for intrusion detection and the definition

of a MAFTIA architecture. This architecture includes components such as trusted and

untrusted hardware, local and distributed trusted components, operating system and

runtime environment, software, etc.

5The work briefly sketched here is reported in a large number of reports, so no exhaustive references
are provided. All MAFTIA reports can be found at http://www.maftia.org .
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Most MAFTIA work was done in the context of the second line of action, the design

of intrusion-tolerant mechanisms and protocols. The design of the MAFTIA middle-

ware was part of this line, but we leave it for the next section. Intrusion detection was

considered as a mechanism for intrusion tolerance but also as a service that has to be

made intrusion-tolerant. MAFTIA developed a distributed intrusion-tolerant intrusion

detection system. Problems like handling high rates of false alarms and correlating the

alarms generated by several IDSs were also explored. Trusted Third Parties (TTPs), such

as certification authorities, are important building blocks in today’s Internet. MAFTIA

designed a generic distributed certification authority that uses threshold cryptography

and intrusion-tolerant protocols in order to be intrusion-tolerant. Another TTP, the

distributed optimistic fair exchange service, was also developed. MAFTIA defined an

authorization service based on fine grain protection, i.e., on protection at the level of the

object method call. The authorization service is a distributed TTP that can be used to

grant or deny authorization for complex operations, combining several method calls.

The service relies on a local security kernel, e.g., a JavaCard.

The third line of work was on the formalization of the core concepts of MAFTIA

and verification of the dependable middleware. A novel rigorous model for the secu-

rity of reactive systems was developed and protocols were modelled using CSP, and

verified using FDR.

2.5.2 MAFTIA middleware

The work on MAFTIA middleware included the definition of its architecture and

the design of two suites of protocols (Armstrong et al. , 2002; Cachin et al. , 2001).

MAFTIA middleware is group-oriented, i.e., it supports the communication among

groups of participants. Participant is an abstract denomination for the application level

software, i.e., the component that uses the services of the middleware.

The architecture of MAFTIA middleware in a host is depicted in Figure 2.5. The

architecture has two levels: participant and site. The participant level handles the com-
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Figure 2.5: Architecture of the MAFTIA middleware in a node.
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munication among participants, while the site level handles inter-host communication.

A participant-group is multiplexed into a site-group, composed of all hosts where there

are participants of the former group. This avoids, e.g., sending several copies of the

same data to a host if there are several participants in it. Therefore, this division in

participant and site levels is the materialization of a form of clustering used in MAF-

TIA: a site is a cluster of participants. This clustering improves the scalability of the

middleware.

The backplane of the figure depicts the runtime environment. It includes the oper-

ating system and a protocol kernel, which simplifies the programming of protocols and

supports their execution. The protocol kernel used in MAFTIA was Appia (Miranda

et al. , 2001). The runtime environment includes also the TTCB (see Chapter 3).

The lowest layer of the architecture is the Multipoint Network module, MN, cre-

ated over the physical network infrastructure. The objective is to provide some degree

of abstraction of the specific underlying network(s) below. Its main properties are the

provision of multipoint addressing and a moderate best-effort error recovery ability,

both depending on topology and site liveness information.

In the site level, the Site Failure Detector module, SF, is in charge of assessing the

connectivity and correctness of sites, and the MN module depends on this information.

The Site Membership module, SM, depends on information given by the SF module.

It creates and modifies the membership of site-groups. The Communication Support

Services module, CS, implements basic cryptographic primitives, group communica-

tion with several reliability and ordering guarantees (e.g., reliable multicasts, atomic

multicast), and other core services. The CS module depends on information given by

the SM module about the composition of the groups, and on the MN module to access

the network.

In the participant level, the Participant Failure Detector module, PF, assesses the

liveness and the correctness of local participants. The Participant Membership mod-

ule, PM, performs operations similar to the SM, but on the membership of participant-

groups. The PM module monitors all groups with local members, depending on in-
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formation propagated by the SM and by the PF modules, and operating cooperatively

with the corresponding modules in the concerned remote sites. The Activity Support

Services module, AS, implements building blocks that assist participant activity, such

as replication and transactional management.

Two suites of site-level protocols were developed in the project. One suite is ‘time-

free’, i.e., it is asynchronous. This suite includes a binary Byzantine-agreement pro-

tocol (Cachin et al. , 2000), reliable and atomic multicast protocols (Cachin & Poritz,

2002). The other suite is ‘timed’ and is composed essentially by the protocols reported

in this thesis (Chapters 4-7). At application-level, an intrusion-tolerant transaction ser-

vice with support for multiparty transactions was designed (Armstrong et al. , 2002).

Note

The author participated in the development of some of the ideas and concepts pre-

sented in this chapter in the context of the Navigators group involvement in project

MAFTIA. This work is reported in (Verı́ssimo et al. , 2000a; Cachin et al. , 2001; Correia

et al. , 2001a; Armstrong et al. , 2001; Armstrong et al. , 2002; Verı́ssimo et al. , 2003).



3
Trusted Timely Computing

Base

This chapter describes the model and the design of a security kernel called Trusted

Timely Computing Base (TTCB)1. A security kernel (Ames et al. , 1983) is a fail-

controlled subsystem trusted to execute a few functions correctly, albeit immersed in

an environment subjected to malicious faults. In the past, security kernels have mainly

been used as intrusion prevention devices, by supporting the mediation/protection of all

system interactions, and/or all accesses to system resources. The reference monitor

paradigm is such an example (Lampson, 1974). Alternatively, we argue that a security

kernel can be used as an intrusion tolerance device. The idea is to consider that most

of the system runs in an environment prone to attacks, but there is a secure subsys-

tem that is used to run crucial phases of execution allowing a collection of processes

to tolerate intrusions in some of them. Think for example in a web server with several

replicas. A security kernel can run some steps of an intrusion-tolerant protocol that

provides correct results, even if some replicas are intruded and behave maliciously

(i.e., try to break the protocol).

The TTCB has some innovative features. Firstly, it is a distributed subsystem with

its own secure channel/network – the control channel/network (see Figure 3.1). A dis-

tributed security kernel represents a “hard-core” component, offering trusted services

to a collection of processes 2, despite the fact that the latter reside in different nodes,

and that their normal communication is through an insecure network – the payload

1A prototype of the TTCB is available at http://www.navigators.di.fc.ul.pt/software/ttcb/.
2Throughout the chapter we use the word process to denominate any software component that uses

the TTCB services, e.g., an operating system process, a thread, or a Java applet.

41
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network (see figure). In consequence, the collection of processes can achieve some de-

gree of distributed trust, for low-level facts reported to/by the TTCB for/to all (and

thus agree on them), without having to explicitly communicate. That is, protocol pro-

cesses essentially exchange their messages in a world full of threats, some of them may

even be malicious and cheat, but there is an oracle that correct processes can trust, and

a channel that they can use to get in touch with each other, even if for rare moments.

Moreover, this oracle also acts as a checkpoint that malicious processes have to syn-

chronize with, and this limits their potential for Byzantine interactions (inconsistent

value faults).

Secondly, the TTCB is synchronous (or real-time), in the sense of having reliable

clocks and being able to execute timely functions, and obviously do it in a distributed

way: the control channel provides timely (synchronous) inter-module communication.

As such, it is capable, for example, of telling the time, measuring durations of dis-

tributed operations, and detecting timing failures.

Thirdly, the TTCB can be implemented using only COTS components, hardware

and operating system. In consequence, all the design guidelines and the mechanisms

we describe in the chapter are reproducible and useable in open settings. As a matter

of fact, a prototype of the TTCB that runs in common PCs with RTAI (Cloutier et al. ,

2000) 3, a real-time brand of Linux similar to RT-Linux (Barabanov, 1997; Yodaiken &

Barabanov, 1999), currently available for free non-commercial use.

Networked systems like the Internet suffer from a problem of unpredictability, no-

tably in terms of time and security. Recently, the wormholes metaphor was proposed

as a way to handle this unpredictability (Verı́ssimo, 2003). The idea is to extend a dis-

tributed system with a wormhole, i.e., with a privileged component which provides

services with some degree of predictability. The concept is very generic and has sev-

eral possibilities for application. The TTCB is an example of a distributed wormhole

that can be used to achieve predictability in terms of time and/or security.

The chapter discusses essentially three things about our distributed wormhole.

3More information at http://www.rtai.org
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Figure 3.1: The architecture of a system with a TTCB.

First, it presents the TTCB model and architecture (Section 3.1), and describes the ser-

vices it provides and their implementation, with special emphasis on the security ser-

vices (Section 3.2). The TTCB services were formally validated to some extent using

CSP and FDR (Sections 3.2.1 and 3.2.3). Next, the chapter shows how resilience to

attackers can be enforced in a specific implementation of the TTCB: the COTS-based

TTCB. This implementation of the TTCB follows a design methodology based on a

composite fault model, that clearly identifies the malicious faults that have to be pro-

cessed in order to prevent intrusions in the TTCB (Section 3.3). The reader should

have in mind this difference between the TTCB model and a specific implementation

proposed here, that is not the only one which is possible. To conclude, the chapter

motivates the design of intrusion-tolerant systems using the TTCB (Section 3.4).

3.1 The TTCB model and architecture

The TTCB is a secure real-time distributed component that aims to assist the exe-

cution of applications. The architecture of a system with a TTCB is suggested in Fig-
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AN1 Broadcast – The AN has an unreliable packet broadcast primitive

AN2 Integrity – Nodes can detect if packets were corrupted in the network.
Corruptions are converted to omission failures

AN3 Omission degree – No more than Od omissions may occur in a given
interval of time

AN4 Bounded delay – Any correct packet is received within a maximum
delay Tsend from the send request

AN5 Partition free – The network does not get partitioned

AN6 Broadcast Degree – If a broadcast is received by any local TTCB other
than the sender, then it is received by at least Bd local TTCBs

AN7 Confidentiality – The content of network traffic cannot be read by
unauthorized entities

AN8 Authenticity – Nodes can detect if a packet was broadcast by a correct
node

Table 3.1: Abstract Network (AN) properties.

ure 3.1. An architecture with a TTCB has a local module in some hosts, called the

local TTCB. These modules are interconnected by a control channel or control network,

depending on the implementation. This set up of local TTCBs interconnected by the

control channel/network is collectively called the TTCB. The TTCB is used to assist

protocols/applications running among processes in the hosts concerned, on any usual

distributed system architecture, encompassing a set of hosts interconnected by a net-

work (e.g., the Internet). We call the latter the payload system and network, to differentiate

from the TTCB part.

Conceptually, a local TTCB should be considered to be a module inside a host, with

a well defined interface, and protected from the OS. In practice, this conceptual separa-

tion between the local TTCB and the OS can be achieved in several ways: (1) the local

TTCB can be implemented in a separate, tamperproof hardware module —coprocessor,
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PC board, etc.— and so the separation is physical; (2) the local TTCB can be imple-

mented on the native hardware, with a virtual separation and shielding implemented

in software, between the former and the operating system and processes. The direction

followed in the thesis was the second, the one based on COTS components (hardware

and software), since it presented more challenges and yielded a ready-to-use prototype

in PC platforms. This design of the TTCB is discussed later in the chapter.

The local TTCBs are assumed to be fail-silent, i.e., they can only fail by crashing.

The TTCB cannot produce erroneous interactions or results (even on account of at-

tacks). Every local TTCB has a clock and the clocks are synchronized. This means that

clock values of correct local TTCBs at any real-time t differ by at most a known constant

π, the precision of the clock set.

The TTCB control channel has well-defined characteristics, specified in Table 3.1 as

a set of abstract network properties (Verı́ssimo & Rodrigues, 2001, Chapter 13). The

internal protocols of the TTCB are designed on the top of this abstract network. This

way, the control channel does not have to rely on a specific network technology: the

abstract network can be mapped onto different networks with the assistance of simple

adaptation mechanisms.

The TTCB offers two sets of services listed in Table 3.2. These services can be con-

sidered to be part of the system runtime environment. They can be called by applica-

tions, protocol layers and other software components. An application can use all the

services, but usually only a subset is used.

The motivation for the security services was to support the execution of intrusion-

tolerant protocols and applications. The thesis shows precisely how these services can

be used to implement reliable multicast, consensus, membership and atomic multi-

cast protocols. The time services are the same as the Timely Computing Base services,

which can be used to support the execution of partially-synchronous protocols (see

Section 2.3.3).
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Security services
Local authentication For a process to authenticate the TTCB and

establish a secure channel with it.
Trusted block agreement Achieves agreement on a small, fixed size,

data block.
Trusted random numbers Generates trustworthy random numbers.
Time services
Trusted absolute timestamping Provides globally meaningful timestamps.
Trusted duration measurement Measures the duration of an operation exe-

cution.
Trusted timing failure detection Checks if an operation is executed in a time

interval.
Trusted timely execution Executes operations securely and within a

certain interval of time.

Table 3.2: TTCB services.

3.2 TTCB services

This section presents the TTCB services and their design. The design is generic

since it relies on an abstraction of the control network (Table 3.1).

3.2.1 Local authentication service

The purpose of this service is to allow processes to authenticate and establish a

secure channel with a local TTCB. The need for this service derives from the fact that,

in general, the communication path between the process and the local TTCB is not

trustworthy. For instance, that communication is probably made through the oper-

ating system that may be corrupted and behave maliciously 4. We assume that the

process–local TTCB communication can be subject to passive and active attacks (see

4If the process is an OS process or thread, a malicious OS is able to attack not only the process-TTCB
communication but also the process itself. In these situations, protecting the communication does not
add to the application security although, in practice, it prevents some attacks. However, it makes sense
to protect the communication if the processes are protected from the OS, e.g., if they are inside other
boards or a Smartcard, or if they use code protection mechanisms (see Section 2.1.3.1).



3.2. TTCB SERVICES 47

Section 2.4.1). A call to the TTCB involves two messages, a request and a reply, that

can be read, modified, reordered, deleted, and replayed by an attacker.

Every local TTCB has an asymmetric key pair (Ku, Kr) that is used to authenti-

cate it. The process that calls the Local Authentication service is assumed to have a

trusted copy of the local TTCB public key Ku. These public keys can be distributed, for

instance, manually or using a Public Key Infrastructure (PKI). The private key Kr is as-

sumed to be known only by the local TTCB. A secure channel is obtained establishing

a shared symmetric key Ket between the process and the local TTCB, that is later used

to secure their communication.

The protocol to establish the shared key has to be an authenticated key establish-

ment protocol with local TTCB authentication, defined in terms of the following proper-

ties (Menezes et al. , 1997, Chapter 12):

• SK1 Implicit Key Authentication. The process and the TTCB know that no other

process has the key.

• SK2 Key Confirmation. Both the process and the TTCB know that the other has the

key.

• SK3 Authentication. The process has to authenticate the local TTCB.

• SK4 Trusted Against Known-Key Attacks. Compromise of past keys does not allow

either (1) a passive adversary to compromise future keys, or (2) impersonation

by an active adversary 5.

A simple protocol with properties SK1 through SK4 can be implemented with two

messages, i.e., a single function call. The protocol is presented in Figure 3.2. The pro-

tocol proof can be found in Appendix A.

5A passive adversary “attempts to defeat a cryptographic technique by simply recording data and
thereafter analyzing it (e.g., in key establishment, to determine the key). An active attack involves an
adversary who modifies or injects messages.” (Menezes et al. , 1997, Chapter 1)
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Action Description
1 P → T 〈Eu(Ket, Xe)〉 The process sends the TTCB the new key Ket and a challenge

Xe, both encrypted with the local TTCB public key Ku

2 T → P 〈Sr(Xe), Eet(ID)〉 TTCB sends the process the signature of the challenge ob-
tained with its private key Kr and the process ID (eid) en-
crypted using key Ket

Figure 3.2: Local Authentication service protocol

The shared key Ket has to be generated by the process, not by the TTCB. We would

desire it to be the other way around, but the only key they share initially is the local

TTCB public key, which can be used by the process to protect information that can

be read only by the local TTCB (that has the corresponding private key) but not the

contrary. Ket has to be generated by the process in such a way that a malicious OS

cannot guess or disclose it. The generation of a random key requires sources of ran-

domness (timing between key hits and interrupts, mouse position, etc.), sources that in

mainstream computers are controlled by the OS. This means that when a process gets

allegedly random data from those sources, it may get either data given or known by

a potentially malicious OS. Therefore, there is the possibility of a malicious OS being

able to guess the random data that will be used by the process to generate the key, and

consequently, the key itself. This problem is hard to solve, however, a set of practical

criteria can help to mitigate it:

• the process should use as much as possible sources of random data not controlled

by the OS.

• The process should use as many different sources of random data as possible.

Even if an attacker manages to corrupt the OS, it will probably not be able to

corrupt its code in many different places and in such a synchronized way, so that

it may guess the random number.
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• The process should use a strong mixing function, i.e., a function that produces an

output whose bits are uncorrelated to the input bits (Eastlake et al. , 1994). An

example is a hash function such as MD4 or MD5.

For similar reasons, the protocol challenge, Xe, has to be generated by the process

using the same approach.

The Local Authentication service protocol is implemented in the TTCB API as a

single call with the following syntax:

eid, chlg sign ← TTCB localAuthentication(key, protection, challenge)

The input parameters are the key, the communication protection to be used, and

the challenge. All input parameters are encrypted with the local TTCB public key. The

output parameters are the process identification –eid– used to identify the process in

the subsequent calls, and the signature of the challenge.

The Local Authentication service protocol was formally verified in the context of

project MAFTIA (Adelsbach et al. , 2003, Chapter 4). The protocol was specified in

the process algebra CSP and verified using the FDR model checker. The protocol was

shown to satisfy properties SK1–SK4.

3.2.1.1 Process-TTCB secure channel

The communication between a process and the local TTCB is protected by a se-

cure channel (or ‘trusted path’), based on the existence of the shared key Ket. It is

reasonable to consider that processes can have different security requirements for this

communication. Therefore, when the Local Authentication service is called, the pa-

rameter protection is used to select one of the three protection modes below. (The same

parameter is also used to select encryption and hashing algorithms, if necessary.)

1. Authenticity only. In particular situations or system architectures, a process may

be able to communicate securely with its local TTCB (e.g., if the process is the
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OS itself). Therefore, the secure channel has only to guarantee the authenticity of

calls to the local TTCB, i.e., that the service is being called by the process whose

eid comes in the call.

2. Authenticity and integrity. The process requires that the communication authen-

ticity and integrity are guaranteed.

3. Authenticity, integrity and confidentiality. The process requires not only that the

communication authenticity and integrity are guaranteed but also that its content

cannot be disclosed.

The way authenticity is guaranteed depends on the mode. In mode 1, it requires

only that requests and replies take both the eid and the shared key, since only the pro-

cess and the TTCB know this pair (eid, secret).

Authenticity and integrity in mode 2 are guaranteed putting a message authenti-

cation code (MAC) in the messages (Menezes et al. , 1997, Chapter 9). The MAC is

obtained using the algorithm indicated by the protection parameter of the Local Au-

thentication service, for instance, an MD5 hash of the message concatenated with Ket.

Messages have also to take the eid and a sequence number.

Authenticity, integrity and confidentiality in mode 3 are enforced encrypting the

message with the key Ket, using the cryptographic algorithm indicated by the protection

parameter.

3.2.2 Random number generation service

This service supplies uniformly distributed random numbers, which can be used

as nonces or keys for cryptographic primitives such as distributed authentication pro-

tocols. The TTCB provides this service for efficiency since the method described in

Section 3.2.1 can be slow and vulnerable.

The interface of the service is a single function that returns a random number:
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number ← TTCB getRandom()

In a future version of the TTCB, based on an appliance board, we envisage the

use of a hardware random number generator. In the current COTS-based TTCB, the

random numbers are given by the Linux random number generator. This generator

works with an entropy pool that collects random data from several inputs: device

driver noise, timing between key hits, timing between some interrupts, mouse posi-

tion, timing between disk accesses, etc. When a random number is requested, a hash

of the entropy poll is calculated using MD5.

3.2.3 The trusted block agreement service

The trusted block agreement service (TBA service for short) performs agreement

protocols among sets of processes. These protocols, which for instance, multicast a

number of bytes or reach to a consensus with a majority decision, are executed in a

secure and timely fashion since the service runs inside the TTCB. The service is not

intended to replace agreement protocols in the payload system: it works with “small”

blocks of data (currently 160 bits), and the TTCB has limited resources to execute it.

The TBA service is formally defined in terms of the three functions TTCB propose,

TTCB decide and decision. A process proposes a value when it calls TTCB propose. A pro-

cess decides a result when it calls TTCB decide and receives back a result. The function

decision calculates the result in terms of the inputs of the service. The result is composed

of a value and some additional information that will be described below. Formally, the

TBA service is defined by the following properties:

• AS1 Termination. Every correct process eventually decides a result.

• AS2 Integrity. Every correct process decides at most one result.

• AS3 Agreement. If a correct process decides result, then all correct processes even-

tually decide result.
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• AS4 Validity. If a correct process decides result then result is obtained applying

the function decision to the values proposed.

• AS5 Timeliness. Given an instant tstart and a known constant TTBA, the result of

the service is available on the TTCB by tstart+TTBA.

The interface of the TBA service has two functions: a process calls TTCB propose

to propose its value and TTCB decide to try to decide a result (TTCB decide is non-

blocking and returns an error if the agreement did not terminate). The expression an

agreement is used to denominate an execution of the TBA service.

out ← TTCB propose(eid, elist, tstart, decision, value)

result ← TTCB decide(tag)

An agreement is uniquely identified by three parameters: elist (the list of processes

involved in the agreement), tstart (a timestamp), and decision (a constant identifying the

decision function). The service terminates at most TTBA after it “starts”, i.e., after either:

(1) the last process in elist proposed or (2) after tstart, whichever of the two happens

first (the formula for TTBA is given in the next section). That shows the meaning of

tstart: it is the instant at which an agreement “starts” despite the number of processes

in elist that proposed. If the TTCB receives a proposal after tstart it returns an error.

The other parameters of TTCB propose are: eid is the unique identification of a pro-

cess before the TTCB, obtained using the Local Authentication service (Section 3.2.1);

value is the ‘block’ the process proposes; out is a structure with two fields, error, an

error code and tag, an unique identifier of the agreement before a local TTCB. A pro-

cess calls TTCB decide with the tag that identifies the agreement that it wants to decide.

result is a record with four fields: (1) error, an error code; (2) value, the value decided;

(3) proposed-ok, a mask with one bit per process in elist, where each bit indicates if the

corresponding process proposed the value that was decided; (4) proposed-any, a similar

mask that indicates which processes proposed any value. Currently there are only a

few decision functions defined, which return the following values:
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• TBA RMULTICAST. Returns the value proposed by the first process in elist

(therefore the service works basically as a reliable multicast).

• TBA MAJORITY. Returns the value proposed by more processes (or one of the

values more proposed if there are several with the same number of proposals).

• TBA AND. Returns the ‘bitwise and’ of the values proposed.

• TBA OR. Returns the ‘bitwise or’ of the values proposed.

• TBA XOR. Returns the ‘bitwise xor’ of the values proposed.

3.2.3.1 Trusted block agreement service protocol

The internal protocol that implements the TBA service is time-triggered (Verı́ssimo

& Rodrigues, 2001, Chapter 13): TTCB propose is called asynchronously, and gives the

TTCB data that is stored in tables; periodically that data is broadcast to all local TTCBs,

including the sender, and, also periodically, it is read from the network and processed.

The protocol uses two tables (Algorithm 1). The dataTable stores all agreements

data in a local TTCB. Each record has the state of one agreement with the format: (tag,

elist, tstart, decision, vtable). All fields have the usual meaning except vtable, which is

a table with the values proposed (one per process in elist). sendTable stores data to be

broadcast to all local TTCBs. Every record is a proposal with the format: (elist, tstart,

decision, eid, value). The agreement is identified by (elist, tstart, decision), eid identifies

the process that proposed and value is the value proposed.

Algorithm 1 shows an implementation of the protocol. It is based on the TTCB

assumptions that we summarize here for clearness:

1. the local TTCBs have clocks synchronized with precision π;

2. the protocol code is executed in real-time (therefore there is a worst case execu-

tion time for every section of code);
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3. every local TTCB communicates with the others exclusively by broadcasting a

message with a constant period;

4. the network is described by the Abstract Network model (Table 3.1).

The protocol has four routines. The propose routine is executed when a process calls

the TTCB function TTCB propose (lines 1-9). The routine begins by doing some tests:

if the process already proposed a value for this agreement; if the process that calls the

service is in elist; if tstart already expired (line 3). Other tests, are also made but are not

represented since they are not so related to the algorithm functionality. If the propose

is accepted, its data is inserted in the tables sendTable and dataTable, and the tag is

returned (lines 5-9).

The broadcast routine broadcasts data to all local TTCBs every Ts (the period) either

if there is data in sendTable or not (lines 10-15). Every message is broadcasted Od + 1

times in order to tolerate omissions in the network (Od is the omission degree). After

the broadcast, sendTable is cleaned.

The receive routine reads and processes messages every Tr (lines 16-24). Each mes-

sage is broadcasted Od + 1 times (lines 12-14), therefore copies of the same message

have to be discarded by the function read (line 18). For each message received, the data

in each record of sendTable is inserted in dataTable (lines 19-23).

The decide routine is executed when a process calls the function TTCB decide. The

routine searches dataTable for the agreement identified by the tag and returns an error

if it does not exists. If the instant tstart + TTBA passed or the local TTCB has the values

proposed by all processes in elist, the result is obtained and returned.

