
TruApp: A TrustZone-based Authenticity Detection
Service for Mobile Apps

Sileshi Demesie Yalew1,2, Pedro Mendonça1, Gerald Q. Maguire Jr.2, Seif Haridi2, Miguel Correia1

1INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
2School of Information and Communication Technology, KTH Royal Institute of Technology, Sweden

sdyalew@kth.se, pedromdsmendonca@gmail.com, maguire@kth.se, haridi@kth.se, miguel.p.correia@tecnico.ulisboa.pt

Abstract—In less than a decade, mobile apps became an
integral part of our lives. In several situations it is important
to provide assurance that a mobile app is authentic, i.e., that
it is indeed the app produced by a certain company. However,
this is challenging, as such apps can be repackaged, the user
malicious, or the app tampered with by an attacker. This paper
presents the design of TRUAPP, a software authentication service
that provides assurance of the authenticity and integrity of apps
running on mobile devices. TRUAPP provides such assurance,
even if the operating system is compromised, by leveraging the
ARM TrustZone hardware security extension. TRUAPP uses a
set of techniques (static watermarking, dynamic watermarking,
and cryptographic hashes) to verify the integrity of the apps. The
service was implemented in a hardware board that emulates a
mobile device, which was used to do a thorough experimental
evaluation of the service.

I. INTRODUCTION

In less than a decade, mobile apps became an integral part of
our daily lives. In several situations it is important to provide
assurance that a mobile app is authentic, i.e., that it is indeed
the app produced by a certain company and with a certain
version. Authenticity is important for many apps provided by
service providers, from financial to healthcare organizations,
and including public administration. Some of these apps are
security-critical, e.g., because they allow access to private
information (identity, financial details, health details, etc.).

Android has for some time become the most adopted mobile
operating system (OS), with a market share much higher than
all its competitors together [1]. However, this OS is prone
to security issues. A major source of problems are malicious
apps. Some apps, even when downloaded from the official
Android market, the Play Store, can be malicious [2], [3] and
thus attack other apps by modifying their behavior. Moreover,
the open nature of Android has led to the appearance of many
alternative app markets [4], which facilitates the distribution of
malicious apps. Some of these apps are repackaged apps, i.e.,
apps that were originally legitimate, but that were unpacked,