In Appendix A we prove that the protocol implements the TBA service and that

TTBA can be given by:

TTBA = Ts + WCETsend + Tsend + Tr + WCETreceive + π (3.1)
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Algorithm 1 TBA service internal protocol.

1 {PROPOSE ROUTINE}
2 WHEN process calls TTCB propose(eid, elist, tstart, decision, value) DO

3 if (process already proposed) or (eid /∈ elist) or (clock() > tstart) then
4 return error;
5 insert (elist, tstart, decision, eid, value) in sendTable;
6 get R ∈ dataTable : R.elist = elist ∧ R.tstart = tstart ∧ R.decision = decision;
7 if (R = ⊥) then
8 R ←(get tag(), elist, tstart, decision, ⊥); insert R in dataTable;
9 return R.tag;

10 {BROADCAST ROUTINE}
11 WHEN clock() = rounds × Ts DO

12 repeat
13 broadcast(sendTable);
14 until (Od + 1 times);
15 sendTable ←⊥; rounds ←rounds + 1;

16 {RECEIVE ROUTINE}
17 WHEN clock() = roundr × Tr DO

18 while (read(M) 6= error) do
19 for all (elist, tstart, decision, eid, value) ∈ M.sendTable do
20 get R∈dataTable : R.elist = elist ∧ R.tstart = tstart ∧ R.decision = decision;
21 if (R = ⊥) then
22 R ←(get tag(), elist, tstart, decision, ⊥); insert R in dataTable;
23 insert value in R.vtable;
24 roundr ←roundr + 1;

25 {DECIDE ROUTINE}
26 WHEN process calls TTCB decide(eid, tag) DO

27 get R ∈ dataTable : R.tag = tag;
28 if (R6=⊥) and [(clock()>R.tstart+TTBA) or (all processes proposed a value)] then
29 return (calculate result using function R.decision and values in R.vtable);
30 else
31 return error;
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The constants in the formula have the following meaning: Ts and Tr are respec-

tively the send and receive periods; WCETsend and WCETreceive are respectively the

send and receive routines worst execution times; Tsend is the maximum delivery delay;

π is the precision of the clock set.

This TBA service internal protocol was formally verified in project MAF-

TIA (Adelsbach et al. , 2003, Chapter 4). The protocol was specified in CSP and verified

using FDR. The protocol was shown to satisfy properties AS1–AS5, not in the general

case but only in executions with two processes involved. The generalization for more

processes was left for future work.

3.2.3.2 The crash-tolerant protocol

The TBA service protocol in the previous section does tolerate the crash of one

or more local TTCBs. If a local TTCB crashes during the broadcast loop (lines 12-14),

some local TTCBs may receive the message while others do not. This inconsistency can

lead to different local TTCBs giving different results to one or more agreements. The

solution is to use a Reliable Broadcast protocol. This protocol guarantees, informally,

that: (1) all local TTCBs deliver the same messages; (2) if the sender does not crash then

all correct (i.e., not crashed) local TTCBs deliver the message (see Section 2.4). If the

sender crashes then the message is delivered to all correct local TTCBs or to none.

This section presents a time-triggered Timely Reliable Broadcast that tolerates

crashes, assumes channel omissions (Abstract Network property AN3), and is

lightweight, in the sense that local TTCBs do not retransmit the messages they re-

ceive. A timely reliable broadcast is formally defined in terms of two primitives R-

broadcast (M) and R-deliver (M), where M is a message, which satisfy the following

properties (inspired by (Hadzilacos & Toueg, 1994)):

• TRB1 Validity. If a correct local TTCB R-broadcasts M then it eventually R-

delivers M .



3.2. TTCB SERVICES 57

• TRB2 Agreement. If a correct local TTCB R-delivers message M then all correct

local TTCBs eventually R-deliver M .

• TRB3 Integrity. For any message M , a correct local TTCB R-delivers M at most

once and only if M was R-broadcast by sender (M).

• TRB4 Timeliness. There is a known constant Tbroadcast such that, if a message is R-

broadcast at instant t, then no correct local TTCB R-delivers M after t + Tbroadcast.

Algorithm 2 Timely reliable broadcast protocol.

1 {BROADCAST ROUTINE}
2 WHEN clock() = rounds × Ts DO

3 sender ←my id(); seq ←rounds;
4 M ←(sender, seq, higherseqVector, data);
5 repeat
6 broadcast(M);
7 until (Od + 1 times)
8 rounds ←rounds + 1;

9 {RECEIVE ROUTINE}
10 WHEN clock() = roundr × Tr DO

11 while (read(M) 6= error) do
12 for all M-ndlv in notDelivered do
13 if [(M-ndlv.sender = M.sender) and (M-ndlv.number < M.number)] or (M-

ndlv.number < M.higherseqVector[M-ndlv.sender]) then
14 R-deliver(M-ndlv.data); remove M-ndlv from notDelivered;
15 if (higherseqVector[M.sender] > M.number) then
16 R-deliver(M.data);
17 else
18 put M in notDelivered; higherseqVector[M.sender] ←M.number;
19 roundr ←roundr + 1;

The protocol is shown in Figure 2. The broadcast routine is similar to the one in the

original TBA service protocol. Every Ts a message M is broadcasted Od + 1 times to

tolerate omissions in the channel. The message is broadcasted even if there is no data

to be sent. This is important for the protocol to work properly and for the detection of
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local TTCB crashes (a local TTCB is known to be crashed if a message is not received by

its deadline (Casimiro & Verı́ssimo, 1999)). The message has an header with the sender

identifier, a sequence number and the table higherseqVector. This table has an entry

for every local TTCB that contains, for every other local TTCB, the highest sequence

number of a message received from that local TTCB.

The receive routine starts by reading a message M (lines 9-19). Copies of messages

already received are discarded by the function read. For every message received, the

routine does two things: (1) tests if previously received but not R-delivered messages

(stored in notDelivered) can be R-delivered (lines 12-14); (2) tests if M can be R-delivered

(lines 15-18).

Considering AN6, the protocol tolerates Bd local TTCB crashes in a reference in-

terval of time. A message can be R-delivered by a local TTCB when it knows that all

other non-crashed local TTCBs will also R-deliver it (Agreement property). A local

TTCB can R-deliver a message M(s, n) when it receives (a) M(s, n + 1) or (b) M(s′, n′)

with higherseqVector[s]=n+1 (s is the sender and n the message number). The intuition

behind this is: if s crashes during the broadcast of M(s, n + 1) but at least one local

TTCB receives the message, then at least Bd local TTCBs receive it (AN6) and at most

other Bd−1 can crash (the protocol tolerates Bd crashes). Therefore, at least one correct

local TTCB receives M(s, n + 1) and broadcasts M(s ′, n ′) with higherseqVector[s]=n+1

to the other non-crashed local TTCBs. Since messages are broadcast Od + 1 times, all

non-crashed local TTCBs either receive M(s, n + 1) or M(s ′, n ′) and R-deliver M(s, n).

In the protocol, line 13 tests this condition. However, it considers that any M(s, n+)

with n+ > n causes M(s, n) to be R-delivered, since the Abstract Network does not

guarantee the order of the reception of messages. The same is true for M(s ′, n ′) with

higherseqVector[s] > n. Line 15 checks if the message received, M(s ′′, n ′′), can be R-

delivered immediately. This is the case if a message from the same sender but with a

higher number was received previously, i.e., if higherseqVector[s ′′] > n ′′.

In Appendix A we prove these results and also that the protocol R-delivers a mes-

sage M within Tbroadcast of R-broadcast(M) (the meaning of the constants is the same as
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before):

Tbroadcast = 2× (WCETsend + Tsend + Tr + WCETreceive + Ts) + π (3.2)

The TBA service protocol can be made crash-tolerant by replacing lines 12-14 and

18 in Algorithm 1 respectively by the two timely reliable broadcast protocol routines.

The second condition in line 28 has also to be substituted by: “all processes in non-

crashed local TTCBs proposed a value”.

The TBA service termination instant is related to Tbroadcast:

TTBA = Ts + Tbroadcast (3.3)

The proof of this result is in Appendix A.

3.2.4 TTCB time services

This section describes briefly the TTCB time services. These services were defined

on the context of the Timely Computing Base work (Verı́ssimo et al. , 2000b) and their

implementation is discussed in detail elsewhere (Casimiro et al. , 2000; Casimiro &

Verı́ssimo, 1999).

3.2.4.1 Trusted absolute timestamping service

Every local TTCB has an internal clock that is synchronized to the other local TTCB

clocks. This is achieved with a clock synchronization protocol inside the TTCB. The

Trusted Absolute Timestamping service gives timestamps that, since clocks are syn-

chronized, are meaningful to all local TTCBs. The precision of the timestamps is lim-
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ited by the precision of the clock synchronization protocol. The interface of the service

is:

timestamp ← TTCB getTimestamp();

When an application running on the payload part of the system asks for a times-

tamp, it receives it some time after it was generated by the TTCB. This delay is variable,

depending mostly on the time taken by the operating system scheduler to give CPU

time to the application, on the time the application takes to read the timestamp, and on

potential attacks against time inside the host. However, a timestamp can still be use-

ful since, e.g., the difference between two timestamps is an upper bound on the real

duration of the time interval between them.

3.2.4.2 Trusted duration measurement service

This services measures the time taken to execute an operation. The service verifies

the following property:

• TDM Duration measurement. Given any two events occurring in any two hosts at

instants ts and te, the TTCB is able to measure the duration between those two

events with a known bounded error.

The service is used calling the functions:

tag ← TTCB startMeasurement(start ev);

duration ← TTCB stopMeasurement(tag, end ev);

The parameters start ev and end ev are timestamps that indicate respectively

the time of the beginning and end of the operation to measure. duration is the value

measured for the duration of the operation. start ev has to be obtained prior to the

execution of the service calling the timestamping service.
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Taking in account the variable delay in the communication between a process and

the TTCB, this service does not provide a precise measurement of the delay of an op-

eration. It returns the interval between two receptions of two calls in the TTCB, which

is a higher bound on the time taken to execute the operation in the payload system.

This definition of the service contemplates both local and distributed operations,

i.e., TTCB startMeasurement and TTCB stopMeasurement could be called either in the

same or in different local TTCBs. However, the current TTCB implementation allows

only local measurements. The measurement of the delay of distributed operations can

be done using the Trusted Timing Failure Detection service.

3.2.4.3 Trusted timely execution service

This service allows an application to execute (sporadically) a function with a strict

timeliness and/or a high degree of security. The function is executed inside the TTCB

before a deadline (eager execution) and/or after a liveline (deferred execution):

• TTE Timely execution. Given any function f with an execution time bounded by

a known constant TXmax , and given a delay time lower-bounded by a known

constant TXmin
≥ 0, for any execution of the function triggered at real time tstart,

the TTCB does not start the execution of f within TXmin
from tstart, and terminates

f within TXmax from tstart.

The function f is executed between the two instants start ev+delay and

start ev+t exec :

end ev ← TTCB exec(start ev, delay, t exec, f);

An issue left for future work is the definition of the functions that can be executed

inside the TTCB. The TTCB can either offer a library of generic useful functions or

let a process upload functions. The latter case requires a process to ensure that the
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function is correct (i.e., that it will not attack the TTCB or create a vulnerability), and

that calculates the worst-case execution time (WCET) for the function. When a process

uses the Trusted Timely Execution service to request the execution of a function, the

WCET is used to assess if the TTCB has resources to execute it (schedulability analysis).

In case the TTCB does not have resources, an error is returned.

3.2.4.4 Trusted timing failure detection service

This service is used to detect if a timed action is executed after its deadline. The

action is executed in the payload system and the TTCB only verifies its timeliness. It is

defined by the two properties:

• TTFD1 Timed strong completeness. Any timing failure is detected by the TTCB

within a known interval from its occurrence.

• TTFD2 Timed strong accuracy. Any timely action finishing no later than some

known interval before its deadline is never wrongly detected as a timing failure

by the TTCB.

The service has different APIs depending on the timed action being local or remote.

Local detection API Local timing failure detection is done calling the following two

functions:

tag ← TTCB startLocal(start ev, spec, handler);

faulty ← TTCB endLocal(tag, end ev, duration);

The first function requests the TTCB to observe the timeliness of the execution of

an operation. start ev is the start instant and spec the expected duration. The

handler is used to tell the TTCB the reaction to have if a failure is detected, in case it

is needed. The handler has to specify a function in the same way as f in the Trusted
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Timely Execution service. Examples of reactions are a fail-safe shutdown or crashing

the host.

The second function disables the detection, i.e., it indicates the TTCB that the action

terminated. The parameters returned indicate the termination instant (end ev ), the

duration measured and if there was a time failure or not (faulty ).

Distributed detection API The basic idea of this interface is that a distributed action

is initiated by the transmission of a message from a sender to a recipient. The way the

API works is similar to the local detection API, i.e., a process calls the TTCB telling that it

is going to send a message (start a distributed action, TTCB startDistributed), sends the

message, the recipient receives the message, executes the remote operation, and tells

the TTCB that it is delivered (TTCB delivDistributed). If the time to receive the message

expires, the TTCB executes a function, in case that was requested. Messages can be

multicast to several recipients:

tag ← TTCB startDistributed(start ev, spec, mid, elist, handler);

deliv ev ← TTCB delivDistributed(mid, tag);

list info ← TTCB waitInfo(tag);

The parameter mid is a unique message id. The handler is executed by the local

TTCB of the sender in case there is a timeliness failure. In TTCB delivDistributed the

parameters indicate that a message was received. When that call is made, the TTCB

checks if there was a timing failure and returns that information.

A process, either the sender or a recipient, can get information relative to timing

failures using the function TTCB waitInfo. The input parameter tag is optional since

the process may decide to wait for information of all or only one of the distributed

actions it is involved in. The parameter list info contains the delay to deliver and

the indication about timeliness faults for every recipient.

Distributed timing failure detection is implemented by a distributed protocol in-

side the TTCB. This protocol is described in (Casimiro & Verı́ssimo, 1999).
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3.3 The COTS-based TTCB design

The process of designing a system addresses both functional and non-functional

aspects. The functional aspects are concerned with the algorithms and protocols that

make the system carry out its service, mostly presented in the previous section. This

section is more concerned with the non-functional design of the COTS-based TTCB.

3.3.1 Design methodology

3.3.1.1 Composite fault model with hybrid failure assumptions

The organization of assumptions in terms of the AVI composite fault model under-

pins the design philosophy (see Section 2.1.1). This model shows how the impairments

that may occur to a system, security-wise, have to do with a wealth of causes, which

range from internal faults (i.e., vulnerabilities), to external, interaction faults (i.e., at-

tacks) which activate those vulnerabilities, producing faults (i.e., intrusions) that can

directly lead to component failure.

The AVI composite fault model was shown in Figure 2.3. The figure also showed

where to apply different techniques to prevent the system from failing. Because we

differentiated the several fault classes, we can apply these techniques selectively, and

in a structured way. Note for example, that an intrusion cannot occur unless there is a

vulnerability to be activated by a corresponding attack (it makes no sense to prevent

an attack for which there is no vulnerability, or vice-versa).

In our composite fault model with hybrid failure assumptions, the presence and severity

of vulnerabilities, attacks and intrusions varies from component to component. Con-

sider a component or sub-system like the TTCB, for which a given controlled failure as-

sumption was made. How can we guarantee that assumption, given the unpredictabil-

ity of attacks and the elusiveness of vulnerabilities?

The first-line techniques are vulnerability prevention (e.g., using correct coding
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practices), and then attack prevention (e.g., physically isolating an access point) and

vulnerability removal (e.g., patching the OS and removing absolute privileges from

the root account).

All these techniques contribute to intrusion prevention. However, after this step

there may still be attack-vulnerability combinations to fear from, illustrated in the fig-

ure, by the holes in the intrusion prevention barrier. The design must then be comple-

mented with the necessary intrusion tolerance measures, for example, using intrusion

detection and recovery or masking, until we justifiably achieve confidence that the

component behaves as assumed, failing in the assumed controlled manner, i.e., the

component is trustworthy. The measure of its trustworthiness is the coverage of the

controlled failure assumptions (Section 2.1.4).

3.3.1.2 The methodology

The design of the TTCB with regard to the non-functional properties follows the

principles underlined above. The design methodology has four steps. It makes sense

to perform several iterations until the final result.

1. Define the desired system (TTCB) architecture and failure modes

2. Define the environment assumptions and the adaptation mechanisms that en-

force these assumptions

3. Design the mechanisms and protocols that enforce the system failure modes

4. Assess the system design

Step one is the definition of the TTCB architecture and failure modes. The TTCB

architecture was presented in Section 3.1 but is more detailed below in Section 3.3.2.

The architecture itself can prevent some attacks against specific components. For ex-

ample, if the control network is physically inaccessible to hackers, attacks that require
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physical access are prevented. In relation to the failure modes, recall that we consider

the local TTCBs to be fail-silent.

Step two is about the system’s environment, i.e., about whatever is external to the

system but that interacts with it: host hardware and OS, networks, attackers, etc. The

environment is characterized in terms of a set of assumptions that, in practice, have

to be enforced using adaptation mechanisms. The environment assumptions and the

adaptation mechanisms are presented in the Section 3.3.3.

Step three deals with constructing the mechanisms and protocols that enforce the

fail-silent behavior of the TTCB, on the assumed environment and architecture. This

boils down to making the TTCB resilient to attacks and intrusions. The design method-

ology may recursively be applied to the internal components of the TTCB as part of this

step. This is discussed in Section 3.3.4.

Step four consists in assessing the system design, in this case, the COTS-based

TTCB subsystem. On the one hand, this is about determining whether the coverage

of the design assumptions is acceptably high. On the other hand, about determining

whether given the assumptions, the algorithms and their implementation provide the

specified services. The verification and assessment of two of the TTCB services was

done in the context of project MAFTIA, as mentioned above.

3.3.2 System architecture

The general architecture of the TTCB was presented in Section 3.1. It was also

mentioned that our current implementation is based on common PCs with RTAI. To

pursue the COTS strategy, our implementation is based on Fast-Ethernet, for campus-

wide systems: we provide each host having a TTCB with an extra LAN adapter. We

envisage future designs based on tamperproof hardware and wide-area networks such

as an ISDN Virtual Private Network (VPN) 6. A VPN provides a private channel, if we

6ISDN is a public digital network technology for data and telephony that provides connections with
guaranteed bandwidth in multiples of 64 Kbps (128 Kbps, 1 Mbps. . . ).
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assume that the public telecommunications network is not eavesdropped. Additional

security can be obtained using secure channels, e.g., encrypting the communication.

RTAI is an engineering of Linux, which was modified so that a real-time executive

takes control of the hardware, to enforce real-time behavior of some real-time (RT)

tasks. RT tasks were defined as special Linux loadable kernel modules (LKMs), so they

run inside the kernel. The scheduler was changed to handle these tasks in a preemptive

way and to be configurable to different scheduling disciplines. Linux runs as the lowest

priority task and its interruption scheme was changed to be intercepted by RTAI. Real-

time FIFOs are the basic mechanism for communication between and with RT tasks.
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Figure 3.3: Architecture of the COTS-based local TTCB.

The COTS-based local TTCB architecture is detailed in Figure 3.3. The API func-

tions are defined in libraries and communicate with the local TTCB using RT FIFOs.

Currently there is one library for applications in C and another for Java (TTCB API

Library in the figure). The local TTCB is implemented by an LKM (Interface Module)

and by a number of RT tasks (TTCB RT Tasks). The TTCB Interface Module handles
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calls from the processes. It is not real-time since it is part of the interface of the TTCB.

All operations with timeliness constrains are executed by RT tasks. A local TTCB has

always at least two RT tasks that handle communication: one to send messages to the

other local TTCBs and another to receive and process incoming messages. Additional

RT tasks can be used by the Trusted Timing Failure Detection service and the Trusted

Timely Execution service (Section 3.2.4).

3.3.3 Environment assumptions and adaptation mechanisms

This section describes the environment assumptions, and the adaptation mecha-

nisms needed to enforce them. The environment assumptions are shown in Table 3.3.

The environment includes the PCs with RTAI (the host), the payload network and the

control network.

A1 The host operating system, the TTCB code and the protection mechanisms
are correct when the system starts.

A2 The host kernel memory is not read or written by any attacker.

A3 The control channel access point is not read or written by any attacker.

A4 The data on the control channel is not read or written by any attacker.

A5 Given a known interval of time, the control channel does not corrupt more
than k packets.

A6 There are no partitions in the control channel.

Table 3.3: Environment assumptions.

Assumptions A1 and A2 impose limits on what the attacker can do inside a host.

Assumptions A3 and A4 impose limits on what the attacker can do to the control chan-
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nel. Assumptions A5 and A6 define the behavior of the control channel vis-a-vis acci-

dental faults: a controlled omission degree, and a partition-free network environment,

respectively.

3.3.3.1 RTAI and protection

We start by describing RTAI and discussing related protection issues. From the

point of view of security, RTAI is very similar to Linux. One of the main vulnerabilities

is the existence of a superuser that controls all system resources: it can read, modify

and delete any file, any position of memory, etc. Most attacks against Unix/Linux

machines at some stage try – and often manage – to obtain superuser privileges, e.g.,

attacking programs with setuid, using race conditions or buffer overflows.

Recently several Linux extensions and packages appeared that try to limit the

power of the superuser: Linux capabilities (Tobotras, 1999), Immunix SubDo-

main (Cowan et al. , 2000), LOMAC (Fraser, 2000), LIDS (Huagang, 2000), etc. The

current TTCB implementation uses the first, Linux capabilities, since they are already

part of the kernel. Linux capabilities are extensions of the Posix capabilities, which are

privileges or access control lists (ACLs) associated with processes, allowing to con-

trol how they can manipulate objects, i.e., other processes, files, directories, unnamed

pipes, memory, and the system clock.

When Linux reboots, the process init has the full set of capabilities, and it should

do the allocation of capabilities to all other processes. However, this mechanism is

not yet fully implemented and the practical way of using the capabilities is with the

capability bounding set. This set contains all the capabilities that can be held by processes

in the system. If a capability is removed from the set, it cannot be used by any process

until the next reboot, not even by a process with superuser privileges. The capability

bounding set can thus be used to setup limits to the privileges of all processes until

the next reboot. This mechanism is very limited since it allows only a resource to be

enabled or disabled for all processes/users, however, it fits our needs.
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3.3.3.2 Enforcing environment assumptions

Assumptions A1 and A2 impose the only limits on what the attacker can do inside a

host. Otherwise, we assume that it can access the host, run software there, and become

root or run processes with superuser privileges.

A1 states that the system is correct when it starts to run, i.e., the operating system,

the TTCB and the protection mechanisms are not corrupt. This basic assumption can

be enforced starting both the OS and the TTCB from a read-only device, such as a

ROM or a CD-ROM. The protection mechanisms mentioned in A1 are basically a set

of commands in a script that remove a set of Linux capabilities from the capability

bounding set. This script is executed whenever the host is rebooted and has also to be

stored in a read-only device.

Assumption A2 protects the working space of both the RTAI kernel and the mod-

ules that support the TTCB. If the attacker manages to modify the kernel memory, he

has a dramatic potential for damage, which ranges from modifying kernel or TTCB

code or state, to arbitrarily controlling any of the system components, since code in

the kernel memory can execute privileged CPU instructions. Assumption A2 is en-

forced by removing two vulnerabilities. The removal of these vulnerabilities reduces

the power of the superuser and consequently, the power of the attacker:

• Loadable kernel modules: Loadable kernel modules (LKMs) are the standard

way of inserting code in the kernel in runtime. Their insertion and removal is

restricted to the superuser but, since we consider that the attacker can become

superuser, it is a vulnerability. This vulnerability is removed taking the capability

CAPSYS MODULEoff the capability bounding set. The local TTCB has to insert

one LKM and several real-time tasks (that are also LKMs) in the kernel. This has

to be done during reboot, before the capability is removed from the bounding set.

• /dev/mem and /dev/kmem devices: The devices /dev/mem and /dev/kmem al-

low an attacker with superuser privileges to change code and data in the kernel.

This can be used to change the kernel and local TTCB code and state. This is
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even more serious since the file System.map maps kernel symbols to physical

addresses. An example of how this can be used to corrupt the kernel is a vul-

nerability that was found on the implementation of the capability bounding set

itself. The physical address of this variable has the symbol cap bset . A sim-

ple ‘grep’ of System.map allows one to get the physical address of the variable

and a simple write in the memory allows the modification of the bounding set

value. These devices can even be used to insert code in the kernel (Cesare, 1998).

This vulnerability is removed disabling access to the two devices. This is done

by removing CAPSYS RAWIOfrom the capability bounding set.

Assumptions A3 through A6 refer to the control channel. Assumption A3 stipu-

lates that an attacker cannot access the control network adapter from inside the host,

and in consequence, he can neither send to, nor read or intercept packets from, the

control network. This can be enforced removing the access to the LAN controller (the

device) so that only code in the kernel uses it.

Assumption A4, on the other hand, is secured by ensuring that an attacker does not

have physical access to the control network medium devices (cables, switches, etc.).

The assumption makes sense if we consider a short-range, inside-premises closed net-

work, connecting a set of servers inside a single institution, with no other connection.

We are assuming that the attacker comes from the Internet, through the payload net-

work, without physical access to the servers or control network hardware. Long-range

solutions also use technologies such as ISDN VPNs, which are hard for the common

Internet attacker to tamper with in conjunction with an attack through the payload

network. Note however that assumption A4 can still be enforced for a more powerful

hacker who can eavesdrop on the control channel, by using cryptographic protection

in the inter-TTCB communication.

In the just assumed absence of active attacks on the control channel, assumptions

A5 and A6 establish limits to the events that may affect the timeliness of communi-

cation on the former, so that known bounds can be derived on message delivery de-

lays, and failure detection can be accurately done. Networks can be tested in order to
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find out the maximum number of packets they may corrupt in an interval of time, the

omission degree (Verı́ssimo et al. , 1989). Likewise, short-range LANs have negligible

partitioning, which can be further improved by using redundant channels. This would

be essential to enforce A6 in wider-area networks.

3.3.4 Enforcing system failure modes

The AVI composite fault model in Figure 2.3 shows that different techniques can

be used to make a system resilient to intrusions. The attacker in the figure is part of

the environment, so its behavior is modeled by the environment assumptions in Ta-

ble 3.3. Now, look at assumptions A1 through A4 in the table: they impose restrictions

to the behavior of the attacker. Hypothesizing about limits to the behavior of malicious

entities, such as hackers or viruses is, of course, not acceptable. Therefore, in the previ-

ous section we devised mechanisms that impose these restrictions in practice, i.e., that

enforce the assumptions despite the potential arbitrary behavior of the attacker.

Assumptions A1 through A4 effectively do attack prevention (see Figure 2.3): it is

an assumption that the attacker is not able to attack either the TTCB software modules

or the control channel. Therefore, at this step of the methodology there is no need to

enforce the system resilience to attackers. Handling the attacks/intrusions at step two

(environment assumptions) is the same as doing it at step three, the one we are now. If

we made RTAI part of the system then it would be the system that would be preventing

or tolerating the faults, instead of the environment, i.e., protection would be made in

step three instead of two. However, in this particular case, the way it is done seems

more intuitive.

What remains to be defined at this stage is how the abstract network properties

(Table 3.1) are obtained on top of the real network, taking in account the environment

assumptions.

Property AN1 is available in the Ethernet and can be simulated with IP multicast or

with several message sends in other networks. Property AN2 is imposed by most net-
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works, through the cyclic redundancy check (CRC), if no attacks on the network are con-

sidered (the assumptions A3/A4). If there are attacks, message authentication codes

(MACs) have to be used instead. Property AN3 is guaranteed by the environment

assumption A5.

For property AN4 to be guaranteed in a dedicated switched Fast-Ethernet, packet

collisions have to be avoided, since they would cause unpredictable delays (this issue

is discussed at length in (Casimiro et al. , 2000)). This requires that: (1) only one host

can be connected to each switch port (hubs cannot be used); and (2) the traffic load has

to be controlled. The second requirement is handled by an access control mechanism,

which accepts or rejects the execution of a service taking in account the availability

of resources (buffers and bandwidth). This mechanism controls the network traffic

preventing that a set of bounds are exceeded: the switch buffering and switching ca-

pacities; the buffering capacity of the network boards used by the local TTCBs; and the

network bandwidth.

Property AN5 is guaranteed by the assumption A6. Property AN6 depends on

several factors having to do with the transmission technology, and medium topology.

In the network we are considering, a switched Fast-Ethernet, the broadcast degree Bd

can easily exceed half of the nodes. Properties AN7 and AN8 are guaranteed by the as-

sumptions A3 and A4, and could be enhanced using common cryptographic schemes.

3.4 Intrusion tolerance with the TTCB

After delving into the discussion of the TTCB services and design, a pertinent ques-

tion at this stage is: What is the TTCB good for? This question is best answered after

explaining the failure assumptions followed in the MAFTIA architecture.
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3.4.1 Strategy for intrusion tolerance

With the TTCB, we can implement intrusion tolerance mechanisms, on a hybrid

of arbitrary-failure (the payload system) and fail-silent (the TTCB) components. The

TTCB is designed to assist crucial steps of the operation of middleware protocols. We

use the word “crucial” to stress the tolerance aspect: unlike classical, prevention-based

approaches (e.g., Reference Monitor), the component does not stand in the way of all

resources and operations. As a matter of fact, protocols run in an untrusted environ-

ment. Local processes only trust interactions with the security kernel and single com-

ponents can be attacked and intruded. Correct services are provided using distributed

fault tolerance mechanisms, for example through agreement and replication amongst

collections of processes in several hosts.
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Figure 3.4: Intrusion tolerance with a TTCB.

Observe Figure 3.4: software components Ci interact through protocols that run

on the payload system (the top arrows). However, they can locally access the TTCB in

some steps of their execution, e.g., to be informed whether a message just received was

or not corrupted. The white color is used to indicate a trusted environment (the TTCB).

The key means the environment is secured using cryptography. The grey colors for the

payload system mean untrusted.
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Trusting the TTCB security kernel means that it is assumed that it is not feasible to

subvert the TTCB, but it may be possible to interfere in its interaction with processes.

In similar terms, whilst we let a local host be compromised, we must make sure that

it does not undermine fault-tolerant operation of the protocols amongst distributed

components. This implies two things: the operation of protocols can be intruded upon

and individual components can be corrupted (e.g., Ck); and special care must be taken

in order to preserve the validity of the interactions of a correct process with its local

TTCB. The reader is referred to the next chapters, which show the use of the TTCB to

implement intrusion-tolerant protocols.

In order to understand the assumptions on timeliness of our system, let us analyze

Figure 3.4 again: the clock inside the TTCB area is meant to suggest it is a fully syn-

chronous (or hard real-time) component. On the other hand, the warped clock in the

payload area suggests that it has uncertain timeliness, or partial synchronism. It can

even be asynchronous.

Constructing secure timed protocols in these environments is a hard task, due to

the risk of attacks on the timing assumptions. For that reason, most known secure

broadcast or Byzantine agreement protocols assume an asynchronous system. How-

ever, certain services, if provided in a trusted way – by the TTCB – can provide invalu-

able help.

3.4.2 Example applications with a TTCB

This section exemplifies the use of the TTCB in two different settings. Figure 3.5(a)

shows a web server replicated inside a facility, in a company or another institution.

Clients call the server using an intrusion-tolerant protocol. This protocol uses the TTCB

to carry out some crucial steps, but otherwise runs in the payload system. If a subset

of replicas is corrupted and behaves maliciously, the server still provides correct re-

sults, tolerating these malicious faults. The inside-facility TTCB can be the COST-based

TTCB described in this chapter. This solution requires an extra Fast-Ethernet adapter
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per host and an extra network switch, a negligible cost.

Several Internet authentication schemes rely on highly secure and distributed

servers. For instance, Public Key Infrastructures have Certification Authorities (CAs)

with these characteristics. Figure 3.5(b) shows a TTCB distributed over a wide area,

that allows the execution of intrusion-tolerant protocols over such an extension. The

TTCB control channel has to be a highly secure and wide channel, with guaranteed

bandwidth (e.g., the above-mentioned ISDN VPN).
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Figure 3.5: Examples of intrusion-tolerant systems with a TTCB: (a) replicated web
server; (b) distributed security server.

3.5 Related work

The TTCB is a distributed security kernel which is radically different from the

classic Trusted Computing Base (TCB) (National Computer Security Center, 1983) or

the Network Trusted Computing Base (NTCB), composed of a set of interconnected
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TCBs (National Computer Security Center, 1987). The objective of both the TCB and

the NTCB is to provide intrusion prevention for all critical software in the host, i.e., to

prevent that attacks against whatever is important in a host have success. The TTCB,

on the contrary, is supposed to be the only secure component of a host, and to provide

a limited set of services that assist processes to tolerate attacks. Even if some processes

are attacked with success, the TTCB assists the collection of processes to go on deliv-

ering their service correctly. In the next chapters we show how the TTCB can be used

to execute intrusion-tolerant protocols. We are not aware of any distributed security

kernel with the above-mentioned characteristics of the TTCB. We are also not aware of

any real-time security kernel.

The TTCB builds on the Timely Computing Base work (Verı́ssimo et al. , 2000b).

The objective of this distributed component it to assist the implementation of timed

operations and to detect timing failures. It assumes a benign fault model, i.e., on the

contrary to the TTCB it is not resilient to malicious faults. The TTCB addresses a larger

spectrum of applications, therefore is provides not only all the functionality of the

Timely Computing Base, but also additional security-related services.

The idea of a device that assists the execution of secure applications or services is

not new. There are several hardware devices that we can put in that category, e.g.,

secure coprocessors, cryptographic accelerators, and Smartcards. Some security assis-

tants have limited functionality, e.g., cryptographic accelerators execute cryptographic

operations only.

Some devices offer diversified services. IBM 4758 and its predecessor, Citadel, are

two general-purpose secure coprocessors (Smith et al. , 1998). They can be considered

to be complete microcomputers, with their own processor, memory, operating system,

etc. Project Dyad explored the use of those devices to help the construction of secure

systems and applications (Tygar & Yee, 1993). Five uses were defined: (1) host integrity

check (the coprocessor tests if trusted versions of software are executed at bootstrap);

(2) secure audit trails (the coprocessor seals audits trails securely in order to detect po-

tential corruption); (3) software copy protection (software can be protected from illegal
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usage by encrypting some modules and executing them inside the coprocessor); (4) se-

cure electronic money (coprocessors can ensure the integrity and privacy of electronic

money operations); and (5) secure contracts (a set of coprocessors in partners’ comput-

ers can assist the negotiation and signing of electronic contracts). Similar applications

were devised for Smartcards (Itoi & Honeyman, 1999; Stabell-Kuløet al. , 1999; Shoup

& Rubin, 1996). These card-shaped devices provide a wide range of functionality, from

passive memory to a processor with memory and cryptographic primitives.

The Trusted Computing Platform Alliance (TCPA) is defining a secure subsystem

called Trusted Platform Module (TPM) (TCPA, 2002) 7. This subsystem is supposed to

exist inside hosts and perform some security related operations. The services already

defined include integrity check (to measure and report the state of the operating sys-

tem and other software in the host), protected store (to store important data inside the

subsystem). Other uses mentioned in the documentation are: trusted cryptographic

primitives, secure auditing and logging, file integrity and software licensing. Cur-

rently there at least two hardware implementations of the TPM available from National

Semiconductors and Infineon Technologies.

Although this chapter describes the implementation of the TTCB in COTS PCs and

OS, it could also be implemented inside devices like secure coprocessors or Smartcards.

Moreover, the TTCB is a distributed component and therefore it can support and assist

distributed intrusion-tolerant applications in a more effective way. The TTCB is also

real-time, so it can assist the execution of applications with time requirements.

The TBA service internal protocol is basically a consensus protocol with the pos-

sibility of selecting the decision function and with the two additional masks in the

result. Synchronous reliable multicast protocols are known for a long time (Lamport

et al. , 1982; Babaog̃lu & Drummond, 1985; Babaog̃lu et al. , 1986; Cristian et al. , 1985).

On the contrary to the TBA protocol, most of these protocols rely on the diffusion of the

messages that are received to all the other recipients in order to guarantee reliability.

The idea of using the broadcast degree was introduced in (Babaog̃lu et al. , 1986).

7See http://www.trustedcomputing.org.
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3.6 Summary

The chapter describes a security kernel – the TTCB – with innovative features: first,

it is distributed, with local parts in hosts connected by a control channel; second, it is

real-time, capable of timely behavior; and third, it can be constructed using only COTS

components. The chapter also presents the services of the TTCB and gives an intuition

on how these services can be used to support the construction of a new generation of

intrusion-tolerant protocols. The currently available implementation of the TTCB is

based on a Fast-Ethernet network and common hardware running a real-time operat-

ing system, RTAI. By applying our design methodology, we expect that the existing

implementation exhibits a good coverage of the assumptions, acceptable to most ap-

plications. This solution has one extra added advantage – the TTCB can be tested and

used in open settings.

In the future, we are considering the implementation of the TTCB inside an appli-

ance board. A version of RT-Linux for embedded systems is already available, which

leads us to predict that the port will be straightforward. We also envisage an imple-

mentation using a wide area control network.

Note

The content of this chapter was partially published in (Correia et al. , 2002a; Correia

et al. , 2001b).
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4
Reliable multicast

Protocols that are able to tolerate Byzantine faults have been extensively studied in

the past 20 years (Lamport et al. , 1982; Rabin, 1983), and they have been applied to a

number of well-known problems, such as consensus and group communication prim-

itives with different order guarantees. These protocols are usually built for a system

composed of a set of cooperating processes (or machines) interconnected by a network.

The processes may fail arbitrarily, e.g., they can crash, delay or not transmit some mes-

sages, generate messages inconsistent with the protocol, or collude with other faulty

processes with malicious intent. The synchrony assumptions about the network and

process execution have been either the synchronous or the asynchronous models. Re-

cent research in this area, however, has mostly focused on asynchronous systems, since

this model is well-suited for describing networks like the Internet and other WANs

with unpredictable timeliness (examples can be found in (Castro & Liskov, 1999; Re-

iter, 1994; Malkhi et al. , 1997c; Alvisi et al. , 1999; Kihlstrom et al. , 2001; Moser et al. ,

2000; Cachin et al. , 2000)). The assumption of this model has also one added advantage

– the resulting protocol tolerates timing attacks.

Nevertheless, the asynchronous model has some drawbacks, and among them is

the constrain that it imposes on the maximum number of processes that are allowed to

fail simultaneously. For instance, Bracha and Toueg showed that, assuming Byzantine

faults, it is impossible to send reliable multicasts if there are more than f = bn−1
3
c faulty

processes in a system with n processes (Bracha & Toueg, 1985).

This chapter describes a new reliable multicast protocol for asynchronous systems

81
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with a hybrid fault model: the Byzantine reliable multicast protocol (BRM-M) 1. In our

case, processes and network can behave in a Byzantine way; however, we assume the

existence of a distributed security kernel that can only fail by crashing: the TTCB. This

kernel only provides limited functionality, but can be called by processes to execute

a few small steps of the protocol. By relying on this kernel, our protocol is highly

efficient, for instance in terms of message complexity, when compared with traditional

protocols. Moreover, it imposes constraints on the number of process failures that

are similar to accidental fault-tolerant protocols: for f faults, our protocol requires

n ≥ f + 2 processes, instead of n ≥ 3f + 1. In reality, our protocol does not impose a

minimum number of correct processes. However, in practice, we say that the number

of processes has to be n ≥ f + 2 to denote the notion that the problem is vacuous if

there are less than two correct processes. This was already pointed out by Lamport et

al. (Lamport et al. , 1982).

The chapter makes fundamentally two contributions. It presents a novel way of de-

signing Byzantine-resilient protocols, which rely on the TTCB to execute a few crucial

steps. Moreover, it describes a new reliable multicast protocol that is highly efficient

and imposes no constraints on the number of faulty processes.

4.1 Process failure modes

A process is correct if it follows the protocol until the protocol completion. There

are several circumstances, however, that might lead to a process failure. For instance,

a process can crash (e.g., due to a power outage) or start to behave maliciously (e.g.,

produce wrong results). In an arbitrary fault model, which is the model considered in

this and the next chapters, no restrictions are imposed on process failures, i.e., they can

fail arbitrarily. A process can simply stop working, or it can send messages without

regard of the protocol, delay or send contradictory messages, or even collude with

1BRM-M is one of two reliable multicast protocols based on the TTCB. The ‘M’ indicates that the
protocol tries to minimize the number of messages sent. The other protocol, BRM-T, tries to minimize
the time of execution (Lung et al. , 2003).



4.1. PROCESS FAILURE MODES 83

other malicious processes with the objective of breaking the protocol.

Of the various reasons that can cause a process to produce incorrect results, tradi-

tionally the most difficult to tolerate is related to attacks made by humans. Once an

attacker takes control of a process, it can make that process behave in any way, and if

one wants to be conservative, one has to assume that it can cause that process behave

in the worse possible manner to the protocol execution. In the rest of this section, we

will look into the attacks that are specific to our architecture, and that might lead to the

failure of the corresponding process.

A personification attack can be executed by a local adversary if it is able to get

the pair (eid, secret), which lets a process communicate securely with the local TTCB

(Section 3.2.1). Before a process starts to use the TTCB, it needs to call the Local Au-

thentication service to establish a secure channel with the local TTCB. The outcome

of the execution of this procedure is a pair (eid, secret), where eid is the identifier of

the process and secret is a symmetric key shared with the local TTCB. If an attacker

penetrates a host and obtains this pair, it can impersonate the process before the TTCB

and the TTCB before the process. If this pair is kept secret, the attacker can only try to

disrupt or delay the communication between the process and the local TTCB – person-

ification attacks are prevented (see Section 3.2.1.1).

Another personification attack is possible if the attacker obtains the symmetric key

that a process shares with another process, a requirement of BRM-M that will be dis-

cussed in the next section. In this case, the attacker can forge some of the messages

sent between the two processes. Most of the messages transmitted by our protocol do

not need to be authenticated and integrity protected because corruptions and forgeries

can be detected with the help of the TTCB. The only exception happens with the ac-

knowledgments sent by the protocol, where it is necessary to add a vector of message

authentication codes. A successful attack to a host and subsequent disclosure of the

shared keys of a process, allows an attacker to falsify some acknowledgements. If the

keys can be kept secret, then he or she can only disrupt or delay the communication,

in the host or the network.
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A denial of service attack happens if an attacker prevents a process from exchang-

ing data with other processes by systematically disrupting or delaying the communi-

cation. In asynchronous protocols typically it is assumed that messages are eventu-

ally received (reliable channels), and when this happens the protocol is able to make

progress. To implement this behavior processes are required to maintain a copy of

each message and to keep re-transmitting until an acknowledgement arrives (which

might take a long time, depending on the failure). In this chapter, we decided to take

a different approach: if an attacker can systematically disrupt the communication of a

process, then the process is considered failed as soon as possible, otherwise the attacker

will probably disturb the communication long enough for the protocol to become use-

less. For example, if the payment system of an e-store is attacked and an attempt of

paying an item takes 10 hours to proceed, that is equivalent to a failure of the store.

In channels with only accidental faults it is usually considered that no more than

Od messages are corrupted/lost in a reference interval of time. Od is the omission degree

and tests can be made in real networks to determine Od with any desired probabil-

ity (Verı́ssimo et al. , 1989). If a process does not receive a message after Od + 1 retrans-

missions from the sender, with Od computed considering only accidental faults, then

it is reasonable to assume that either the process crashed, or an attack is under way. In

any case, we will consider the recipient process as failed. The reader, however, should

notice that Od is just a parameter of the protocol. If Od is set to a very high value, then

our protocol will start to behave like the protocols that assume reliable channels.

Note that the omission degree technique lies on a synchrony hypothesis: we ‘de-

tect’ omissions if a message does not arrive after a timeout longer than the ‘worst-case

delivery delay’ (the hypothesis). Furthermore, we ‘detect’ crash if the omission degree

is exceeded. In our environment (since it is asynchronous, bursts of messages may

be over-delayed, instead of lost) this artificial hypothesis leads to forcing the crash

of live but slow (or slowly connected) processes. There is nothing wrong with this,

since it allows progress of the protocol, but this method is subject to inconsistencies

if failures are not detected correctly. In our system, we can rely on the timing failure
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detector of the TTCB to ensure complete and accurate failure detection amongst all par-

ticipants (Verı́ssimo et al. , 2000b), and feed a membership service complementing the

reliable multicast protocol being described. These mechanisms are out of the scope of

the present chapter, but substantiate the correctness of the omission degree technique

applied to asynchronous environments, if supported with a timing failure detector.

Another advantage of considering systematically delayed processes as failed is re-

lated with the implementation of the TTCB. Since the TTCB is a small component, it

can only keep the results of the TBA service for a limited time. If a delayed process

asks for a result after it expired, the simplest thing to do is to consider the process as

failed. Alternatively, the protocol could be made more complex to recover from this

situation. However, there is not much justification in doing so for the reason pointed

earlier – if a process is too late it is useless.

4.2 Byzantine reliable multicast

4.2.1 Protocol definition and properties

In each execution of a multicast, there is one sender process and several recipient

processes. A message transmitted to a group should be delivered to all member pro-

cesses (with the limitations mentioned below), including the sender. No assurances,

however, are provided about the order of message delivery. Each process can deliver

its messages in a distinct order. In the rest of the thesis, we will make the classical

separation of receiving a message from the network (or from the lower protocol layers)

and delivering a message – the result of the protocol execution.

Informally, a reliable multicast protocol enforces the following (Bracha & Toueg,

1985): 1) all correct processes deliver the same messages, and 2) if a correct sender

transmits a message then all correct processes deliver this message. These rules do not

imply any guarantees of delivery in case of a malicious sender. However, one of two

things will happen, the correct processes never complete the protocol execution and
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no message is ever delivered, or if they terminate, then they will all deliver the same

message. No assumptions are made about the behavior of the malicious (recipient)

processes. They might decide to deliver the correct message, a distinct message or no

message.

Formally, a reliable multicast protocol has the properties below (Hadzilacos &

Toueg, 1994). The predicate sender(M) gives the message field with the sender, and

group(M) gives the “group” of processes involved, i.e., the sender and the recipients

(note that we consider that the sender also delivers).

• Validity: If a correct process multicasts a message M, then some correct process in

group(M) eventually delivers M.

• Agreement: If a correct process delivers a message M, then all correct processes in

group(M) eventually deliver M.

• Integrity: For any message M, every correct process p delivers M at most once

and only if p is in group(M), and if sender(M) is correct then M was previously

multicast by sender(M).

4.2.2 The BRM-M protocol

The Byzantine Reliable Multicast BRM-M protocol is executed in two phases. In

the first, the sender multicasts the message one time for the recipients, and then it se-

curely transmits a hash code through the TTCB TBA service. This hash code is used

by the recipients to ensure the integrity and authenticity of the message, i.e., that the

message received is really the message which was sent (see discussion about hashes in

Section 2.4.1). If there are no attacks and no congestion in the network, there is a high

probability that the message is received by all recipients, and the protocol can termi-

nate immediately. Otherwise, it is necessary to enter the second phase. Here, processes

retransmit the message until either a confirmation arrives or the Od+1 limit is reached.
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Each multicast is performed at most Od + 1 times in order to tolerate accidental omis-

sions (Section 4.1).

Figure 3 shows an implementation of the protocol. A message consists of a tuple

with the following fields: (type, sender, elist, tstart, data). type indicates if it is a data

message (DAT) or an acknowledgement (ACK). sender is the identifier of the sender

process, and data is either the information given by the application or a vector of MACs

(see below). elist is a list of eid’s in the format accepted by the TTCB TBA service. The

first element of the list is the eid of the sender, the others are the eid of the recipients.

tstart is the timestamp that will be given to the TBA service.

Each execution of the protocol is identified by (elist, tstart). The protocol uses

two low level read primitives, one that only returns when a new message is avail-

able, read blocking(), and another that returns immediately either with a new message

or with a non-valid value (⊥) to indicate that no message exists, read non blocking().

These two primitives only read messages with the same value of (elist, tstart) which

correspond to a given instance of the protocol execution. Other values of the pair are

processed by other instances of the protocol. We assume that there is a garbage col-

lector that throws away messages for instances of the protocol that have already fin-

ished running (e.g., delayed message retransmissions). This garbage collector can be

constructed by keeping in a list the identifiers of the messages already delivered and

comparing these with the arriving messages.

4.2.3 First phase of the protocol

With the exception of the beginning, the code presented in the figure is common

both to the sender and to the recipients. If the process is a sender, it constructs and

multicasts the message to the recipients (lines 3-4). tstart is set to the current time plus

a delay T1. T1 should be proportional to the average message transmission time, i.e.,

it should be calculated in such a way that there is a reasonable probability of message

arrival before tstart. In practice, the value of tstart is a tradeoff: if it is too large, the
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Algorithm 3 BRM-M Sender and Recipient protocol.

1 {PHASE 1}
2 if I am the sender then {SENDER process}
3 M ←(DAT, my-eid, elist, TTCB getTimestamp() + T1, data);
4 multicast M to elist except sender; n-sends ←1;
5 else {RECIPIENT processes}
6 read blocking(M); n-sends ←0;
7 outp ←TTCB propose(M.elist, M.tstart, TBA RMULTICAST, Hash(M));
8 repeat
9 outd ←TTCB decide(outp.tag);

10 until (outd.error 6= TBA RUNNING);
11 if (outd.proposed-ok contains all recipients) then
12 deliver M; return;

13 {PHASE 2}
14 M-deliver ←⊥;
15 mac-vector ←calculate macs of (ACK, my-eid, M.elist, M.tstart, outd.value);
16 M-ack ←(ACK, my-eid, M.elist, M.tstart, mac-vector);
17 n-acks ←0; ack-set ←eids in outd.proposed-ok;
18 t-resend ←TTCB getTimestamp();
19 repeat
20 if (M.type = DAT) and (Hash(M) = outd.value) then
21 M-deliver ←M;
22 ack-set ←ack-set ∪ {my-eid};
23 if (my-eid /∈ outd.proposed-ok) and (n-acks < Od+1) then
24 multicast M-ack to elist except my-eid; n-acks ←n-acks + 1;
25 else if (M.type = ACK) and (M.mac-vector[my-eid] is ok) then
26 ack-set ←ack-set ∪ {M.sender};
27 if (M-deliver 6= ⊥) and (TTCB getTimestamp() ≥ t-resend) then
28 multicast M-deliver to elist except (sender and eids in ack-set);
29 t-resend ←t-resend + Tresend; n-sends ←n-sends + 1;
30 read non blocking(M); {sets M = ⊥ if there are no messages to be read}
31 until (ack-set contains all recipients) or (n-sends ≥ Od+1);
32 deliver M-deliver;
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first phase may take longer than what is required; if the value is too small, a correct

recipient may not receive the message before tstart and the second phase will have to

be executed unnecessarily (i.e., the opportunity to terminate the protocol early is lost).

Recipient processes start by blocking, waiting for a message arrival (line 6). De-

pending on whether there are message losses, the received message might be of type

DAT or ACK, or a corrupted message with the fields (elist, tstart) correct. The vari-

able n-sends contains the number of messages that were multicast and is set initially to

1 for the sender and to 0 to the recipients (lines 4 and 6). Next, both sender and recipi-

ents propose the hash of the message, Hash(M), to the TBA service (M is the message

transmitted by the sender, or the first message received by the recipient), and then they

block waiting for the result of the agreement (lines 7-10). The decision function used

by the protocol, TBA RMULTICAST, selects as result the value proposed by the first

process in elist, which in this case is necessarily the sender (if the sender is correct it

puts its eid in the first position of elist). Since the system is asynchronous, there is

always the possibility, although highly improbable, that the sender experiences some

delay and it tries to propose after tstart. In this case, TTCB propose will return the er-

ror TSTART EXPIRED and the sender process should abort the multicast, and the

application can retry the multicast later (for simplicity this condition is omitted from

the code). If all processes proposed the same hash of the message, all can deliver and

terminate (lines 11-12). Recall that the field proposed-ok indicates which processes pro-

posed the same value as the one that was decided, i.e., Hash(M).

Figure 4.1 illustrates an execution where processes terminate after this first phase

of the protocol. Notice in the figure that the TBA is initiated immediately after all

processes have proposed their value and not by tstart.

4.2.4 Second phase of the protocol

The second phase is executed if for some reason one or more processes did not

propose the hash of the correct message by tstart. Variable M-deliver is used to store
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Figure 4.1: BRM-M example execution (best case).

the message that should be delivered, and is initialized to a value outside the range of

valid messages (line 14).

The protocol uses message authentication codes (MAC) to protect ACK messages

from forgery (Menezes et al. , 1997, Chapter 9). This type of signature is based on

symmetric cryptography, which requires a different secret key to be shared among

every pair of processes. Even though MACs are not as powerful as signatures based

on public-key cryptography, they are sufficient for our needs, and more importantly,

they are known to be several orders of magnitude faster to calculate. Since ACKs are

multicast to all processes, an ACK does not take a single MAC but a vector of MACs,

one per each pair (sender of ACK, other process in elist) (Castro & Liskov, 1999). A

MAC protects the information contained in the tuple (ACK, my-eid, M.elist, M.tstart,

outd.value), and is generated using the symmetric key shared between each pair of

processes (lines 15-16).
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Next, processes initialize variables n-ack and ack-set (line 17). The first one will

count the number of ACKs that have been sent. The second will store the eid of the

processes that have already confirmed the reception of the message, either by propos-

ing the correct Hash(M) to the agreement (line 17) or with an acknowledgement mes-

sage. t-resend indicates the instant when the next retransmission should be done (line

18). It is initialized to the current time, which means that there will be a retransmission

as soon as possible.

P 1

P 3

P 2

P 4

T T C B

B R M u l t i c a s t - M t s t a r t t s t a r t  +  T a g r e e m e n t

T a g r e e m e n t O m i s s i o n  D e g r e e  ( O d )  =  1
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-  D e l i v e r y

T T C B _ p r o p o s e ( H ( M ) )

T T C B _ d e c i d e ( H ( M ) ) -  D A T
-  A C K

T B A  S e r v i c e

Figure 4.2: BRM-M example execution (normal case).

The loop basically processes the arriving messages (lines 20-26), does the periodic

retransmissions (lines 27-29), and reads new messages (line 30). If the message is of

type DAT and its hash is the same as the one given by the sender (line 20) then it is

saved for later delivery (line 21). Next, the eid of the process is added to ack-set to

indicate that this process has correctly received the message (line 22). If the process

received the message but did not propose the correct hash to the agreement then it
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needs to confirm the reception by multicasting an ACK (lines 23-24). The ACKs, like

the DAT messages, are only transmitted Od + 1 times. If the received message is an

ACK with a valid MAC, then the eid of the sender is put in ack-set (lines 25-26). Next,

if it is time, the message is retransmitted to the processes that did not confirm the

reception (lines 27-29). The loop goes on until Od+1 messages are sent or all recipients

acknowledged the reception of the message (line 31). To complete the protocol, the

process delivers the message.

As mentioned above in Section 4.2.1, there are situations in which the protocol

does not terminate in a process if the sender is malicious or the process is failed. For

instance, a malicious sender could propose a false hash of the message, and in that case

no correct recipients would be able to deliver the message. To address this problem, a

garbage collection mechanism has to be used in order to prevent correct processes from

being clogged with protocol instances that never terminate. This mechanism should

interact with a membership service to identify and remove instances waiting for faulty

processes.

Figure 4.2 represents an execution of the protocol. The sender multicasts the mes-

sage once, P2 receives it in time to propose Hash(M), P3 receives the message late and

P4 does not receive. When the agreement terminates all processes except P4 have the

message and get the result from the TTCB (P4 does not even know that the protocol

is being executed). At this point, by observing the result of the agreement, all become

aware that only P1 and P2 proposed the hash. Therefore, both P1 and P2 multicast the

message to P3 and P4. P3 multicasts an ACK to all processes confirming the reception

and sends the message to P4. P1 terminates at this moment because it has already sent

the message Od+1 times. The first message P4 receives is the ACK sent by P3. P4 saves

it in ack-set and gets the result of the agreement. Then it receives the right message, and

multicasts an ACK. At this moment, all processes terminate.

A proof that the protocol is a reliable multicast and that it tolerates f out of f + 2

faults can be found in Appendix A.
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4.3 Performance evaluation

The experimental setting used to evaluate the protocol consisted in the COTS-

based implementation of the TTCB described in Chapter 3. More specifically the per-

formance results were obtained on a system with six PCs, each containing a Pentium

III processor running at 450 Mhz and 192 Mbytes of RAM. The operating system of all

PCs was RTAI. The PCs were connected by two 100 Mbps Fast-Ethernet LANs, one for

the general-purpose payload network and another for the internal control network of

the TTCB (each PC had two network adapters). The protocol was implemented in C,

compiled with the standard gcc compiler. The hash function used was MD5 (Menezes

et al. , 1997, Chapter 9). Whenever possible, the communication among processes was

based on IP multicast. Six processes were used in the tests, each one running on a

distinct PC, and we assumed a setting where all processes were correct, i.e., no failed

processes (f = 0). Throughout the experiments the value adopted for the omission de-

gree was two (Od = 2). Each measurement was repeated at least 5000 times.

In the first set of experiments, we tried to determine in which phase the protocol

terminated. From the observed results, it is possible to conclude that for reasonable

values of T1, in the order of 2 ms, the protocol always terminates in the first (optimistic)

phase. We noticed that although IP multicast is unreliable, all messages apparently

reached the processes, and for this reason, they were able to propose their hash value

before tstart (see Figure 4.1). If messages were lost or if some of the processes were

malicious, the second phase would have had to be executed.

In the second set of experiments, we obtained message delivery times for the pro-

tocol. Since the protocol always finishes at the end of the first phase, it is possible to

use the following methodology to calculate the delivery times. One of the processes

is randomly selected as the sender, and then it reliably multicasts a message M of a

given size. Then, immediately after delivery, a single recipient is selected to send a

reply. This reply is an IP multicast for the same set of processes, with a message of the

same size. For each execution of this procedure two times were measured: the round-



94 CHAPTER 4. RELIABLE MULTICAST

0

2

4

6

8

1 0

1 2

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0
M e s s a g e  s i z e  ( b y t e s )

Av
era

ge
 la

ten
cy

 (m
s)

B R M - M

I P  m u l t i c a s t

Figure 4.3: BRM-M average delivery time for different message sizes (6 processes).

trip time and the recipient processing time. The round-trip time (Trd) is obtained by

the sender, and it corresponds to the time measured between the multicast and the re-

ception of the reply. The recipient processing time (Tproc) is the time taken between

the reception of the message M in the recipient and its reply. This time includes all

tasks executed by the recipient, such as hash calculation, and it corresponds mostly to

the time waiting for the TTCB TBA service, i.e., calling TTCB propose and waiting for

TTCB decide to return the result of the agreement (lines 7-10). If one assumes that an

IP multicast always takes the same amount of time, we can use the following formula

to calculate the protocol’s message delivery time:

Td = (Trd− Tproc)/2 + Tproc (4.1)

Figure 4.3 plots the average delivery time of the protocol, with 6 processes, as a

function of the message data size. These results are compared with the unreliable IP



4.3. PERFORMANCE EVALUATION 95

Multicast (over UDP sockets) performance, also implemented in C and in the same

environment of execution.
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Figure 4.4: BRM-M delivery times for 1000 messages with a size of 0 bytes (6 processes).

The protocol overheads are mainly three: one IP multicast, some processing time

(calculate the hash), and the execution of one TBA. Figure 4.3 shows that the additional

cost of the protocol in relation to an unreliable IP multicast is approximately 9 ms on

average. Since the processing time is in order of a few tens of microseconds, most of

this cost corresponds to the waiting period due to the TBA execution. Consequently,

we expect our protocol will perform better as the TTCB is optimized, and faster proto-

cols are used to implement the TBA service. Nevertheless, it should be noticed that the

current performance results seem already good when compared with other Byzantine

resilient protocols that have been published in the literature. For instance, in (Reiter,

1994), for a group of 6 processes and message sizes of 0 and 1 Kbytes, the delivery

times were approximately 53 and 57 ms, respectively. However, the test setting was

different so the comparison should be taken with prudence.
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Figure 4.5: BRM-M average delivery times with 3 to 6 processes and different message
sizes.

The delivery time values exhibit a reasonably high standard deviation, around

2.5ms. Figure 4.4 displays the delivery times for 1000 executions of the protocol us-

ing a message data size of 0 bytes. The main explanation for this behavior is related

to the internal implementation of the TBA service of the TTCB. Currently, it uses a

time-triggered protocol where interactions with the network only happen every 4 ms

(e.g., it only reads messages from the network at the beginning of the 4 ms interval).

Therefore, an agreement will take more or less time depending on the instant when

processes propose their values within the 4 ms interval.

The third set of experiments analyzed the variation of the latency with the number

of processes. The results are shown in Figure 4.5. The main conclusion is that the time

does not increase much with the number of processes. The reason is that the main

overhead of the protocol is the TBA execution, as discussed above. The main overhead

of the protocol in (Reiter, 1994), on the contrary, is the time taken by the public-key
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cryptography operations. The number of these operations increases with the number

of processes, therefore the protocol time also increases considerably with this number.

4.4 Related work

There is a significant amount of work in the area of reliable broadcasts for dis-

tributed systems – most of it, however, has focused on benign failures and/or assumed

a synchronous model (Hadzilacos & Toueg, 1994). Reliable multicast protocols toler-

ating Byzantine faults make no assumptions about the behavior of faulty processes

(similarly to “Byzantine agreement” in the synchronous time model (Lamport et al. ,

1982)). As for the number of processes, in asynchronous systems it was proved that

less than a third (f ≤ n−1
3

) process may be corrupted (Bracha & Toueg, 1985). In our

protocol, with the support of the TTCB, we can overcome this limit, and require only

f ≤ n− 2.

The Rampart toolkit contains a reliable multicast protocol where processes com-

municate through authenticated reliable channels and use public-key cryptography to

digitally sign some of the messages (Reiter, 1994). The protocol is based on a sim-

ple echo protocol where the sender starts by multicasting a hash of the message, then

it expects a confirmation from a subset of the processes, and finally it multicasts the

message (this protocol improves the echo protocol by Toueg (Toueg, 1984) in terms of

message complexity at the cost of more computation). Rampart assumes a dynamic

membership provided by a protocol which also utilizes a three-phase commit strat-

egy (Reiter, 1996b). Later, Malki and Reiter optimized the Rampart protocol using a

method of chaining acknowledgments to amortize the cost of computing the digital

signatures through several messages (Malkhi & Reiter, 1997b). Malkhi, Merrit and

Rodeh proposed a secure reliable multicast protocol based on dissemination quorums,

as a way to reduce delays especially in the case where f ¿ n (Malkhi et al. , 1997c).

This protocol assumes similar channels and uses public key signatures as the previous

protocols, but considers static membership, as also (Malkhi & Reiter, 1997b).
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The SecureRing system provides a reliable message delivery protocol that uses

public key cryptography and assumes a fully connected network (Kihlstrom et al. ,

2001). The multicast is imposed on a logical ring, where a token controls who can

send the messages. The Secure Trans protocol, which is implemented in the Secure-

Group system, uses retransmissions and acknowledgments to achieve reliable deliv-

ery of messages (Moser et al. , 2000; Moser & Melliar-Smith, 1999). These acknowledg-

ments are piggybacked on messages that are themselves broadcasted. Each message is

digitally signed to ensure authenticity and integrity.

There are some secure group communication systems which consider a non-

Byzantine fault model: Horus, Ensemble and Secure Spread. These systems assume

that communication can be attacked but that hosts do not fail. Secure multicast proto-

cols based on message authentication codes are given explicitly for Horus and Secure

Spread (Reiter et al. , 1994; Amir et al. , 2000).

The BRM-M protocol does not need public key cryptography, one of the main bot-

tlenecks of group communication performance (Castro & Liskov, 1999), since it uses

the TTCB to securely exchange a digest of the message. In terms of the network, we

assumed unreliable channels, therefore the message complexity is proportional to the

omission degree.

The FLP impossibility result states that consensus in a distributed asynchronous

system has the possibility of nontermination if a single process is allowed to crash (Fis-

cher et al. , 1985). This result does not apply to our system model because we have a

synchronous subsystem, the TTCB. However, reliable multicast is also a weaker prob-

lem than consensus, does not require agreement between the processes on the delivery

of the messages, therefore it is not bound by this result (Malki & Reiter, 1996).
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4.5 Summary

The chapter presents a new reliable multicast protocol for asynchronous systems

with a hybrid fault model. This type of fault model allows some components to fail in a

controlled way while others may fail arbitrarily. In our case, we assume the existence of

a simple distributed security kernel, the TTCB, which can only fail by crashing, while

the rest of the system can behave in a Byzantine way. By relying on the services of the

TTCB, the protocol exhibits good behavior in terms of time and message complexity

when compared with more traditional Byzantine protocols. Moreover, it only requires

n ≥ f + 2 correct processes, instead of the usual n ≥ 3f + 1.

Besides describing a novel Byzantine-resilient protocol, the chapter introduces the

design of protocols based on our architectural-hybrid fault model and, more specifi-

cally, the design of protocols using our distributed security kernel, the TTCB.

Note

The content of this chapter was partially published in (Correia et al. , 2002b). A

protocol of the same family was published in (Lung et al. , 2003).
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5
Consensus

Consensus is a classical distributed systems problem with both theoretical and

practical interest. Over the years, several other distributed problems have been shown

to be reducible or equivalent to consensus, for instance, total order broadcast (see,

e.g., (Hadzilacos & Toueg, 1994)). Consensus has been studied in a large number of

systems with different characteristics, such as the synchronous and asynchronous time

models, with distinct types of failures ranging from crash to arbitrary (a survey of early

work can be found in (Fischer, 1983)). On asynchronous systems, consensus has been

shown to be constrained by the FLP impossibility result, which says that it is impossi-

ble to solve consensus deterministically in a completely asynchronous system (Fischer

et al. , 1985). Consequently, various researchers have proposed several ways to circum-

vent this limitation, by using randomization techniques or by assuming weak syn-

chrony assumptions on the behavior of the system (Rabin, 1983; Ben-Or, 1983; Bracha

& Toueg, 1985; Dwork et al. , 1988; Chandra & Toueg, 1996).

This chapter presents a consensus protocol based on the TTCB and the hybrid fault

model being considered. This protocol is not particularly more complex than the re-

liable multicast presented in the previous section. However, it shows a different way

of using the TBA service, this time to agree on a hash proposed by a majority of pro-

cesses. The chapter also shows how a protocol based on the TTCB relates to the FLP

impossibility result.

101
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5.1 System model

The system model considered in this chapter will remain the same for the next

chapters, 6 and 7. In fact, it is basically the same as in the previous chapter. The system

is still an asynchronous networked system with a TTCB, and the process failure model

is basically the same. The difference is the communication model.

The protocol relies on channels that abstract some of the communication complex-

ity. Each pair of processes is interconnected by a secure channel, defined in terms of two

properties:

• Eventual reliability: if p and q are correct and p sends a message M to q, then q

eventually receives M.

• Integrity: if p and q are correct and q receives a message M with sender(M) = p,

then M was sent by p and M was not modified in the channel. 1

Each pair of correct processes is assumed to share a symmetric key known only by

the two. With this assumption, the two properties above can be implemented easily

and efficiently. Eventual reliability is obtained by retransmitting the messages periodi-

cally until an acknowledgment is received. Message integrity is achieved by detecting

the forgery and modification of messages through the use of Message Authentication

Codes (MACs) (Menezes et al. , 1997). A MAC is basically a secure checksum obtained

with a hash function and a symmetric key. They are about three orders of magnitude

faster to calculate than digital signatures (Castro & Liskov, 1999). A process adds a

MAC to each message that it sends, to allow the receiver to detect forgeries and modi-

fications. Whenever such detection is made, the receiver simply discards the message,

which will be eventually retransmitted if the sender is correct.

1The predicate sender(M) returns the sender field of the message header.
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5.2 Consensus

This section describes a consensus protocol tolerant to Byzantine faults. For pre-

sentation simplicity, we start by explaining how to reach consensus on a value with a

small number of bytes, and then this result is extended by removing this limitation.

The consensus protocol utilizes as building block the TBA service. The reader how-

ever, should notice that, as tempting as it might be, it is not possible to solve the con-

sensus problem in the payload system simply by using the TBA service of the TTCB.

In fact, the problem does not become much simpler because the protocol still needs

to address most of the difficulties created by a Byzantine asynchronous environment.

For instance, since the protocol runs in the asynchronous part of the system, it cannot

assume any bounds on the execution of the processes, on the observed duration of the

TTCB function calls, or on the message transmission times. Moreover, since processes

can be malicious, this means that they might provide incorrect values to the TTCB or

other processes, or they may delay or skip some steps of the protocol. What we aim

to demonstrate is that the ‘wormholes’ model, materialized here by the TTCB, allows

simpler solutions to this hard problem.

5.2.1 Consensus problem

The problem of consensus can be stated informally as: how do a set of distributed

processes achieve agreement on a value despite a number of process failures? There

are several different formal definitions of consensus in the literature. In the context

of a Byzantine fault model in asynchronous systems, a common definition is (see,

e.g., (Dwork et al. , 1988; Malkhi & Reiter, 1997c; Kihlstrom et al. , 2003)):

• Validity. If all correct processes propose the same value v, then any correct process

that decides, decides v.

• Agreement. No two correct processes decide differently.
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• Termination. Every correct process eventually decides.

Validity and Agreement properties must always be true otherwise something bad

might happen. Termination is a property that asserts that something good will eventu-

ally happen. This distinction is important because our protocol has different require-

ments in terms of number of failed processes, in order to be respectively safe or live.

In case all correct processes propose the same value, Validity guarantees that it is

the value chosen, even in the presence of alternative malicious proposals. In any other

case, namely if correct processes propose different values, the consensus protocol is

allowed to decide on any value, including on a value submitted by a malicious process.

5.2.2 Block consensus protocol

The block consensus protocol reaches consensus on a value with a limited number

of bytes. When compared with other Byzantine-resilient consensus protocols, block

consensus is quite simple since most of its implementation relies on the TBA service

of the TTCB, and no information has to be transmitted through the payload channel.

Nevertheless, it serves to illustrate two interesting features of our system model. First,

it demonstrates that it is possible to construct a consensus protocol capable of tolerating

arbitrary attacks based on an agreement protocol that was developed under the crash

fault model. Since crash-resilient protocols are much more efficient than the Byzantine-

resilient kind, we expect block consensus to exhibit very good performance. Second,

it shows: (i) how a protocol running under the asynchronous model can interact with

one running synchronously (in the TTCB); and (ii) how the protocol relates to the FLP

impossibility result and how the addition of a weak synchrony assumption is required

to guarantee termination (see Section 5.2.4).

The protocol is presented in Algorithm 4. The arguments are the list of the n

processes involved in the consensus (elist), a timestamp (tstart), and the value to be

proposed (value). tstart has to be the same in all processes. For the participants, this
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requirement is similar to what is observed in other consensus protocols where all pro-

cesses have to know in advance a consensus identifier. However, the identifier conveys

a meaningful absolute time to the TTCB: processes despite being time-free, can agree

on a value obtained from the Trusted Absolute Timestamping service to synchronize

their participation to the consensus. The number of bytes of value should be the same as

the size imposed by the TBA service (currently 20 bytes). In case it is smaller, padding

is done with a known quantity (e.g., with zero). The number of processes which can

fail are f = bn−1
3
c out of n.

Algorithm 4 Block consensus protocol (executed by every process).
1 function consensus(elist, tstart, value)
2 round ←0; {round number}
3 repeat
4 out prop ←TTCB propose(eid, elist, tstart, TBA MAJORITY, value);
5 repeat
6 out dec ←TTCB decide(out prop.tag);
7 until (out dec.error 6= TBA RUNNING);
8 tstart ←tstart + T ∗ func(α, round); {α ∈ [0, 1[}
9 round ←round+1;

10 until (f + 1 processes proposed the same value) or (2f + 1 processes proposed);
11 decide out dec.value;

The protocol works in rounds until a decision is made. In every round, each process

proposes a value to the TBA (line 4) and gets the result (lines 5-7). The value decided

by TBA is the value proposed by most processes (decision function TBA MAJORITY).

The protocol terminates when one of the conditions is satisfied (line 10):

1. at least f + 1 processes proposed the same value v: this condition implies that

at least one correct process proposed v. Therefore, either (1) all correct processes

proposed v or (2) not all correct processes proposed the same value. In both cases,

the protocol can terminate and decide v.

2. at least 2f+1 processes proposed a value but no subset of processes with the same
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value has a size larger than f : this condition implies that some correct processes

proposed distinct values. In this case, the protocol can terminate and decide

on any value. For example, our implementation will choose the most proposed

value, if it exists.

Both conditions can be tested using the two masks returned by TTCB decide. The

first one is constructed with the proposed-ok mask and the second one can be evaluated

with the proposed-ok and the proposed-any masks (Section 3.2.3). The TBA execution

starts when either all processes have proposed a value or time reaches tstart. Block

consensus assumes that eventually there is a round when enough processes manage to

propose to the TBA before tstart. ‘Enough’ here is defined in terms of the two con-

ditions that allow the protocol to terminate. The algorithm keeps retrying until this

happens (lines 3-10).

The tstart of the next round is calculated by adding a quantity to the previous tstart,

computed using constants T and α, and function func (line 8): func is a monotonically

increasing function of round, where α controls the slope, α ∈ [0, 1[. For example, linear

(func ≡ 1+α∗round), or exponential (func ≡ (1+α)round). Thus, by increasing the pe-

riod of retry upon each repetition, we will eventually manage to get enough processes

to propose. There is an interesting tradeoff here: with a larger tstart the probability

of termination in real systems increases, since more time is given for proposals; on

the other hand, if one process is malicious and does not propose, then a larger tstart

will delay the execution of the TBA service, and consequently the consensus protocol.

Incidentally, note that processes, being time-free, are totally unaware of the real-time

nature of tstart, they just deterministically increase an agreed number, which is only

meaningful to the TTCB.

Figure 5.1 illustrates an execution of the protocol in a system with four processes

where P1 is malicious. In the example, P1 and P2 are able to propose on time for the

first TBA. P4 starts on time, but is delayed for some reason (e.g., a scheduling delay)

and proposes after tstart(i). Therefore, it will get an error from the TBA service, and

its value will not be considered in the agreement. P3 is also delayed, and only starts
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Figure 5.1: Block Consensus protocol example execution (with n=4 and f=1).

to execute after tstart(i), and consequently, its proposal is also disregarded. When the

TBA finishes, all processes get the result, which in this case will be based on the pro-

posals from P1 and P2. Since P1 is malicious, it attempts to force an incorrect decision

by proposing V 1 that is different from the value of the correct processes (which is V ).

Nevertheless, since none of the conditions is satisfied (line 10), another round is ex-

ecuted. Here, process P1 skips the proposal step, but two correct processes manage

to propose before tstart(i+1). In the end, they will all be able to decide, since the first

condition will be true.

The correctness of the protocol is proved in Appendix A.

5.2.3 General consensus protocol

For presentation simplicity, we first described the block consensus protocol, which

achieves agreement on a data value with at most the size of the TBA service block. This

section presents a consensus protocol without this limitation. The general consensus

protocol makes use of the payload channel to multicast the values being proposed, and

then utilizes the TBA service to choose which value should be decided. The number of

processes which can fail is also f = bn−1
3
c out of n.
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The protocol is presented in Algorithm 5. The arguments have the same meaning

as in the block consensus. Each process starts by initializing some variables, and then

it multicasts the value through secure channels to the other processes (line 6). Next,

the protocol works in two phases, where it runs a minimum of one round in the first

phase, but depending on the values and on the timing of the proposals, it may need

several rounds in both phases.

In the first phase processes propose to the TBA a hash of their own values (line 11).

This phase and the protocol both terminate if f + 1 processes propose the same hash

to the TBA (line 19). In this case, the value decided is the one that corresponds to that

hash (lines 20, 23, and 26). Since f + 1 proposed the hash, then at least one of the

processes has to be correct. Consequently, it is safe to use that value as the decision

(the argument is equivalent to the first condition of block consensus). Moreover, since

a correct process always starts by multicasting its value through reliable channels, then

we can be sure that eventually all correct processes will receive the value, and will be

able to terminate.

The protocol enters the second phase when 2f + 1 processes proposed a hash but

no subset greater than f proposed the same hash (lines 17-18). This situation only

happens when the correct processes do not have the same initial value. In this case the

definition (Section 5.2.1) allows any value to be chosen. The simpler solution would be

to choose a pre-established value, e.g., zero. However, it is more interesting to make

the protocol agree on one of the various values proposed. This is the purpose of the

second phase.

The second phase uses a rotating coordinator scheme (Reischuck, 1982) where in

each round a different process becomes the coordinator (coord = round mod n), and

then its value is selected as the (potential) decision.

Processes pick the value of the current coordinator to propose it to the TBA. If

this value is not available (for instance, because it was delayed or the coordinator

crashed), then it is necessary to choose another value. In our case, we decided to use a

simple deterministic algorithm where a process goes through the elist until it finds
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the first process whose message has already been received (implemented by func-

tion nextSenderMesg(), line 10). Basically, the process first tries to see if the message

from coord = elist[k mod n] has arrived, then it tries for elist[(k + 1) mod n], next for

elist[(k + 2) mod n], and so on, until a message is found. There is the guarantee that at

least one message will always exist because the initial multicast (line 6) immediately

puts one message in the bag 2. This algorithm has the interesting characteristic that

it skips processes that did not manage to send their value, allowing the consensus to

finish faster.

Since the value being decided might have been proposed by a malicious process, an

extra precaution has to be considered. The malicious process might have sent the value

just to a sufficiently large subset of processes to ensure that a decision could be made

(e.g., f processes). Then, the rest of the processes would never get the decided value –

they would only get the corresponding hash. To solve this problem, processes have to

retransmit the value to the other processes (lines 24-25). The masks from TTCB decide

are used to determine which processes are these.

The correctness of the protocol is proven in Appendix A.

5.2.4 Termination and the FLP impossibility result

Fischer, Lynch and Paterson showed that consensus in an asynchronous system

has the possibility of nontermination if a single process is allowed to crash (Fischer

et al. , 1985). Throughout the years, several proposals have been made to circumvent

this FLP impossibility result, for example, by using randomization (Rabin, 1983; Ben-

Or, 1983) or by making partial synchrony assumptions (Dwork et al. , 1988). More

recently, the concept of unreliable failure detectors was defined in order to hide this sort

of assumptions (Chandra & Toueg, 1996).

The system we consider is not fully asynchronous but a combination of asyn-

2We use the word ‘bag’ to denote a set of messages. A bag does not have an order and does not store
duplicated data.
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Algorithm 5 General consensus protocol (executed by every process).
1 function consensus(elist, tstart, value)
2 hash-v ←⊥; {hash of the value decided}
3 bag ←⊥; {bag of received messages}
4 round ←0; {round number}
5 phase ←1; {protocol phase}
6 multicast(elist, tstart, value) to processes in elist; {send value through payload channel}

7 loop
8 repeat
9 if (phase = 2) then {phase 1: use my value — phase 2: choose a value from a process}

10 value ←{M.value : coord = (round mod n) ∧ M=nextSenderMesg(coord, elist, bag)
};

11 out prop ←TTCB propose(eid, elist, tstart, TBA MAJORITY, Hash(value));
12 repeat
13 out dec ←TTCB decide(out prop.tag);
14 until (out dec.error 6= TBA RUNNING);
15 tstart ←tstart + T ∗ func(α, round);
16 round ←round+1;
17 if (2f +1 processes proposed) and (less than f +1 processes proposed the same value)

then
18 phase ←2;
19 until (f + 1 processes proposed the same value); {decision condition}
20 hash-v ←out dec.value;

21 when receive message M
22 bag ←bag ∪ {M};

23 when (hash-v 6= ⊥) and (∃M∈bag : Hash(M.value) = hash-v)
24 if (phase = 2) then
25 multicast M to processes in elist except those that proposed Hash(M.value);
26 decide M.value;
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chronous (payload) and synchronous (TTCB), so FLP does not apply. The precise

boundaries in terms of communication synchrony, hosts synchrony and message de-

livery order in which the impossibility exists were detailed in a paper by Dolev et

al. (Dolev et al. , 1987). How does the block consensus protocol fit in the categories in

that paper? The hosts are asynchronous but all communication is done using the TBA,

therefore it is synchronous. The protocol does not receive messages but results of the

TBA and all correct processes execute the same TBAs in the same order, therefore the

communication is ordered. All processes receive the same results of the TBAs so the

communication can be classified as ‘broadcast’. The receive and send operations (de-

cide/propose in this case) are not atomic. With this scenario the paper concludes that

there is no bound on the number of faults that the protocol can tolerate, therefore FLP

does not apply. The crucial issue is the communication being ordered; the result would

be the same if the communication was asynchronous. In relation to the general consen-

sus protocol, the same reasoning applies to the consensus about the hash of the value

proposed, therefore FLP does not apply also.

To ensure the termination of the consensus protocol, it is necessary to make a weak

synchrony assumption about the execution of the processes. The protocol, however,

was built in such a way that even if this assumption is never verified, it never violates

the Agreement and Validity properties.

The protocol is executed in rounds and in each round processes attempt to propose

a value to the TBA service before tstart. If in one of the rounds enough processes are

capable of providing their values on time, then they are able to exit the main loop, and

complete the consensus protocol. Therefore, the assumption that guarantees termina-

tion is that: eventually there will be a round where at least 2f + 1 processes manage to call

TTCB propose before one of the tstart deadlines 3. This is a very weak assumption since it

is only about the hosts (not the network) and it is required to eventually occur (it does

not have to happen at a specific cycle).

3In the general consensus protocol, if correct processes propose different values, it is necessary two
(non-contiguous) rounds.
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5.3 Evaluation of the protocols

This section evaluates the two versions of the consensus protocol in terms of time

and message complexity.

5.3.1 Time complexity

The time complexity of distributed algorithms is usually evaluated in terms of

number of rounds or phases. Using this method, the two versions of the protocol

described take one round in the best case, i.e., in a run where no failures occur. How-

ever, since these criteria can be ambiguous, Schiper introduced the notion of latency

degree (Schiper, 1997). The idea is based on a variation of Lamport’s logical clocks

which assigns a number to an event (Lamport, 1978), with the following rules:

1. send/multicast and local events at a process do not change its logical clock;

2. the timestamp carried by message M is defined as ts(M) = ts(send(M)) + 1,

where ts(send(M)) is the timestamp of the send(M) event;

3. the timestamp of a receive(M) event on a process p is the maximum between

ts(M) and the timestamp of the event at p immediately preceding the receive(M)

event.

We extended the notion to systems with a TTCB, by introducing a new set of rules:

4. a TTCB propose event at a process does not change its logical clock value;

5. the timestamp associated to an execution of the TBA service A is defined as

ts(A) = ts(TTCB propose(A)) + 1, where ts(TTCB propose(A)) is the largest

timestamp of the TTCB propose events performed for A;

6. the timestamp of a TTCB decide(A) event on a process p is the maximum be-

tween ts(A) and the timestamp of the event at p immediately preceding the

TTCB decide(A) event.
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These new rules were defined considering the current implementation of the TBA

protocol. The protocol consists basically in every local TTCB sending the value pro-

posed by its local process(es) to the other local TTCBs. Applying the original rules

for send and receive events (rules 1-3), we derive the rules for TTCB propose and

TTCB decide (rules 4-6).

Let us now define latency degree. For an execution of a consensus algorithm C, the

latency of C is the largest timestamp of all decide events. The latency degree of C is the

minimum possible latency of C over all possible executions (Schiper, 1997).

Now we calculate the latency degree for both consensus protocols applying the

rules above. The logical clocks start with 0 at every process.

• Block consensus protocol: (1) the TBA has ts(A) = 1 (rules 1, 4, 5); (2) TTCB decide(A)

has a timestamp of 1 at every host (rule 6); (3) every process decides at line 11

with that logical clock value so the latency degree of the protocol is 1.

• General consensus protocol: All correct processes with same value: (1) multicast at

line 6 has ts(M) = 1 (rules 1, 2); (2) the TBA which is started at line 11 has also

ts(A) = 1 (rules 1, 4, 5); (3) if a process receives a message, the timestamp is 1 (rule

3); (4) all processes decide with a logical clock value of 1 (rule 6), and therefore

the latency degree is 1. Correct processes with distinct values: (1) (2) and (3) are

the same; (4) processes enter in phase 2 and execute another TBA with ts(A1) = 2

(rules 4, 5); (5) all processes decide with a logical clock value of 2 (rule 6), and

therefore the latency degree is 2.

Table 5.1 compares the latency degrees of both versions of the protocol with other

asynchronous Byzantine-resilient protocols that solve similar consensus problems.

Our protocols have the best latency degree. The translation into execution time is far

from trivial (Keidar, 2002), but in our case we can say that the best case execution time

of the protocols is the time for executing a single TBA, which is in the order of 4 ms with

the current TTCB implementation. Although we are not aware of any measurements
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Protocol Latency degree Requirements
Dwork et al. (Dwork et al. , 1988) 4 Signed messages
Dwork et al. (Dwork et al. , 1988) 7 –
Malhki & Reiter (Malkhi & Reiter, 1997c) 9 or 6 Signed messages
Kihlstrom et al. (Kihlstrom et al. , 2003) 4 Signed messages
Block consensus 1 TTCB
General consensus 1 or 2 TTCB

Table 5.1: Latency degrees for some Byzantine-resilient consensus protocols.

of consensus execution times, protocols that rely on signatures have to use public-key

cryptography, and therefore they are allegedly slower than ours.

In the presence of process failures, both versions of the protocol also have small

latency degrees because they are mostly decentralized. Block consensus continues to

have a latency degree of 1, and General consensus has a latency degree of 1 in case

all correct processes start with the same value. The other protocols presented in Ta-

ble 5.1 are all based on a (rotating) coordinator scheme, and therefore, their perfor-

mance might be affected by the failures (e.g., the first coordinators are all malicious).

For instance, the latency degree of the protocols by Dwork et al. (Dwork et al. , 1988)

can be as high as 4(f + 1) for the protocol with signed messages, and 6(f + 1) + 1 for

the other protocol.

5.3.2 Message complexity

The message complexity of a protocol is evaluated in terms of the number of trans-

missions in the payload channel. Both versions of the protocol have the additional cost

of performing TBAs which use the control channel. Table 5.2 shows the total number

of messages sent by our protocols in the payload channel, considering the cases when a

multicast is a single message (label “multicasts”), or when it is (n− 1) “unicasts” (plus

a local delivery) of the same message.
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Best case Worst case
Protocol Multicasts Unicasts TBAs Multicasts Unicasts TBAs
Block consensus 0 0 1 0 0 no limit
General consensus n n(n− 1) 1 2n n(n− 1)+ no limit

+n(n− f − 1)

Table 5.2: Message complexities for the consensus protocols.

5.4 Related work

The past twenty years saw several variations of the consensus problem presented

in the literature. Consensus protocols can decide on a 0 or 1 bit (binary consensus),

on a value with undefined size (multi-value consensus), or on a vector with values

proposed by several processes (vector consensus or interactive consistency). Several

Byzantine-resilient consensus protocols were proposed, using different techniques to

circumvent FLP.

Recently several works applied the idea of Byzantine failure detectors to solve

consensus (Malkhi & Reiter, 1997c; Kihlstrom et al. , 2003; Doudou & Schiper, 1997;

Doudou et al. , 2002; Baldoni et al. , 2000). All these protocols use signatures imple-

mented with public-key cryptography. Any process p can generate a signature S(p, v)

that cannot be forged, but which other processes can test. Likewise, they are all based

on a rotating leader/coordinator per round. Malkhi and Reiter presented a binary con-

sensus protocol in which the leader waits for a number of proposals from the others,

chooses a value to be broadcasted and then waits for enough acknowledgments to de-

cide (Malkhi & Reiter, 1997c). If the leader is suspected by the failure detector, a new

one is chosen and the same procedure is applied. The same paper also described a

hybrid protocol combining randomization and an unreliable failure detector. The pro-

tocol by Kihlstrom et al. also solves the same type of consensus but requires weaker

communication primitives and uses a failure detector that detects more Byzantine fail-

ures, such as invalid and inconsistent messages (Kihlstrom et al. , 2003).
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Doudou and Schiper present a protocol for vector consensus based on a mute-

ness failure detector, which detects if a process stops sending messages to another

one (Doudou & Schiper, 1997). This protocol is also based on a rotating coordinator

that proposes an estimate that the others broadcast and accept, if the coordinator is

not suspected. This muteness failure detector was used to solve multi-value consen-

sus (Doudou et al. , 2002). Baldoni et al. described a vector consensus protocol based

on two failure detectors (Baldoni et al. , 2000). One failure detector detects if a process

stops sending while the other detects other Byzantine behavior.

Byzantine-resilient protocols based on partial synchrony assumptions, both with

and without signatures, were described by Dwork et al. (Dwork et al. , 1988). The

protocols are based on a rotating coordinator. Each phase has a coordinator that locks

a value and tries to decide on it. The protocols manage to progress and terminate when

the system becomes stable, i.e., when it starts to behave synchronously.

Other techniques were also used to circumvent FLP in Byzantine-resilient consen-

sus protocols. Randomized/probabilistic protocols can be found in (Bracha & Toueg,

1985; Cachin et al. , 2000). More recently, the condition-based approach was introduced

as another means to circumvent FLP (Mostefaoui et al. , 2001; Friedman, 2002). Proto-

cols based on this approach satisfy the safety properties but termination is guaranteed

only if the inputs verify certain conditions.

5.5 Summary

This chapter defines two versions of a novel consensus protocol. Both versions

have very low time and message complexities (latency degree is at least twice as

good as the other protocols analyzed), and they do not require public-key cryptog-

raphy, which is currently considered one of the most important sources of overhead

of Byzantine-resilient protocols. The chapter also shows a new way to use the TTCB

TBA service to implement intrusion-tolerant protocols. The idea is to use this service

to make a voting on the values proposed by the processes, and to decide when enough
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processes voted the same. Finally, the chapter has shown how a TTCB-based protocol

manages not to be bound by the FLP impossibility result. However, a weak synchrony

assumption is required for termination. Future work will be made on trying to avoid

the need for this assumption, something that we envisage to be possible using the

wormhole model.

Note

The content of this chapter was partially reported in (Correia et al. , 2003a; Correia

et al. , 2003b).
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6
Membership service

Group communication is a well known paradigm for data transmission among

distributed sets of hosts or processes. The membership service is the component in

charge of keeping an updated list of the group members, processing joins and leaves

of the group, and assessing the failure of hosts/processes. This chapter is about the

design of an intrusion-tolerant membership service. The service has to continue to

provide correct results despite intrusions on a number of hosts, possibly with malicious

behavior of their membership service code, and attacks in the network (e.g., delay,

modification, or replay of messages).

Most work in group communication, and specifically in membership services, has

considered only crash failures (see Section 2.4). Recently, interest emerged in the

problem of designing membership services for environments that might suffer arbi-

trary faults, including attacks and intrusions. We are aware of only three intrusion-

tolerant membership services, all for asynchronous systems: Rampart (Reiter, 1996b),

SecureRing (Kihlstrom et al. , 2001) and SecureGroup (Moser et al. , 2000; Moser &

Melliar-Smith, 1999). Project ITUA also defined and implemented an improved ver-

sion of the Rampart’s service (Ramasamy, 2002).

The membership service is based on our hybrid fault model. The TTCB allows the

membership service to have interesting features when compared with similar services

in the literature. First it seems to be around one order of magnitude faster. One of

the reasons is that it does not use public-key cryptography, a well known bottleneck in

these services. Second, its performance seems to degrade slower with the number of

hosts involved. Third, it makes decisions in a distributed way, i.e., the service does not

119
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rely on a leader, contrary to most services that have been proposed previously. In these

services, the failure of a leader has to be detected using timeouts, and in consequence,

a hacker can delay the service by postponing the communication and creating false

failure suspicions of successive leaders.

6.1 System model

This chapter is about a membership service for groups of hosts. From now on, the

word site will be used to denote in an abstract way the software component that exe-

cutes the service in a host (recall the MAFTIA middleware architecture in Figure 2.5).

In practice, the site can be implemented, for instance, as a Unix process. The com-

munication model considered is the same as in the consensus chapter (Section 5.1).

The site failure modes are also the same as the process failure modes in the consensus

chapter, basically the same as in Section 4.1. The membership protocol assumes that

f ≤ b |V n|−1
3

c sites can fail in a given membership V n. Notice that f is not a constant but

is defined for every membership V n in terms of the number of sites in it, |V n|.

Wide-area networks are prone to link failures and other communication fluctua-

tions. Such effects can lead to network partitions, i.e., to the virtual separation of the

network in several subnetworks that are temporarily unable to communicate. This

may cause the temporary division of a group in two or more subgroups with possibly

different sizes. To handle this type of failures, the membership service uses a primary

partition model (Birman, 1997), in which only one of the subgroups is allowed to make

progress. Sites belonging to the rest of the subgroups are eventually removed from

the primary partition subgroup, and forced to exit. We have to utilize a primary parti-

tion model because in an arbitrary failure environment, progress can only be made in

subgroups that have at least 2f + 1 elements of the original group. After one or more

partitions, at most one subgroup in that condition exists.
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6.2 Properties of the Membership Service

A membership service handles basically three operations: the addition of members

to a group, the removal of failed members, and the removal of members by their own

initiative. These operations will be called respectively join, remove and leave. The failure

of a site is detected in every host by a failure detector module (see Section 6.3.6). This

component is regarded as part of the site abstraction.

The membership service generates views, i.e., numbered events containing the

group membership. A new view is installed whenever the membership is changed

due to a member join, leave or removal. A group of sites with a single member is cre-

ated when the first member joins and installs the first view. A site Sj sees a view as an

array V n
j containing one entry per each member site. The index n reflects the nth view

of the group. The service guarantees that each correct site has the same view at every

instant of logical time, i.e., after the installation of the same (totally ordered) views in

every site. The membership service executes the membership protocol, which is defined

formally in terms of the following properties (similar to (Reiter, 1996b)):

• Uniqueness. If views V n
i and V n

j are defined, and sites Si and Sj are correct, then

V n
i = V n

j .

• Validity. If site Si is correct and view V n
i is defined, then Si ∈ V n

i and, for all

correct sites Sj ∈ V n
i , V n

j is eventually defined.

• Integrity. If site Si ∈ V n
i and V n+1

i is not defined then at least one correct site

detected that Si failed or Si requested to leave. If site Si ∈ V n+1
i and V n

i was not

defined at Si then at least one correct site authorized Si to join.

• Liveness. If b |V n|−1
3

c + 1 correct sites detect that Si failed or receive a request to

join, or one correct site requests to leave, then eventually V n+1 is installed, or the

join is rejected.

Uniqueness guarantees that all correct sites in a group see the same membership.

Validity ensures that if a view is defined at a site then the site is in the view (often
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called Self-Inclusion property). Validity also guarantees that every correct site in a

view eventually installs the view. Integrity prevents malicious sites from removing or

adding sites to the group. Liveness ensures that a new view is installed when a number

of correct sites detect a failure, or a correct site wants to join or leave.

6.3 Membership protocol

The Membership Protocol is a finite state machine that evolves at each site in two

states: Normal and Agreement. When a site joins a group it enters the Normal state.

This is the state where the system is supposed to be most of the time, and where sites

may communicate normally. Then, when another site wants to join or leave, or when a

site is suspected to have failed, certain events are generated and the protocol changes to

the Agreement state. In this state, the sites of the current view try to agree on the next

view, by running the View Change Agreement protocol (VCA). When VCA terminates,

the new view is installed and the state changes back to Normal.

The protocol handles three events corresponding to the three operations mentioned

above: join, remove and leave. This section describes the service in terms of generic

events Ev(Sj), i.e., event Ev about site Sj . For instance, Ev can be the event generated

by the failure detector in a site indicating that Sj failed and should be removed. Later

in the chapter details are given about the correspondence between the generic and the

concrete events.

6.3.1 Example execution

As a first insight of the execution of the protocol, we will present an example of a

site removal by the membership service (see Figure 6.1). Initially, the group has four

sites, S1 to S4. S4 is malicious and performs malicious actions that are detected by the

(Byzantine) failure detectors of sites S1 and S2. When this happens, S1 and S2 multicast

a (INFO, Remv(S4)) message saying that S4 should be removed from the group. Even if
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S3 does not detect the misbehavior of S4, when it gets f + 1 = 2 messages stating that

S4 should be removed, it knows that at least one correct site detected the failure, since

at most f = 1 sites can fail and “lie”. Therefore, when S3 receives the second (INFO,

Remv(S4)) message it also multicasts the same information.

S 1

S 3

S 2

S 4

T T C B

t s t a r t

-  F a i l u r e  d e t e c t i o n T T C B _ p r o p o s e ( H a s h ( b a g - c h a n g e s - p r o p ) )

T T C B _ d e c i d e ( H a s h ( b a g - c h a n g e s - p r o p ) )-  m e s s a g e  ( I N F O ,  R ( S 4 ) )

f  =  ( | V n | - 1 ) / 3  =  1V n  =  { S 1 ,  S 2 ,  S 3 ,  S 4 }
n e w  v i e w  i n s t a l l e d  
V n + 1  =  { S 1 ,  S 2 ,  S 3 }  

V C A

L e g e n d :

H a s h ( b a g - c h a n g e s - p r o p )

( I N F O ,  R e m v ( S 4 ) )

T B A

Figure 6.1: Membership service example execution.

When a site receives 2f + 1 = 3 messages saying S4 failed it knows that all correct

sites will also receive 3 or more messages (justification in the next section). Therefore

it can move to the Agreement state with the confidence that all correct sites will do the

same. It can put Remv(S4) in a bag (called bag-changes), where it saves all the changes

that have to be applied to the current view, also knowing that all correct sites will do

the same.

In the Agreement state the sites execute the VCA protocol. The objective is to make

all correct sites decide the same changes to the view. The protocol uses the TBA service

of the TTCB to agree on a digest of the bag-changes-prop (which is approximately equal
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to bag-changes). In the example, S1 to S3 propose identical digests – they have the same

Remv(S4) event in the bag – and TBA returns that digest, since it decides the most

proposed value. Next, the new view is installed and S4 is removed.

6.3.2 The protocols

The membership service is implemented using two protocols. The basic member-

ship protocol is described first (Algorithm 6) and the VCA protocol is presented next

(Algorithm 7). Throughout the following discussion it is assumed that each message

carries the current view number. The communication channels only deliver messages

that were transmitted in the current view. Messages from the past, i.e., messages that

were sent in a previous view, are discarded, and messages from future views are stored

for later delivery. The correctness proof of the protocols can be found in Appendix A.

Whenever a site finds out that a new event Ev(Sj) has occurred, it sends an INFO

message – (INFO, myid, Ev(Sj), valid-tstart-send) – to all sites in the current view (in-

cluding itself). There are two ways a site can learn about new events: (1) it “sees”

the event by itself, e.g., it detects the failure of Sj (lines 6-10 in the algorithm); or (2)

it receives (INFO, *, Ev(Sj), *) messages from f + 1 sites, which means that at least

one correct site “saw” the event 1 (lines 11-16). In the message, myid is the site identi-

fier and valid-tstart-send is a timestamp (discussed later). Sites put the INFO messages

that arrive in the bag bag-info (lines 11-12). Function count(Ev(Sj), bag-info) counts the

number of INFO messages with Ev(Sj) received from different sites (line 13).

When a site receives (INFO, *, Ev(Sj), *) messages from 2f + 1 different sites (line

17), it knows that all correct sites will receive at least that number of messages because:

(1) if the site received 2f + 1 messages then every correct site will eventually receive at

least f + 1 messages (since at most f sites can fail); (2) when these correct sites receive

these f + 1 messages they will also multicast (lines 13 and 16). Therefore, when a site

receives 2f + 1 INFO messages about Ev(Sj) it can put Ev(Sj) in another bag, called

1The star ‘*’ is a wildcard that indicates any value.
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Algorithm 6 Membership protocol.
1 INITIALIZATION:
2 bag-info ←⊥; {bag with INFO messages}
3 bag-changes ←⊥; {bag with changes the site wants to be done to the view}
4 valid-tstart-send ←⊥; {valid tstart to send in INFO messages in this view}
5 state ←NORMAL; {protocol state}

6 WHEN Ev(Sj) DO

7 if (I did not multicast (INFO, myid, Ev(Sj), *) in this view) then
8 if (valid-tstart-send = ⊥) then
9 valid-tstart-send ←next-valid-tstart();

10 multicast (INFO, myid, Ev(Sj), valid-tstart-send);

11 WHEN M = (INFO, sender-id, Ev(Sj), valid-tstart) received DO

12 bag-info ←bag-info ∪ M;
13 if (count(Ev(Sj), bag-info) ≥ f+1) and (I did not multicast (INFO, myid, Ev(Sj), *) in this

view) then
14 if (valid-tstart-send = ⊥) then
15 valid-tstart-send ←next-valid-tstart();
16 multicast (INFO, myid, Ev(Sj), valid-tstart-send);
17 if (count(Ev(Sj), bag-info) = 2f+1) then
18 bag-changes ←bag-changes ∪ Ev(Sj);
19 if (state = NORMAL) then
20 state ←AGREEMENT;
21 execute vca( smallest-tstart(bag-info) );

22 WHEN bag-changes-done = vca(tstart) returned DO

23 add and remove sites in bag-changes-done from view;
24 view-number ←view-number + 1;
25 bag-info ←⊥; bag-changes ←⊥; valid-tstart-send ←⊥;
26 send state to new members;
27 state ←NORMAL;
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bag-changes, with the confidence that all correct sites will eventually do the same.

At this stage, the site goes to the Agreement state if it is still in the Normal state

(lines 19-21). INFO messages carry a valid-tstart-send parameter. When a site executes

the VCA protocol, it gives as argument the smallest valid-tstart-send that was received –

function smallest-tstart(bag-info) returns this value (line 21). The meaning of valid-tstart-

send will be made clear in the next section. If the site was already in the Agreement

state, then it simply updates the bag-changes with the new event (line 18), to ensure

that this event is included in the next TBA execution. When the VCA protocol decides

a value, i.e., a set of view changes, some housekeeping is performed and the state goes

back to Normal (lines 22-27).

An event is only considered for agreement if 2f + 1 or more sites have shown that

they know about it. Until this quorum is reached, the event is simply stored for later

processing. Consequently, there might be some events that still may need to be dealt

with when a new view is installed. The solution that was chosen for this problem

requires that these events are re-issued in the next view(s), until they are eventually

processed. This solution is relatively simple to implement because it only requires

that sites re-send their requests (in case of joins or leaves), or that the failure detector

re-indicates the failure of a site.

6.3.3 View change agreement protocol

The previous section explains how sites decide to engage in the VCA (View Change

Agreement) protocol (Algorithm 7). VCA runs as a series of executions of the TTCB

TBA service, each one trying to agree in which way the current view needs to be up-

dated. In the best case, which corresponds to the most common scenario, only one TBA

is executed, as illustrated in the example of Figure 6.1.

The core of the protocol is presented in lines 8-15. Each site basically goes on

proposing to successive TBAs the changes it thinks that have to be applied to the cur-

rent view – the sites to add/remove. These updates are put in bag-changes by the mem-
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Algorithm 7 View Change Agreement protocol (VCA).
1 FUNCTION vca(tstart)
2 hash-v ←⊥; {hash of the value decided}
3 bag-msgs-change ←⊥; {bag for messages received with view changes}
4 elist ←list with eid’s of sites in V view−number in ascending order;
5 if (tstart < last-tstart) then
6 tstart ←last-tstart;

7 loop
8 repeat
9 bag-changes-prop ←bag-changes; {stores changes since they can be updated during

VCA execution}
10 outp ←TTCB propose(elist, tstart, TBA MAJORITY, Hash(bag-changes-prop));
11 repeat
12 outd ←TTCB decide(outp.tag);
13 until (outd.error 6= TBA RUNNING);
14 tstart ←tstart + Ttstart;
15 until (at least 2f + 1 sites proposed the value decided);
16 last-tstart ←tstart;
17 if (outd.value = Hash(bag-changes-prop)) then
18 multicast (CHANGES, myid, bag-changes-prop) to sites not in outd.proposed-ok and

not being removed;
19 return bag-changes-prop; {terminates the algorithm}
20 else
21 hash-v ←outd.value;

22 WHEN M=(CHANGES, *, *) received DO {changes message for this vca}
23 bag-msgs-change ←bag-msgs-change ∪ {M};

24 WHEN (hash-v 6= ⊥) and (∃M∈bag−msgs−change : Hash(M.bag-changes) = hash-v) DO

25 return M.bag-changes; {terminates the algorithm}
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bership protocol (see previous section). In fact, VCA gives TBA a hash of bag-changes

rather than the actual bag (function Hash in line 10) because the TTCB imposes a limit

on the size of the values that it accepts. A hash function has, among other properties,

the characteristic that is produces a fixed size digest of its input with the guarantee

that it is computationally infeasible to discover another input that gives the same out-

put (Menezes et al. , 1997, Chapter 9). The current implementation of the TTCB bounds

the values to 160 bits, which is enough for standard hash functions like MD5 or SHA-1.

Notice that we assume two sites obtain the same hash of bag-changes if their two bags

have the same content. This is true only if the binary representations of the two bags

are identical. This goal can be achieved by representing data in some canonical form.

TBA collects the values given by the sites, and chooses and returns the most fre-

quently proposed value (TBA MAJORITY decision function). It also returns a mask,

proposed-ok, indicating which sites gave the value that was decided (line 12). Sites go

on engaging in TBAs until a set with at least 2f + 1 elements proposed similar values

(line 15). This loop is assured to eventually terminate because all correct sites (at least

2f + 1) will eventually get the same values in bag-changes (see previous section); there-

fore they eventually propose identical hashes and this is the decision value (since they

are the majority). TBA is executed inside the TTCB so its results are reliable and all

correct sites receive the same output.

If a site has the bag-changes-prop corresponding to the chosen hash (line 17), it sends

that bag to the sites that did not propose the correct hash, to ensure that all correct sites

get the changes to the view (line 18). These sites might, for instance, have more events

in their bag-changes-prop than the others. Therefore, unless they are informed about the

necessary updates, they do not know how to move to the next view. The processing of

CHANGES messages is done in lines 20-25.

This basically concludes the presentation of VCA. However we still have to discuss

the tstart parameter passed to the TBAs.
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The parameter tstart

A correct site can only determine which bag-changes-prop should be applied to the

current view if it is able to participate in the VCA protocol. The site, however, is not

required to engage in all TBAs that potentially might be executed. It only needs to be

involved in the TBA that provides the decision accepted by the 2f + 1 or more sites

(line 15), which is called the last TBA. With this decision, the site obtains an hash of the

bag-changes-prop that has to be applied. Therefore, it becomes capable of selecting the

correct bag-changes-prop either from the various that might arrive (lines 22-23, note that

a CHANGES message can have invalid content since it might come from a malicious

site) or from its own bag-changes-prop (line 17).

The participation of a site in a last TBA does not have to be necessarily active, in the

sense that it might call TTCB propose after the time indicated by tstart. In this case, the

proposal is not accepted by the TTCB, but the site obtains the tag of that TBA execution,

and eventually gets the decision (lines 11-13). This decision was calculated using the

proposals of the other sites that arrived to the TTCB on time.

Therefore, there are two conditions that must be verified in order for a site to obtain

the result of the last TBA:

1. Sites must agree on the values that may be used for tstart.

2. The value of tstart when a site enters loop should be less or equal than the tstart

of the last TBA.

The first condition comes from the requirement that sites that want to participate in

the same TBA have to provide to the TTCB identical tstart values (besides the same elist

and TBA decision function). Reaching this agreement might seem hard to accomplish

since it involves a consensus among a set of sites. In our case, however, we solve this

problem by restricting the values of tstart that might be used. Sites can only utilize

valid tstart values, which are defined as follows:
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Valid tstart: any timestamp in the set {∀k∈N , k.Ttstart}, where Ttstart is the

interval between valid tstarts.

The value of the Ttstart constant involves the tradeoff: if Ttstart is too low, on average

more TBAs will be used to reach agreement but VCA will usually terminate faster; if

Ttstart is too high, on average the contrary will happen: less TBAs but VCA might take

longer to terminate.

The second condition is necessary to guarantee that a site will eventually be able to

participate and obtain the result of the last TBA, even if later than its actual execution

(the TTCB keeps a record of this decision). This condition is ensured if sites initiate the

VCA protocol with the smallest tstart of the INFO messages (lines 8-9, 14-15, and 21 of

Algorithm 6).

The following reasoning can be used to understand why this requirement implies

the second condition. In a VCA execution, the first TBA in which a site engages has a

tstart greater or equal than the tstart that was passed as argument. The last TBA has the

participation of 2f + 1 or more sites. Therefore, the tstart of the last TBA is greater or

equal than the initial tstarts of all the sites that actively participated in the agreement.

On the other hand, by our requirement, a site selects the smallest tstart from the 2f + 1

INFO messages that were received, before entering the VCA protocol (Algorithm 6,

line 21). Consequently, since the intersection of the set of sites that actively participated

in the last TBA and the set of sites that sent the INFO messages has at least one element

(f sites can be malicious and “lie”), it is possible to conclude that the initial tstart of all

correct sites is smaller or equal than the tstart of the last TBA.

A malicious site could attempt to delay the protocol by providing an INFO message

with a “very small” valid tstart, i.e., a timestamp that had passed a long time ago. To

prevent this type of attack, the loop is always initiated with a tstart larger than the tstart

of the previous VCA execution (lines 5-6 and 16). The reader should notice that this

attack does not cause any incorrect behavior from the protocol – it simply delays the

execution.
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6.3.4 Site leave

The membership protocol was described in terms of generic events Ev(Sj). Now

let us see the corresponding real events, starting with the event related to the removal

of a member by its own initiative.

A site Sj can decide to leave a group for several reasons, for example, because

the user wants to shutdown its machine. In general this decision is taken by a higher

level software layer. When that happens the site multicasts a message (LEAVE, myid)

to all sites in the group (including itself). The reception of this message is the leave

event Leave(Sj). This event is then handled normally by the membership protocol, as

described in the previous sections. Notice that a malicious site cannot remove a correct

site Sj by sending a (LEAVE, Sj) message because the communication channels have

the integrity property (see Section 5.1).

6.3.5 Site join

In the crash fault model, a site that wants to join a group has simply to find a

“contact” with the information about the group membership. The contact can be any

member of the group or a third party of some kind. In the Byzantine fault model,

the problem is more complex since individual sites or other entities may provide er-

roneous information. For instance, if a site that wants to join asks the current view

from a malicious site Si, then Si could return a group composed exclusively of ma-

licious members. Therefore, the implementation of the join operation in an arbitrary

failure environment requires the resolution of two sub-problems: first, it is necessary

to determine who should be contacted; second, if several answers are received with

the information about the group, it is essential that the correct one is selected.

There are two generic solutions for both problems. Either one assumes the exis-

tence of a reliable (i.e., trusted) well-known source, or one has to contact a set of sites

and assume that a majority of 2f + 1 of them are correct. Specific examples of these

methods are:
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• The system administrator manually provides a list of the current group members.

• There is a trusted third party server that always returns correct results.

• There is a known number of n potential member sites from which no more than

f can fail (n ≥ 3f +1). Each site, even if not a current member of the group, stores

membership information and provides it when requested. The correct answer is

chosen by doing a majority voting.

Independently of the selected approach, it is assumed that a joining Sj site man-

ages to obtain the current view of the group, V n. Then, Sj multicasts a message

(REQ TO JOIN, myid, auth-data) to all sites in V n. auth-data is application dependent

authorization information that is independent of the membership protocol. Therefore,

when the REQ TO JOIN arrives, the protocol upcalls the application asking for the

approval of the new site (and passes as parameter the auth-data). If Sj is accepted, a

join event Join(Sj) is generated for further processing. Later, when the new view is in-

stalled, Sj gets the group state (line 26 of Algorithm 6). The site has to wait for (f + 1)

identical copies to know it has received the correct state.

6.3.6 Site removal and failure detection

The failure detector module determines if other sites have failed, and produces

events Remv(Sj) which are then handled by the membership protocol. Although the

design of a Byzantine failure detector is not the subject of this chapter, we will provide

some insights about its implementation through the rest of this section.

Byzantine failure detectors have to detect different faulty behaviors in the system,

ranging from crash to malicious faults. Even for crash faults, this task is impossible to

accomplish in asynchronous systems since in general it is not possible to differentiate

the situation where a site is very slow or crashed. In our case, we have the same

problem since the membership protocol is executed in the asynchronous payload part

of the system. Detectors for malicious faults are harder to develop because they have
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to be designed, at least in part, in a way that depends on the protocols being used by

the sites being monitored (Doudou et al. , 2002). They have to know and understand

the expected behaviors of these protocols, otherwise, some types of attacks are not

detected. For this reason, they will have to look during the execution of the protocols

(some of these ideas are borrowed from (Malkhi & Reiter, 1997c; Doudou et al. , 2002;

Kihlstrom et al. , 2003)) for the following activities:

• Determine if a site completely stops interacting, either because it crashed or be-

cause it is malicious.

• Find out if a non-crashed site is silent for some part of a protocol or application

execution, i.e., if it does not send some expected messages but it continues to send

others. For example, in our particular case, a site that does not send a message

(INFO, myid, Ev(Sj), *) after receiving f + 1 INFO messages with the same event.

• Determine if a site sends incorrectly formed or out-of-order messages. For exam-

ple, a site replays some previously sent message.

• Establish if a site sends unexpected messages or messages with incorrect content.

For instance, a site that sends a (INFO, id, Ev(Sj), *) with id different than myid.

• Find out if a site is being externally attacked and intruded. The output of an

Intrusion Detection System could be used as an indication of the intrusion.

In practice, one should expect that it will be impossible to build a perfect failure

detector, i.e., a detector that is able to eventually catch all failures and never makes

mistakes. This is especially true for Byzantine failures. Therefore, our membership

protocol, like all other protocols of this kind, will potentially make bad decisions due

to incorrect information given by the failure detector. For example, these bad decisions

might be: a) non-removal of a malicious site because its evil actions are not detected

during a period of time, or b) the exclusion of a delayed but good site. In the first case,

the system will continue to function as expected as long as the resilience threshold is

not reached, i.e., while f ≤ b |V n|−1
3

c. In the second case, an exclusion only occurs if
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f + 1 sites detect a failure, which means that a number of mistakes are automatically

tolerated by the protocol. Nevertheless, if a correct site is removed, it can always re-

enter the group later.

Notice that the membership protocol does not need the failure detector to make

progress, on the contrary, e.g., of (Reiter, 1996b). If the failure detector does not detect

a failure, for instance because it is not able to detect a given class of failures, the mem-

bership will not remove the corresponding site from the view. However, it will still be

able to behave according to its specification, i.e., to go on installing new views.

6.3.7 Membership protocol and FLP

The membership protocol is based on an agreement protocol –VCA– and runs

mostly in the payload system, which is asynchronous. Therefore it makes sense to

wonder about the relation between this protocol and the FLP impossibility result.

The reader should refer to a similar discussion about the consensus protocol (see

Section 5.2.4). Here the reasoning is basically the same, since the core of VCA is similar

to the core of the consensus protocol (respectively Algorithms 7 and 4). Both VCA

and the consensus protocol go on proposing and getting the results of successive TBAs

until a given condition is satisfied. Therefore, the communication among the sites is

ordered and FLP does not apply for the same reasons as in Section 5.2.4.

The VCA protocol also needs a week, local synchrony assumption for termination

to be guaranteed: eventually there will be a round when at least 2f + 1 sites manage to call

TTCB propose before one of the tstart deadlines.

6.4 Performance evaluation

The performance of the membership service was evaluated using the COTS-based

TTCB (Chapter 3).The evaluation of the membership performance was done on a sys-
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tem with six PCs, each with a 450 Mhz Pentium III processor and 192 Mbytes RAM. The

networks were two 100 Mpbs Fast-Ethernet LANs. The code was implemented in C

and compiled with gcc. The MD5 hash function was used both to calculate the digests

and the MACs. The communication was done with IP multicast. Since the maximum

number of PCs was limited to six, it was necessary to set f = 1. The value used for

Ttstart was 14 milliseconds, a value slightly over the maximum time TBA takes to run in

the current implementation, 13 milliseconds. Each measurement was repeated at least

1000 times.
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Figure 6.2: Average times to install a new view with the operations remove, join and
leave.

The results of the experiments are presented in Figure 6.2 and in Table 6.1. There

were three experiments. The first experiment quantified the time to remove a failed site that

stopped interacting, either because it crashed or was corrupted. The failure detection

was simulated with a multicast of a short message. The second experiment assessed

the time for a site to join. The site multicasted a REQ TO JOIN message to all others,

waited for them to install a new view and to get the state transfer from f + 1 = 2 sites.
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No authorization scheme was used. The third experiment evaluated the time for a site

to leave the group. The site multicasted a LEAVE message to the group and measured

the time until the new view was installed without itself. For the first experiment, the

time presented in the figure is the average of the times measured by all correct pro-

cesses. For the second and third experiments, the times were assessed by the sites that

joined or left.

Remove Join Leave
N.sites Average Stddev Average Stddev Average Stddev
4 19522 3847 8721 2153 10074 1817
5 19522 3875 9164 1418 10655 1882
6 19526 3846 10602 2039
7 19532 3848

Table 6.1: Average and standard deviation times to remove, join, and leave (µs).

The protocol spends most of the time in the following operations: calculating the

MACs for the INFO messages; exchanging these messages; and executing the TTCB

TBA. The time to execute TBA is the most important since no public-key cryptography

is utilized. As a consequence of this, the performance does not change much with

the increase of the number of sites (see figure). Most experiments required a single

execution of the TBA service. In approximately 3.4% of the experiments some sites

tried to propose a value to the TBA after tstart, and in a few of these cases two TBAs had

to be run. The join and leave experiments have execution times that are similar. The

remove time is almost the double of the others. The reason for the different behavior

is that the failed site does not engage in the VCA protocol, and consequently in the

TBA(s). A TBA starts to execute when either all sites submit their values or by tstart (if

a subset of them do not propose). In the join and leave experiments all sites proposed,

so TBA was initiated (and terminated) earlier. In the remove case, the TBA had always

to wait for tstart to begin. If the number of failed sites was increased, the expected
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execution time would remain approximately the same since the TBA would also start

by tstart.

Currently, we are aware of only three other implementations of membership ser-

vices for systems that might experience Byzantine faults, which are Rampart (Reiter,

1996b), ITUA (Ramasamy et al. , 2002) and SecureRing (Kihlstrom et al. , 2001). The

experimental settings used in the evaluations of these services are completely different

from ours. Consequently, it is quite difficult to make a concrete comparison among

the various performance results. Nevertheless, we will provide their values so that a

qualitative assessment can be made. The Rampart protocol execution times range from

210 to 250 milliseconds for 4 to 6 processes running on a system of Sun SPARCstation

10 spanning several networks, and using RSA public-key cryptography with 512-bit

moduli. ITUA obtained values from 400 to 500 milliseconds for detecting a crash and

installing a new view on a system with 1GHz Pentium III computers with 256MB RAM,

connected by a 100 Mbps Ethernet network. SecureRing obtained values from approx-

imately 400 to 950 milliseconds to change the view with 4 to 8 processors, using RSA

with 768 bit moduli (lower values were obtained with 300 and 512 bit moduli). The

tests were made in 168 MHz Sun UltraSparc 2 workstations with Solaris, connected

by a 100 Mbps Ethernet. Even taking into consideration the different characteristics

of the various systems (we used faster machines than Rampart and SecureRing, but

slower than ITUA), our results are in the order of 10 to 20 milliseconds, which seems

to indicate that the proposed protocol performs better.

6.5 Related work

We are aware of only three intrusion-tolerant membership services: Rampart (Re-

iter, 1996b), SecureRing (Kihlstrom et al. , 2001) and SecureGroup (Moser et al. , 2000;

Moser & Melliar-Smith, 1999). Project ITUA implemented an slightly improved ver-

sion of the Rampart’s service (Ramasamy et al. , 2002). These systems are described in

Section 2.4.
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The Rampart membership uses a three-phase commit style protocol. Processes in

the group send failure suspicions to a leader that tries to change the membership when

a majority is received. The sender uses digital signatures (with public-key cryptogra-

phy) to prove that it received the suspicions. The protocol relies on the failure detector

to remove a failed leader and make progress, e.g., to eventually install a new view.

SecureRing is designed for LANs and relies on a logical ring imposed on the com-

munication medium that controls the multicasting of messages. The membership pro-

tocol reconfigures the system when one or more hosts exhibit detectable Byzantine

failures, which are detected by a Byzantine failure detector (Kihlstrom et al. , 2003).

SecureGroup is also designed for LANs (Moser et al. , 2000; Moser & Melliar-Smith,

1999). The membership protocol is simpler than the others are because it is imple-

mented on the top of a Byzantine-resilient atomic multicast protocol. Both SecureRing

and SecureGroup use digital signatures to protect some messages.

6.6 Summary

This chapter presents a novel intrusion-tolerant membership service based on our

hybrid fault model and the TTCB. The protocol seems to be around 10 to 20 times

faster than similar protocols in the literature. The test conditions were not the same, as

also the system model. However, ITUA used faster PCs and weak RSA cryptography

(512-bit moduli) and even though the membership presented here seems to be much

faster. The performance of these other systems seems to degrade exponentially with

the number of processes involved, which is consistent with the fact that the number

of public-key operations increases greatly with the number of processes involved. The

performance of the membership presented in the chapter seems to degrade very little

with the number of hosts, but it was tested with only 6 hosts.

The membership service makes decisions in a distributed way, therefore it does

not rely on a leader. This is a considerable advantage for two reasons. The first is that

detecting a malicious leader is an operation that can cost some time, therefore a failed
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leader delays the protocol. The second is that an attacker can try to delay the service

by postponing the communication and creating false failure suspicions of successive

leaders.

Note

The content of this chapter was partially reported in (Correia et al. , 2003c).
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7
View-synchronous atomic

multicast

This chapter presents the final protocol for an elementary intrusion-tolerant group

communication system (GCS) based on the MAFTIA middleware architecture and the

hybrid fault model substantiated by the TTCB.

The GCS supports the abstraction of groups of hosts. Therefore, the system is an

instance of the MAFTIA middleware site-level (see Figure 2.5) 1. This chapter proposes

an Atomic Multicast protocol (BAM-VS), which is part of the Communication Support

Services module (CS). The Site Membership module (SM) is implemented by the mem-

bership service described in the previous section and the Site Failure Detector (SF) is

discussed in Section 6.3.6. Both the membership and the multicast protocol use the

secure channels introduced in Section 5.1. These channels can be implemented either

in the Multipoint Network module (MN) or in the CS module.

The GCS proposed here is based on the primary partition model, i.e., in case there

is a network partition that divides the group in two or more subgroups only one is

allowed to make progress. The membership service and BAM-VS, respectively, change

the view or deliver messages when they have contributions from 2f + 1 sites, with

f ≤ b |V n|−1
3

c. No two partitions of a group can have 2f + 1 hosts so at most one

subgroup can make progress when a partition occurs. This issue was discussed in

Section 6.1.

The BAM-VS protocol provides a view-synchronous semantics. This property says,

informally, that all correct group members deliver the same messages in the same
1Throughout the chapter the words host and site are used interchangeably.

141
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view (Birman & Joseph, 1987b; Birman & Joseph, 1987a). Group communication is usu-

ally performed using a set of reliable multicast primitives with different order proper-

ties. BAM-VS orders messages in total order, i.e., all correct hosts deliver the messages

in the same order.

The chapter brings together most of the concepts and protocols presented in the rest

of the thesis. The MAFTIA middleware architecture was presented in Section 2.5, the

TTCB in Chapter 3 and the membership service in Chapter 6. The view-synchronous

Atomic Multicast derives from the reliable multicast protocol in Chapter 4, which was

independent of the membership service.

7.1 View-synchronous atomic multicast

There are several similar but different definitions of view synchrony in the litera-

ture. The definition used here is given by the following property (inspired in (Chockler

et al. , 2001)) 2:

• View Synchrony: If two correct sites install views V n and V n+1 then both sites

deliver the same messages in view V n.

A reliable multicast protocol can be formally defined in terms of three properties:

• Validity: If a correct site multicasts a message M, then some correct site in

group(M) eventually delivers M.

• Agreement: If a correct site delivers a message M, then all correct sites in group(M)

eventually deliver M.

2The reader should keep in mind the way in which the words receive and deliver are being used. A
protocol layer receives a message from lower layers (e.g., from the network) and delivers something to
higher layers (e.g., to the application).
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• Integrity: For any message M, every correct site p delivers M at most once and

only if p is in group(M), and if sender(M) is correct then M was previously multi-

cast by sender(M).

This definition is the same as the one in Chapter 4 except for the meaning of the

predicate group(M). This predicate indicates the members of the group in the view

in which the message is eventually delivered (since the message does not have to be

delivered in the view to which it was initially multicasted). sender(M) is the sender of

the message.

The Byzantine Atomic Multicast protocol is defined in terms of the view synchrony

property, the three reliable multicast properties and an order property:

• Total order: If two correct sites deliver two messages M1 and M2 then both sites

deliver the two messages in the same order.

Some view synchrony definitions in the literature impose that messages have to

be delivered in the view in which they are sent, e.g., the Horus strong virtual syn-

chrony (Friedman & van Renesse, 1996). Others allow messages to be delivered in

subsequent views, e.g., Rampart (Reiter, 1994). Our definition falls in the second cate-

gory since the first seems to be incompatible with the membership service considered.

Suppose that a correct sender is still not aware of an ongoing view change and mul-

ticasts a message to the group. It is possible that 2f + 1 other sites decide to change

the view before they receive that message, therefore the message is not delivered in the

view in which it was initially sent.

7.2 The protocol

This section describes the view-synchronous atomic multicast protocol – BAM-VS.

The protocol is based on the membership service in the previous chapter. It also as-

sumes that only f ≤ b |V n|−1
3

c sites can fail in a given view V n. The protocol considers
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the same system model as in Chapters 5 and 6, including the secure channels described

in Section 5.1.

Pseudo-code for the basic protocol can be found in Algorithm 8. A message of the

protocol is uniquely identified by mid = (sender-eid,tstart). This requires that the lists

with site identifiers elist have to be in a canonical form: the first eid is the sender’s, and

the others are in ascending order. A brief justification for the uniqueness of mid: the

sender uses the TTCB TBA service to give all sites a hash of the message; an execution

of the TBA is uniquely identified by (elist, tstart, decision) (Section 3.2.3) and decision is

hard-coded in the protocol (TBA RMULTICAST); the sender-eid identifies a single elist

in canonical form in a view; therefore it is not possible to send another message in the

same view with the same id.

The protocol in Algorithm 8 is similar to BRM-M (Chapter 4). The sender gives

the TTCB TBA a hash of the message (line 7) and then multicasts the message (line 9).

The recipients check if the message received M corresponds to the current view (line

14), if elist is in the canonical form (line 14) , and if the sender gave the TBA the hash

of M (lines 21-22). Then, if M corresponds to the hash given by the TBA (line 24), the

recipient resents it to all sites which did not provide the correct hash to the TBA (line

25). This part of the protocol in Algorithm 7.1 does not deliver the messages, but puts

them in a bag bag-data-msgs instead (lines 11 and 26).

A message is said to be stable if it can be delivered (Moser et al. , 1994). The protocol

is similar to BRM-M so we can assume for now that it satisfies the properties of Validity,

Agreement and Integrity above: if a correct site receives a message all correct sites will

eventually receive it. However, to satisfy the view synchrony property the message

can be delivered only if all sites agree to deliver it in the current view. Additionally,

BAM-VS requires that all sites deliver the messages in the same order. How are these

properties satisfied?

The solution is based on modified versions of the membership (Algorithm 9) and

VCA protocols (VCMDA, Algorithm 10). The original membership protocol handles

three types of events: Join, Remv and Leave. BAM-VS generates a new type of event
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Algorithm 8 View-synchronous atomic multicast.
1 INITIALIZATION:
2 hash〈mid〉 ←⊥; {hash of the message sent}

3 WHEN BAM-VS-multicast(data) is called DO {SENDER}
4 elist ←all sites in current view in canonical form;
5 repeat
6 M ←(elist, TTCB getTimestamp() + T1, data);
7 outp ←TTCB propose(M.elist, M.tstart, TBA RMULTICAST, Hash(M));
8 until (outp.error 6= TSTART EXPIRED);
9 multicast M to all sites in current view;

10 hash〈mid〉 ←Hash(M);
11 bag-data-msgs ←bag-data-msgs ∪ {M}; {bag with the messages to be delivered}
12 generate event Datamsg(mid); terminate; {terminates protocol for message 〈mid〉}

13 WHEN M〈mid〉 received DO {RECIPIENTS}
14 if (M.elist does not correspond to current view) or (M.elist not in canonical form)

or (my-eid /∈ M.elist) then
15 return;
16 if (hash〈mid〉 = ⊥) then
17 outp ←TTCB propose(M.elist, M.tstart, TBA RMULTICAST, Hash(M));
18 repeat
19 outd ←TTCB decide(outp.tag);
20 until (outd.error 6= TBA RUNNING);
21 if (outd.error = DID NOT PROPOSE) then
22 return;
23 hash〈mid〉 ←outd.value;
24 if (Hash(M) = hash〈mid〉) then
25 multicast M to sites in current view except sites in the mask outd.proposed-ok;
26 bag-data-msgs ←bag-data-msgs ∪ {M};
27 generate event Datamsg(mid); terminate;
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Algorithm 9 Membership and message delivery protocol.
1 INITIALIZATION:
2 bag-info ←⊥; {bag with INFO messages}
3 bag-decisions ←⊥; {bag with changes the site wants to be done to the view, and messages

to deliver}
4 valid-tstart-send ←⊥; {valid tstart to send in INFO messages in this view}
5 state ←NORMAL; {protocol state}

6 WHEN Ev(Sj) DO

7 if (I did not multicast (INFO, myid, Ev(Sj), *) in this view) then
8 if (valid-tstart-send = ⊥) then
9 valid-tstart-send ←next-valid-tstart();

10 multicast (INFO, myid, Ev(Sj), valid-tstart-send);

11 WHEN M = (INFO, sender-id, Ev(Sj), valid-tstart) received DO

12 bag-info ←bag-info ∪ M;
13 if (count(Ev(Sj), bag-info) ≥ f+1) and (I did not multicast (INFO, myid, Ev(Sj), *) in this

view) then
14 if (valid-tstart-send = ⊥) then
15 valid-tstart-send ←next-valid-tstart();
16 multicast (INFO, myid, Ev(Sj), valid-tstart-send);
17 if (count(Ev(Sj), bag-info) = 2f+1) then
18 bag-decisions ←bag-decisions ∪ Ev(Sj);
19 if ((Ev 6= Datamsgs) or (count(Datamsgs, bag-decisions) = DLVR WATERMARK))

and (state = NORMAL) then
20 state ←AGREEMENT;
21 execute vcmda( smallest-tstart(bag-info) );

22 WHEN bag-decisions = vcmda(tstart) returned DO

23 deliver messages corresponding to Datamsg events in bag-decisions ordered by M.tstart;
remove them from bag-data-msgs and the corresponding events from bag-decisions;

24 if (there are view change events in bag-decisions) then {install new view}
25 add and remove sites in view change events in bag-decisions from view;
26 view-number ←view-number + 1;
27 bag-info ←⊥; bag-decisions ←⊥; valid-tstart-send ←⊥; bag-data-msgs ←⊥;
28 send state to new members;
29 state ←NORMAL;
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Algorithm 10 View Change and Message Delivery Agreement protocol (VCMDA).
1 FUNCTION vcmda(tstart)
2 hash-v ←⊥; {hash of the value decided}
3 bag-msgs-decision ←⊥; {bag for messages received with decisions}
4 elist ←list with eid’s of sites in V view−number in ascending order;
5 if (tstart < last-tstart) then
6 tstart ←last-tstart;
7 data-msgs-deadline ←⊥;

8 loop
9 repeat

10 bag-decisions-prop ←bag-decisions;
11 if (data-msgs-deadline 6= ⊥) then
12 remove from bag-decisions-prop all events Datamsg with tstart > data-msgs-

deadline;
13 outp ←TTCB propose(elist, tstart, TBA MAJORITY, Hash(bag-decisions-prop));
14 repeat
15 outd ←TTCB decide(outp.tag);
16 until (outd.error 6= TBA RUNNING);
17 if (data-msgs-deadline = ⊥) and (at least 2f + 1 sites proposed any value) then
18 data-msgs-deadline ←tstart;
19 tstart ←tstart + Ttstart;
20 until (at least 2f + 1 sites proposed the value decided);
21 last-tstart ←tstart;
22 if (outd.value = Hash(bag-decisions-prop)) then
23 multicast (DECISIONS, myid, bag-decisions-prop) to sites not in outd.proposed-ok

and not being removed;
24 return bag-decisions-prop; {terminates the algorithm}
25 else
26 hash-v ←outd.value;

27 WHEN M=(DECISIONS, *, *) received DO {decisions message for this VCMDA}
28 bag-msgs-decision ←bag-msgs-decision ∪ {M};

29 WHEN (hash-v 6= ⊥) and (∃M∈bag−msgs−decision : Hash(M.bag-decisions) = hash-v) DO

30 return M.bag-decisions; {terminates the algorithm}
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when it is ready to deliver a message identified by mid: Datamsg(mid) (Algorithm 8,

lines 12 and 27). This event is handled by Algorithm 9 basically in the same way as the

view change events: an INFO message is sent (lines 6-10) and when there are 2f + 1

INFO messages it is inserted in a bag and VCMDA can be started (lines 11-21). A

difference in relation to the view change events is that a single Datamsg does not start

VCMDA. This protocol is started when a certain condition is satisfied. The code shows

one possibility: VCMDA starts when DLVR WATERMARK data messages are ready

to be delivered (line 19). Another condition would be to start VCMDA if a certain time

passed from the last delivery. The code can be easily modified to test this condition, or

a combination of the two.

VCMDA is used with two purposes. The first is basically the same as VCA, i.e.,

for all sites to agree on the view changes to do on the current view. However, the

view synchrony property states essentially that all correct sites deliver the same mes-

sages in a view, therefore VCMDA, together with the view changes, has also to agree

on the non-delivered messages still to be delivered in the view. Therefore, VCMDA

makes agreement on ‘decisions’: view changes and message deliveries (this is the rea-

son why several variables were renamed, e.g., VCA’s bag-changes is called bag-decisions

in VCMDA).

The second purpose of VCMDA is to agree on messages to be delivered when there

are no view changes. The objective is to satisfy the total order property. In each execution

of VCMDA all sites agree to deliver the same set of messages. Then these messages are

ordered according to their tstart and delivered (Algorithm 9, lines 22-23). The code

executed is precisely the same as before except for lines 25-28 in Algorithm 9.

VCMDA has still another difference in relation to VCA. The number of view

change events that can be generated is limited3, but the same is not true for data

messages. The constant appearance of new events could prevent VCMDA from ter-

minating since bag-decisions would go on changing indefinitely. The solution for this

3The sites that can be allowed to join have to be know in order to be authenticated, therefore their
number is limited. The number of sites that can leave or be removed is the same as the number of
members. The maximum number of view change events is the addition of these two numbers.
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problem is the definition of a deadline data-msgs-deadline for each VCMDA execution

(Algorithm 10, lines 7, 12, 17-18). Any message with tstart greater than data-msgs-

deadline is not considered for that execution of VCMDA (line 12). data-msgs-deadline is

the first tstart in which at least 2f + 1 sites propose any value for a TBA (lines 17-18).

The correctness proof of the protocol can be found in Appendix A.

7.3 Performance evaluation

The performance of the BAM-VS protocol was evaluated using the COTS-based

TTCB, in the same setting as the membership service in the previous chapter (Sec-

tion 6.4). The evaluation consisted in three sets of experiments. Every experiment

used at least 1000 messages. Every set of experiments measured the average delivery

time (or latency) and the sustainable throughput of the protocol. The experiments were

based on a prototype of the protocol that did not send messages during the execution

of VCMDA. Therefore, the experiments were performed in rounds. Each round started

with sites multicasting and receiving messages using the Algorithm 8. Then the sites

executed VCMDA, delivered the messages and started another round.

The first set of experiments evaluated the performance of BAM-VS with 4 sites, a

single sender, no failed sites and delivery watermarks (DLVR WATERMARK) from 1

to 25 messages (Figure 7.1). The throughput of the protocol increased considerably un-

til about 10 messages, then started to improve more slowly. If the delivery watermark

is low then the time taken by the VCMDA protocol to agree on the messages to deliver

is similar to the time taken to send the messages, i.e., the time spent in the first part of

the round. If the delivery watermark is high the time used by the VCMDA protocol

can be negligible in face of the time taken sending messages. The average latency, on

the contrary, increased steadily with the delivery watermark. This was expected since

the messages are delivered when VCMDA terminates, and the higher the watermark,

the higher the time the first messages sent wait for VCMDA to terminate.



150 CHAPTER 7. VIEW-SYNCHRONOUS ATOMIC MULTICAST

0

2 5

5 0

7 5

1 0 0

1 2 5

1 5 0

1 7 5

2 0 0

0 5 1 0 1 5 2 0 2 5
D e l i v e r y  w a t e r m a r k  ( m e s s a g e s )

T h r o u g h p u t  ( m e s s a g e s / s )
A v e r a g e  l a t e n c y  ( m s )

Figure 7.1: BAM-VS performance with different delivery watermarks (4 sites, one
sender, 100 bytes messages).
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Figure 7.2: BAM-VS performance with different message sizes (4 sites, one sender,
watermark of 10 messages).
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The second set of experiments measured the performance of the protocol with the

variation of the message size (Figure 7.2; sizes do not include the header). The value

selected for the watermark was 10, which the first set of experiments indicated to be a

good compromise in terms of throughput and latency. The number of sites was 4, there

was a single sender and no failed sites. The conclusion from the figure is that this vari-

ation of message size does not affect significatively either the sustainable throughput

or the latency.

The throughput of the protocol is limited by the capacity of the TTCB to execute

TBAs. The TTCB is a real-time subsystem so this capacity is limited. In the TTCB con-

figuration used in the experiments, every local TTCB broadcasts a packet to all other

local TTCBs every 8 ms (see the TBA protocol in Section 3.2.3). This packet carries data

of at most 3 TBAs so a process in a machine theoretically can successfully propose for

at most 375 TBAs per second. The TTCB has also a limited capacity for storing informa-

tion about TBAs but this number is high enough not to interfere with the experiments.

The throughputs obtained show that the protocol can still be tuned to use the TTCB

capacity more efficiently. The prototype purposely loses some time in order to avoid

the loss of messages in the network, since a retransmission layer was not implemented.

The third set of experiments compared the performance of the protocol with 4 to 6

hosts in three different conditions (Figures 7.3 and 7.4). The first condition is the same

as before, i.e., no failed sites, a single sender and a watermark of 10 messages. In the

second condition all sites send messages and the watermark is twice the number of

sites (i.e., 8, 10 and 12). In the third condition there is a single sender but one site is

silent, i.e., it does not participate in the protocol because it is crashed (the watermark

is 10). The message size was 100 bytes for all experiments.

The experiment allows several conclusions. One is that the number of sites does

not affect considerably the performance of the protocol. This was already concluded

in the previous chapter for the membership service. The case in which all sites send

might seem to be an exception but the reason for the increase in the throughput and

latency is the different watermark used. The second conclusion is that the protocol has
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Figure 7.3: BAM-VS throughput with one sender, all sites sending and one silent site
(4 sites, watermark of 10 messages, 100 bytes messages).
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Figure 7.4: BAM-VS average latency with one sender, all sites sending and one silent
site (4 sites, watermark of 10 messages, 100 bytes messages).
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a higher throughput if all sites send. The third conclusion is that a crashed site does not

affect the performance of the protocol. The throughput is slightly better since the silent

site does not multicast either data of INFO messages. The latency is 2 to 3 ms worse

because the TBA takes longer to run if not all sites involved propose before tstart.

There are some numbers available for the performance of intrusion-tolerant view-

synchronous atomic multicast protocols in the literature: Rampart (Reiter, 1994) and its

more recent implementation by project ITUA (Ramasamy et al. , 2002). These numbers

have to be compared with the performance of BAM-VS with caution, since the test

conditions were quite different. The Rampart test conditions were probably worse than

ours but the ITUA were better, as already noticed in Section 6.4. With 4 to 6 processes,

the throughput of Rampart was approximately 18 to 14 messages/s with one sender,

and 23 to 17 messages/s with all processes sending (300 bits RSA moduli). These

numbers are about 10 times worse than BAM-VS. The times for ITUA are presented in

terms of time to deliver 10 messages. This is approximately equivalent to the average

latency of our protocol with a watermark of 20 messages. ITUA times ranged from

700 to 1100 ms with 4 to 6 processes (1024 bits RSA moduli). BAM-VS had a time of

approximately 66,5 ms (the latency does not degrade visibly with the number of sites).

The first conclusion from these numbers is that BAM-VS performs better than similar

protocols, both in terms of latency and throughput. The second it that BAM-VS also

does not degrade its performance with the number of sites involved, although only a

limited number of machines was available.

7.4 Related work

The concept of virtual synchrony was introduced by Birman and Joseph (Birman

& Joseph, 1987b; Birman & Joseph, 1987a). The concept is based on the idea of a syn-

chronous environment where all messages and events (like view changes) are deliv-

ered in order. However, ordering all messages and events is costly. The concept of

virtual synchrony tries to preserve the illusion of synchrony, but communication prim-
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itives with weaker ordering (FIFO, causal, no order) are provided for applications that

are insensitive to that aspect. A discussion of related work in this area can be found

in Section 2.4. An interesting survey on total order multicast can be found in (Défago

et al. , 2000). Most work on this area assumes only crash faults.

There are only three Byzantine-resilient group communication systems that we are

aware of which provide the view-synchronous semantics: Rampart, SecureRing and

SecureGroup.

The Rampart toolkit provides primitives for reliable and atomic multicast (Reiter,

1994). Processes communicate through reliable channels and use public-key cryptog-

raphy to sign some of the messages. The atomic multicast is based on the reliable mul-

ticast. When a process wants to atomically multicast a message it reliably multicasts

it. Then, a designated member of the group, called sequencer, defines a message order

and reliably multicasts a message with the order to all members. When a member re-

ceives this message it delivers the messages in the given order. A malicious sequencer

can refuse to give the order of delivery of one or more messages. That situation has

to be detected using a timeout and the malicious sequencer removed from the group.

This approach has problems that were already discussed: slow communication, either

due to an attack or to accidental faults, can cause correct sequencers to be removed,

and if sequencers are repeatedly removed the system does not make progress. An at-

tacker can also force the removal of correct processes to eventually cause the violation

of the assumption than no more than f out of 3f + 1 processes fail.

SecureRing uses a logical ring to impose total order (Kihlstrom et al. , 2001). Pro-

cesses pass a token to the next one in the ring. A total order is intrinsic to the protocol,

since only the process with the token can multicast. An unreliable failure detector is

used to detect if a malicious process does not pass the token or corrupts its information

in some way.

SecureGroup uses a combination of positive and negative acknowledgments to or-

der messages in causal order (Moser et al. , 2000; Moser & Melliar-Smith, 1999). A

total order is built on the top of this causal order. On the contrary to Rampart and
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SecureRing, SecureGroup does not provide ‘multicast’ but ‘broadcast’ primitives. All

communication in a given domain is ordered and the membership protocol runs on

the top of this totally ordered communication.

7.5 Summary

This chapter presents a novel intrusion-tolerant atomic multicast protocol, which

was the missing component for the definition of an intrusion-tolerant group commu-

nication system. This protocol performs arguably better than similar protocols in the

literature, and its throughput does not degrade significatively with the number of sites

involved. Additionally, the protocol does not rely on a leader to order messages so

it is not necessary to detect the failure of processes for the protocol to make progress.

The decisions about the delivery of messages are taken cooperatively by 2f +1 sites so

progress is ensured as long as the assumption than no more than f sites fail is satisfied.

The GCS presented in Chapters 6 and 7 resumes to the site level in the MAF-

TIA middleware architecture (see Section 2.5). Groups of participants are mapped

into groups of sites, therefore the participant level membership and communication

modules are simple to implement. For instance, for participant communication, if a

participant atomically multicasts to a group of participants, the message is passed to

BAM-VS that delivers the message in total order to all sites; then the site level at each

machine gives the message to the participant level, which delivers the messages to all

participants of the group in the machine. The participant level membership module is

equally simple and was presented in a MAFTIA report (Armstrong et al. , 2002, Section

5.4.2.9).
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Note

The content of this chapter was partially reported in (Correia et al. , 2003c). Prelim-

inary ideas on the design of an intrusion-tolerant group communication system were

published in (Correia et al. , 2001a).



8
Conclusion

This thesis presents a novel approach for designing and implementing intrusion-

tolerant distributed systems. This approach is based on an architectural-hybrid fault

and synchrony model. In the context of our system, this model considers that most

components in a system can fail arbitrarily, even maliciously, but that there is set of

components that are fail-silent and thus secure. Likewise, most of the system can have

uncertain synchronism, even be asynchronous, but there is a set of components that

are synchronous. In the thesis, this set of components is materialized by a distributed

subsystem the TTCB – which is built to remain secure. The TTCB is a synchronous, or

real-time, distributed component, with local parts in hosts and its own private secure

channel or network.

The thesis presents the TTCB model and the design of a particular implementation

of this model, the ‘COTS-based’ TTCB. The thesis also presents the design of several

intrusion-tolerant protocols supported by the TTCB. The novelty is not in the protocols

themselves, similar to classical distributed systems protocols, but on their implemen-

tation using the TTCB to perform critical but ‘small’ steps of the protocols.

A reliable multicast protocol provides a first insight into how these protocols can

be designed. The protocol is efficient and does not impose limits on the number of

faulty processes, although it has been proved that in asynchronous systems (with no

TTCB) less than one third of the processes can fail for reliable multicast to be possible.

A consensus protocol shows a different way to use the TTCB TBA service to imple-

ment intrusion-tolerant protocols. This protocol also shows how a protocol based on

157
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the TTCB relates to the FLP impossibility result. The TTCB is synchronous therefore

the protocol is not constrained by that result. However, to ensure termination we still

need a synchrony assumption about the payload system. This assumption can be said

to be ‘weak’ since it is about the behavior of correct hosts, not about the network or

about corrupt hosts. The protocol has low time and message complexities.

Finally, the approach is used to design a system with practical interest: an

intrusion-tolerant group communication system with a membership service and an

atomic multicast primitive. This system provides interesting benefits in relation to sim-

ilar systems in the literature. Firstly, it seems to perform considerably better than most

systems in the literature, both in terms of throughput and latency, since it does not use

public-key cryptography in runtime. Secondly, for the same reason its performance

degrades very slowly with the number of sites involved. Thirdly, sites make decisions

to install a new view or deliver messages cooperatively, in a distributed way. Therefore

there is no leader whose failure has to be detected using timeouts. This makes the pro-

tocols resilient to a class of time attacks that aims to delay or break protocols making

successive leaders be suspected or detected failed. These benefits can give an idea of

the relevance of the TTCB to build practical intrusion-tolerant systems.

Present and future work is being and will be pursuit in several areas.

The motivation for a COTS-based TTCB implementation was the facility of in-

stalling and testing it by other research groups. However, for practical applications

the TTCB probably needs a higher assumption coverage, therefore a hardware imple-

mentation will be done in the near future. The local TTCB will run in an appliance

board (like a PC104 board) with a very controlled interface with the rest of the ma-

chine. A third implementation of the TTCB is also envisaged, this time for WANs. A

TTCB distributed over a ‘large’ area poses some interesting challenges, like the reduced

bandwidth, but may have interesting applications.

There are several other TTCB issues that will probably be explored in the future.

The TBA service, designed in the context of this thesis, proved to be adequate to sup-

port a number of protocols. Is there a simpler and more efficient service that permits
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the same? The current implementation of access control in the TTCB is very basic and

a better solution would allow a better use of the its resources. How? An attacker can

consume the resources of a local TTCB simply by calling the TBA fast enough. A par-

tial solution for this problem could be to allow processes to reserve TTCB resources.

The processes that obtained the resources before the intervention of the attacker would

be able to use the TTCB under such an attack.

An area of current work is the design of an intrusion-tolerant service based on

state machine replication. The protocol executed between the servers is BAM-VS. The

performance of the service is especially important for practical purposes so the use of

the TTCB-based protocols has much interest.

The protocol that was initially designed for the membership service has been prov-

ing to be useful for a considerable different range of applications. The thesis shows

how it was successfully used to design an atomic multicast primitive. Another area of

current work is the design of a distributed configuration system, which is also based

on the same protocol. These applications give the intuition that the protocol can be

used as the core of a Byzantine-resilient ‘generic consensus service’, which can be used

to implement several distributed agreement protocols. The idea was introduced origi-

nally for crash-tolerant systems (Guerraoui & Schiper, 2001).

A final area of future work is motivated by the reliable multicast protocol, BRM-M.

This protocol does not impose a limit on the number of failed processes, on the contrary

to similar protocols on asynchronous systems that tolerate less than one third faulty

processes. However, the rest of the protocols in the thesis did not manage to improve

on the limit of failed processes for similar protocols on asynchronous systems. The

area of future work is to study if the TTCB or another wormhole permits to improve

on these limits.
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A
Correctness proofs

This appendix provides proof sketches for all protocols presented in the thesis.

A.1 TTCB local authentication service protocol

This section is about the TTCB Local Authentication service protocol described in

Section 3.2.1 and presented in Figure 3.2.

Theorem 1 The Local Authentication service protocol is an authenticated key establishment

protocol.

Proof: The protocol is an authenticated key establishment protocol if it verifies proper-

ties SK1 through SK4.

SK1. The protocol verifies the Implicit Key Authentication property since the key

is passed only in the first message and only the local TTCB has the private key that can

decrypt this message, 〈Eu(Ket, Xe)〉.

SK2. The proof of the Key Confirmation property can be divided in two parts. The

process knows that the local TTCB has the key because it gave it (first message) and

receives back a confirmation that cannot be falsified since it is obtained with the local

TTCB private key (second message). The local TTCB knows that the process has the

key since it was the process that gave the key to the local TTCB (first message).

161
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SK3. The Authentication property is also verified since the process gives the TTCB

a message that only the TTCB can decrypt, 〈Eu(Ket, Xe)〉, and the TTCB gives back the

decrypted challenge, Xe, showing that it was able to do the decryption.

SK4. The Trusted Against Known-Key Attacks property primarily depends on the

key generation method and encryption algorithm. We assume that the process or the

TTCB generate keys that verify that property. SK4 is guaranteed by the protocol since

a key does not depend on a previous one. 2

A.2 TTCB TBA service protocol

This section is about the TBA service protocol described in Section 3.2.3 and pre-

sented in Algorithm 1.

Theorem 2 If the TBA service is implemented with the TBA service protocol and there are no

local TTCB crashes then it verifies Termination, Integrity, Agreement and Validity.

Proof: All local TTCBs broadcast the values proposed locally to all others. All receive

and process the same values since there are no crashes and the protocol tolerates omis-

sions in the network. The result is obtained applying a deterministic function to the

values received. Therefore, all local TTCBs obtain the same result.

Termination. A correct process eventually calls decide to obtain the result of the

TBA. Since all local TTCBs obtain the result, every correct process eventually decides

a result.

Integrity. A process that calls decide more than once and obtains the result more

than once, obtains always the same result. Therefore, every correct process decides at

most one value.

Agreement. All local TTCBs obtain the same result so all correct processes decide

the same.
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Validity. The result is obtained in the local TTCBs applying the function decision to

the values proposed. If a correct process decides, then it decides the value obtained by

the local TTCBs. 2

Theorem 3 The TBA service protocol verifies Timeliness and TTBA is given by:

TTBA = Ts + WCETsend + Tsend + Tr + WCETreceive + π (A.1)

Proof: WCETsend and WCETreceive are respectively the worst case execution times of

the send and receive routines. Any value proposed after tstart is not accepted for the

TBA (line 3). After the value is introduced in sendTable, the broadcast routine takes

less than Ts to start to run, so the message with the value will not be broadcasted after

(tstart + Ts + WCETsend) (lines 12-15). The message will take at most Tsend to arrive to

the local TTCBs and the receive routine may take at the most Tr to start to run. Then

the message will take less than WCETreceive to be received and processed (lines 18-23).

The factor π takes in account the local TTCB clocks de-synchronization that leads to

a different assessment of tstart in different local TTCBs. Adding all these maximum

delays, we have the Formula A.1. Since there is a TTBA the protocol has the property

of Timeliness. 2

A.3 TTCB TBA service crash-tolerant protocol

This section is about the crash-tolerant TBA service protocol and the Timely Reli-

able Broadcast protocol in Algorithm 2.

Lemma 1 The Timely Reliable Broadcast protocol verifies the properties of Validity, Agreement

and Integrity if there are no local TTCB crashes.

Proof: Validity. A correct (non-crashed) local TTCB receives the messages that it R-

broadcasts. If it R-broadcast M(s, n) then it receives M(s, n). After M(s, n) it R-
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broadcasts M(s, n + 1), M(s, n + 2), etc. After receiving M(s, n), when it eventually

receives M(s, n+) it R-delivers M(s, n), ∀n+ : n+ > n.

Agreement. If a correct local TTCB R-delivers M(s, n), then it received M(s, n) and

a message in one of the two conditions tested in line 13. Since we are not considering

crashes and we assume that omissions in the network are masked, all local TTCBs

receive those two messages and R-deliver M(s, n).

Integrity. The property of Integrity means that no spurious messages are R-

delivered. This is a consequence of AN2 and AN8. 2

Lemma 2 The Timely Reliable Broadcast protocol tolerates a single local TTCB crash in an

interval of time (not assuming AN6).

Proof: If a local TTCB crashes during the R-broadcast of M(s, n +1), and no local TTCB

receives it, no local TTCB R-delivers M(s, n). If at least a single local TTCB receives

M(s, n + 1) it R-delivers M(s, n) (first condition on line 13) and, in the next message

that it R-broadcasts, it will say to all the other local TTCBs that it received M(s, n + 1)

(higherseqVector[s]=n+1) and they will also R-deliver M(s, n) (second condition in line

13).

Now, let us show that the protocol does not tolerate two or more crashes. Suppose

that the local TTCB s crashed and a single local TTCB received M(s, n + 1). Then,

the local TTCB that received the message started to R-broadcast a message with high-

erseqVector[s]=n+1. If it also crashed during that R-broadcast, some local TTCBs could

receive confirmations while other did not; this would cause some local TTCBs to R-

deliver M(s, n), while others would not. Therefore, the protocol tolerates a single local

TTCB crash during a reliable broadcast. 2

Theorem 4 The Timely Reliable Broadcast protocol tolerates Bd local TTCB crashes (assum-

ing AN6).

Proof: Consider that the local TTCB s starts R-broadcasting M(s, n + 1) and crashes.

The worst case happens when just Bd local TTCBs receive the message. We want to
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prove that the protocol tolerates Bd crashes. Since the sender already crashed only

Bd− 1 local TTCBs can still crash. Therefore, of Bd local TTCBs that received the mes-

sage at least one does not crash and sends higherseqVector[s]=n+1 in the next message it

R-broadcasts. All non-crashed TTCBs receive that R-broadcast and R-deliver M(s, n).

2

Theorem 5 The Timely Reliable Broadcast protocol has the property of Timeliness and the

constant Tbroadcast is given by:

Tbroadcast = (WCETsend + Tsend + Tr + WCETreceive) + (Ts) +

(Ts + WCETsend + Tsend + Tr + WCETreceive) + π (A.2)

Proof: The first component of this delay is the maximum time for the local TTCBs to

receive the message R-broadcasted, M(s, n) (first pair of brackets). The sender sends

the next message, M(s, n + 1), Ts after M(s, n). Therefore, the first two components of

the formula give the maximum time for the local TTCBs to receive M(s, n + 1). The

third component of the formula gives the extra time for the non-crashed local TTCBs

to receive a message with n + 1 associated with s and to R-deliver M(s, n). If there is a

constant Tbroadcast then the protocol has the property of Timeliness. 2

Theorem 6 For the crash-tolerant TBA service protocol, TTBA is given by:

TTBA = Ts + Tbroadcast (A.3)

Proof: After the last process proposes or tstart expires, the TBA service takes at most

a send period Ts to R-broadcast the last propose. Then, all local TTCBs take at most

Tbroadcast to R-deliver the message. 2
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A.4 Byzantine reliable multicast protocol

This section proves that the BRM-M protocol is a reliable multicast and tolerates

f failures out of f + 2 processes. In fact the protocol tolerates any number of faulty

processes but the problem is vacuous if there are less than two correct processes. In

those situations, the protocol definition does not impose any particular behavior.

In Section 4.1 we exemplified the cases in which a process was failed. Here we

recall those cases as a set of conditions. A process is failed (or not correct) if:

• F1. The process does not follow the protocol or it crashed.

• F2. The process can not communicate with the TTCB or is impersonated by an

attacker, e.g., if the attacker managed to capture the process’ pair (eid, secret).

• F3. An attacker manages to falsify a MAC that should have been created by the

process, e.g., if the attacker discovers one of the processes’ symmetric keys.

• F4. The process can not send or receive successive copies of a message because

its communication is systematically disrupted by an attacker.

• F5. The process does not get the result of a TBA because the TTCB discarded that

result (the TTCB discards results after some time).

BRM-M is a reliable multicast protocol if it satisfies the properties of Validity,

Agreement and Integrity as defined in Section 4.2.1.

Theorem 7 If a correct process multicasts a message M then a correct process eventually de-

livers M (Validity).

Proof: This property refers to a correct sender and a correct recipient. If a correct sender

multicasts a message then a correct recipient in group(M) (i.e., in elist) will eventually

receive it, since F1, F2 and F4 are false. This will happen either due to the message

sent in the first multicast (line 4) or to a retransmission (line 28). The correct recipient
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also receives the correct H(M), since F1, F2 and F5 are false and the TBA service gives

correct results. After receiving a message and the hash, the correct recipient will even-

tually deliver the message (F1 and F2 are false). This will happen either because phase

1 was completed successfully (lines 11-12), or because it will eventually leave the loop

(possibly after Od + 1 message multicasts) and end phase 2 (line 32). 2

Theorem 8 If a correct process delivers a message M then all correct processes eventually

deliver M (Agreement).

Proof: First, let us prove that if a correct recipient p delivers a message M then all

correct recipients in group(M) eventually receive M . If p is correct then it follows the

protocol (F1 is false) and it delivers M only after: (1) receiving ACKs from all recipients

in group(M), i.e., in elist (lines 8-12 and 25-26); or (2) sending Od + 1 copies of the

message to every recipient from which it did not receive an ACK (lines 27-29 and 31).

If p receives an ACK from another recipient then, either the ACK was genuine (sent

by the recipient) or fake. If the ACK was fake then the corresponding recipient is not

correct (condition F3) and therefore the property of Agreement does not apply to this

process. In case (2), if p sends Od + 1 copies of a message to a recipient then either

that recipient receives the message or it is failed and the property does not apply (F4).

Therefore, if p delivers M then all correct recipients receive M .

Now we have to prove that if a correct recipient p′ receives M then it eventually

delivers M . If p′ is correct it follows the protocol (condition F1) and it manages to

communicate with the TTCB (condition F2). Since process p delivered M , then it must

have obtained a correct H(M) from the TTCB TBA. Therefore, since condition F5 is

false, p′ can also get H(M) from the TBA. After receiving M and checking that it is the

message corresponding to H(M), p′ will eventually deliver the message.

This proves that if a correct recipient delivers M then all correct recipients deliver

M . A correct sender always delivers the message so this proves that the protocol veri-

fies the Agreement property. 2
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Theorem 9 For any message M , every correct process delivers M at most once, and only if M

was previously multicast by sender(M) (Integrity).

Proof: For all messages with the same pair (elist, tstart), every correct process runs a

single instance of the protocol code. Additionally, an instance of the protocol always

returns after delivering a message (lines 12 and 32). Therefore, every correct process

delivers a message M at most once. Any correct process not in group(M), i.e., not in

elist, can not get H(M) from the TTCB, therefore it can not deliver M . Now let us prove

the second part of the property. The process sender(M) is the process whose eid is the

first in elist. The value returned by the TBA is the H(M) proposed by the first element

in elist (decision TBA RMULTICAST in line 7), i.e., by sender(M) since it is correct

(F2). Therefore, the value of H(M) returned by the TBA is always the value proposed

by the sender. Consequently, a correct process can deliver a message M only if M was

previously multicast by sender(M), since a correct process follows the protocol (F1)

and checks if the hash of the message it received is equal to H(M) (assuming the hash

function is collision resistant). 2

Theorem 10 BRM-M tolerates the failure of f processes out of n ≥ f + 2.

Proof: Theorems 7–9 do not impose any limit on the number of processes that can fail.

Therefore there is no such limit. The limit of n ≥ f + 2 expresses only the notion that

the problem is vacuous if there are not at least two correct processes. 2

A.5 Block consensus protocol

This section proves the correctness of the Block Consensus protocol in Algorithm 4.

The protocol is correct if it satisfies its definition, given by the properties of Validity,

Agreement and Termination in Section 5.2.1. Here we consider the assumptions in

Section 5.1 and in Section 5.2.2. We consider that the protocol is executed by n processes

and that no more than f = bn−1
3
c can fail.
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Theorem 11 If all correct processes propose the same value v, then any correct process that

decides, decides v (Validity).

Proof: The theorem applies only when all correct processes (at least 2f + 1) propose the

same value v. The algorithm is a loop inside lines 3 to 10. All processes begin with the

same tstart (assumption in Section 5.2.2) that works as the loop counter.

Each round of the loop, the correct processes call TTCB propose and get the result

of the TBA out dec calling TTCB decide (line 6). out dec contains the value proposed by

more processes before tstart (due to the decision function TBA MAJORITY) and the two

masks saying which processes proposed the value decided and which proposed any

value before tstart. Each round can satisfy one of two cases, depending on the number

of processes k that proposed before tstart:

Case 1 (k < 2f + 1): This case can be subdivided in another two. (Case 1a): If no

f + 1 processes proposed the value decided, then the loop goes to the next round

(line 10). (Case 1b): If f + 1 processes proposed the value decided then this value

is v, since there are at most f failed processes (the theorem assumes all correct

processes propose v). In the end of the round, the loop terminates since f + 1

proposed the same value (line 10). The value v is decided (line 11).

Case 2 (k ≥ 2f + 1): Since there are at most f failed processes, the majority of pro-

cesses that proposed are correct and the value decided by the TBA is v. The loop

terminates (line 10) and v is decided (line 11).

Any correct process that decides, decides in cases (1b) or (2), therefore it decides v.

2

Theorem 12 No two correct processes decide differently (Agreement).

Proof: Two correct processes execute the same TBAs, since they start with the same

tstart (Section 4) and TBA returns the same values to all processes (TTCB assumption).
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Two correct processes exit the loop in the same round since they test the same condition

(line 10) with the same results of TBA’s. They return the same result for the same reason

(line 11). 2

Theorem 13 Every correct process eventually decides (Termination).

Proof: We start by showing that there is a round when enough processes manage to

propose to the TBA before tstart. After a round where not enough processes proposed,

accordingly to line 10, another round is scheduled, with a longer delay for processes

to propose until tstart. The procedure is repeated, each time with a larger delay, until

eventually there is a round where all non-failed processes have a chance to propose

(assumption in Section 5.2.4). Since n ≥ 3f + 1, even if f failed processes are mute, at

least 2f + 1 processes will have proposed, which satisfies the termination condition in

line 10. The protocol can terminate earlier if there is an earlier round in which f + 1

processes manage to propose the same value. 2

Theorems 11, 12 and 13 prove that the Block Consensus protocol satisfies its defini-

tion with f = bn−1
3
c. However, the protocol also satisfies the properties of Validity and

Agreement even if we allow a higher number of processes to be failed, more precisely,

if f = bn−1
2
c. The proofs are trivial modifications to the proofs of Theorems 11 and 12.

A.6 General consensus protocol

This section proves the correctness of the General Consensus protocol (Algo-

rithm 5). The protocol is correct if it satisfies its definition, given by the properties of

Validity, Agreement and Termination in Section 5.2.1. We make the same assumptions

as for the Block Consensus protocol in the previous section, plus those in Section 5.2.3

and in Section 5.1 (communication model). We consider also that the protocol is exe-

cuted by n processes and that no more than f = bn−1
3
c can fail. The same discussion

made in relation to the Block Consensus protocol also applies here. The General Con-

sensus protocol satisfies the properties of Validity and Agreement even if f = bn−1
2
c.
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Lemma 3 If no more than f = bn−1
3
c processes fail and all correct processes propose the same

value then the protocol does not change to phase 2.

Proof: The change to phase 2 is tested in line 17. When 2f + 1 processes proposed

(first part of the condition), at least f + 1 processes proposed the same value (second

part) since there are at least 2f + 1 correct processes. Therefore, if the first part of the

condition in line 17 is satisfied, the second is not, and the protocol does not change to

phase 2. 2

Theorem 14 If all correct processes propose the same value v, then any correct process that

decides, decides v (Validity).

Proof: The theorem applies only when all correct processes propose the same value

v, therefore the protocol does not change to phase 2 (Lemma 3). The phase 1 of the

protocol is very similar to the Block Consensus protocol, therefore the proof that any

correct process that decides, decides the same hash H(v) follows from Theorem 11.

If a process is correct then it eventually receives its own message with v (lines 6, 21).

Therefore, any correct process that decides, decides v (lines 23, 26). 2

Theorem 15 No two correct processes decide differently (Agreement).

Proof: The proof that no two correct processes decide different hashes is similar to The-

orem 12. If two correct processes decide the same hash then they decide the same value

due to the properties assumed for the hash function (lines 23 and 26, Section 5.2.3). 2

Theorem 16 Every correct process eventually decides (Termination).

Proof: We base ourselves on the reasoning of the proof of Theorem 13, to ascertain that

either all correct processes eventually terminate in phase 1 (line 19) or they change to

phase 2 (line 17).
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Let us now prove that all correct processes in phase 2 eventually decide. All correct

processes multicast their values vi to all others (line 6). Assuming the communication

model, eventually every correct process receives the messages with the values vi from

all correct processes. Line 10 chooses the value vj proposed by the process with index

(r mod n) in elist or the next one available. Again under the reasoning of the proof of

Theorem 13, eventually f + 1 processes manage to propose the same H(vj), which is

decided by the TBA. If a process has the value vj in bag then it decides immediately

(lines 19-20, 23-26). If a process p does not have the value vj then it eventually receives

it, since at least one correct process q has vj (since f + 1 have it) and multicasts it (line

24-25). After receiving vj , p decides it (lines 21-26). 2

A.7 Membership service

This appendix proves that the membership service protocols satisfy the properties

of Uniqueness, Validity, Integrity and Liveness (Section 6.2). Here we consider the

system model presented in Section 6.1 and assumptions in Sections 6.2 and 6.3. In

these proofs we use fn to indicate the maximum number of sites allowed to fail in the

view number n: fn = b |V n|−1
3

c.

Lemma 4 For all correct sites Sj that installed V n
j and V n+1

j , V n+1
j = V n+1.

Proof: Correct sites in view V n execute the VCA protocol (Alg. 7) to agree on the view

changes to V n that give the new view V n+1. The last TBA of the VCA protocol decides

the hash of the view changes to be applied to V n. The proof can be divided in two

cases:

Case 1 If at site Sj the hash decided in the last TBA is equal to Hash(bag-changes-prop)

(Alg. 7, lines 10-19) then applying the changes in bag-changes-prop to V n it gets

V n+1 so it installs V n+1.
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Case 2 If that is not true, at least 2fn + 1 sites proposed for the last TBA (line 15)

therefore at least fn + 1 correct sites did it (since there are at most fn failed sites).

All correct sites will eventually multicast a CHANGES message (line 18), Sj will

eventually receive one of them (line 22), terminate VCA (lines 24-25) and install

V n+1.

2

Theorem 17 If views V n
i and V n

j are defined, and sites Si and Sj are correct, then V n
i = V n

j

(Uniqueness).

Proof: The proof is by induction on views. The group is created by site S1 so the initial

case is when site S2 joins (view V 2). We assume S2 manages to get a reliable copy of V1

that contains only S1 (Section 6.3.5). Then S2 sends S1 a REQ TO JOIN and waits for

f 1 +1 = |V 1|−1
3

+1 = 1 message with the new view information. Since there is only one

site in V 1, no site is allowed to fail (f 1 = 0), therefore considering the communication

model, S2 gets a correct copy of V 2 and V 2
1 = V 2

2 .

The proof that (V n
i = V n

j ) ⇒ (V n+1
i = V n+1

j ) (if neither of the sites exit the group)

comes directly from Lemma 4.

Finally, considering that sites can join the group, we have also to prove that

V n+1
i = V n+1

j even if V n
i was defined but Sj joined the group (V n

j was not defined). We

assume Sj manages to get a reliable copy of V n. Then Sj multicasts a REQ TO JOIN

and waits for fn + 1 messages with the new view information. Considering the com-

munication model and that there are at least 2fn+1 correct sites (and at most fn failed),

Sj eventually receives fn + 1 identical copies of V n+1 and installs that view. 2

Theorem 18 If site Si is correct and view V n
i is defined, then Si ∈ V n

i and, for all correct sites

Sj ∈ V n
i , V n

j is eventually defined (Validity).

Proof: The first part of the proof – that Si ∈ V n
i – is trivial. Let us prove that for all

correct sites Sj ∈ V n
i , V n

j is eventually defined. The case of the first view, V 1, is also
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trivial. For all other views, V n is installed after the sites in view V n−1 executed the

VCA protocol. Therefore, all sites Sj belong to V n
i for one of two reasons: Sj ∈ V n−1

and Sj did not exit the group; or Sj joined the group to view V n.

Case 1 Sj ∈ V n−1 and Sj did not exit the group. Let us prove that all correct sites

received at least 2fn−1 + 1 messages (INFO, *, Ev(Sk), *) from different sites in

view V n−1. VCA terminated therefore at least 2fn−1 + 1 sites proposed for a last

TBA (Alg. 7, line 15), so at least fn−1 + 1 correct sites proposed for that TBA.

For those correct sites to call TBA, they must have received at least 2fn−1 + 1

INFO messages about one event (Alg. 6, lines 17-21). At least fn−1 + 1 of those

messages were sent by correct sites so all correct sites will eventually receive them

(communication model). A correct site eventually multicasts an (INFO, *, Ev(Sk),

*), either because it “saw” the event or when it receives the (fn−1 + 1)th message.

Therefore, all correct sites eventually multicast the message and receive it at least

2fn−1 + 1 times, the minimum number of correct sites.

VCA is called with the smallest valid-tstart received in the INFO messages (Alg. 6,

line 21). Let us now prove that the smallest valid-tstart received in any subset of

these 2fn−1 + 1 messages, from different sites and for this view, is smaller or

equal than the last TBA tstart (Alg. 7, line 10). A correct site multicasts all INFO

messages for a view with the same valid-tstart (Alg. 6, lines 4, 8-9, 14-16). In

any subset of 2fn−1 + 1 messages from different sites, at least fn−1 + 1 were sent

by correct sites. The last TBA happens when at least 2fn−1 + 1 sites manage to

propose before tstart (Alg. 7, line 15), from which at least fn−1 + 1 are correct.

Since there are at least 2fn−1 + 1 correct sites, the intersection of these two sets of

fn−1 + 1 correct sites has at least one site. A correct site cannot propose with a

tstart smaller than the valid-tstart it sends in its INFO messages for a view (Alg. 6,

lines 8-10, 14-16). Therefore, the smallest valid-tstart a correct site receives in any

subset of 2fn−1 + 1 INFO messages is smaller or equal to the first TBA when

2fn−1 + 1 sites manage to propose, i.e., the last TBA.

A site can receive INFO messages with several events Ev(Sj) in the same view.
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When it receives for the first time the (2fn−1 + 1)th INFO message (from different

sites) with the same event, it starts executing VCA with the smallest valid-tstart

in these messages. It calls TBA once or more times, until it gets the result of the

last TBA (Alg. 7, lines 8-15) and installs the view, i.e., V n
j is defined.

Case 2 Sj joined the group. All correct sites in view V n−1 eventually install V n since

they are included in Case 1. Therefore they eventually send the new view infor-

mation to all sites accepted to join (Alg. 6, line 26). When a site allowed to join

receives fn−1 + 1 of these messages it installs the new view.

2

Lemma 5 If any correct site Si receives 2f+1 (INFO, *, Ev(Sj), *) messages for the same view

V n and from different senders in the view, then at least one correct site in the view “saw” the

event Ev(Sj). The meaning of “saw” depends on the event: Si detected the failure of Sj (event

Remv(Sj)); Si received a (LEAVE, Sj) message from Sj (event Leave(Sj)); or Si received a

(REQ TO JOIN, Sj , *) message from Sj (event Join(Sj)).

Proof: In the proof we call simply message to a message (INFO, *, Ev(Sj), *) and n

messages to n of these messages received from different sites and for the view being

considered.

A correct site multicasts a message for one of two reasons (Alg. 6, respectively lines

6-10 and 11-16): because it “saw” the event Ev(Sj); because it received f + 1 messages.

Assume no correct site “saw” the event Ev(Sj). If there are messages it is because a

malicious site has sent it. Since there are at most f failed sites, no correct sites receives

f + 1 of messages, therefore no correct site sends messages, so no correct site receives

2f + 1 messages. 2

Theorem 19 If site Si ∈ V n
i and V n+1

i is not defined then at least one correct site detected that

Si failed or Si requested to leave. If site Si ∈ V n+1
i and V n

i was not defined at Si then at least

one correct site authorized Si to join (Integrity).
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Proof: First let us prove the first sentence. If site Si ∈ V n
i but V n+1

i is never defined then

Si exited the group. This is only possible if VCA made agreement on a bag-changes-prop

with an event Leave(Si) or Remv(Si). A correct site puts an event Ev(Sj) in bag-changes

when it receives the (2f + 1)th message (INFO, *, Ev(Sj), *) from different sites and for

this view (Alg. 6, lines 17-18). Given Lemma 5, that happens only if at least one correct

site “sees” the event, Leave(Si) or Remv(Si). To “see” the Leave(Si) means to receive a

message (LEAVE, Si) from Si. To “see” the event Remv(Si) means to detect the failure

of Si. This proves the first sentence. The proof of the second is similar so we skip it for

brevity. 2

Theorem 20 If b |V n|−1
3

c+1 correct sites detect that Si failed or receive a request to join, or one

correct site requests to leave, then eventually V n+1 is installed, or the join is rejected (Liveness).

Proof: We prove the assertion for the site failure and skip the proofs for join and leave

since they are similar. If fn + 1 = b |V n|−1
3

c + 1 correct sites detect that Si failed they

multicast a total of fn + 1 messages (INFO, *, Remv(Si)). There are at least 2fn + 1

correct sites and all multicast these messages either because they detected the failure or

because they received the mentioned fn+1 messages. Therefore, all correct sites receive

at least 2fn + 1 of these messages. If VCA is not running then it starts and eventually

decides that view change, considering the time assumption made in Section 6.3.7. If

VCA is already running that change can be decided or not. If not, we assume the event

is re-issued in the next view and that it will be eventually agreed (Section 6.3.2). 2

A.8 View-synchronous atomic multicast protocol

This appendix sketches proofs of the correctness of the view-synchronous atomic

multicast protocol presented in Chapter 7. We consider the system model and the

assumptions in Section 7.1.

Theorem 21 If a correct site multicasts a message M, then some correct site in group(M)

eventually delivers M (Validity).
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Proof: When a site wants to leave a group it also multicast a message to all members

(Section 6.3.4. Therefore, the proof follows from Theorem 20. 2

Theorem 22 If a correct site delivers a message M, then all correct sites in group(M) eventu-

ally deliver M (Agreement).

Proof: The proof also follows from Theorem 20. 2

Theorem 23 For any message M, every correct site p delivers M at most once and only if p

is in group(M), and if sender(M) is correct then M was previously multicast by sender(M)

(Integrity).

Proof: The proof follows trivially from the secure channels model (Section 5.1). 2

Theorem 24 If two correct sites install views V n and V n+1 then both sites deliver the same

messages in view V n (View synchrony).

Proof: Any correct site delivers a BAM-VS message only if the VCMDA protocol says

so. New views are also installed after the execution of a VCA protocol, which is similar

to VCMDA, therefore the proof follows from the proof of Uniqueness (Theorem 17). 2

Theorem 25 If two correct sites deliver two messages M1 and M2 then both sites deliver the

two messages in the same order (Total order).

Proof: If M1 and M2 are delivered in consequence of the result of the same VCMDA

execution the proof is obvious (see Algorithm 9, line 23). The proof that a correct site

eventually engages in an execution of VCMDA follows from Theorem 20. This has

also the consequence that all correct sites execute the same sequence of VCMDAs in a

view. Therefore, if M1 and M2 are delivered in two different executions of VCMDA,

the property is also satisfied. 2



178 APPENDIX A. CORRECTNESS PROOFS



References

ADELSBACH, A., ALESSANDRI, D., CACHIN, C., CREESE, S., DESWARTE, Y., KUR-

SAWE, K., LAPRIE, J. C., POWELL, D., RANDELL, B., RIORDAN, J., RYAN, P.,
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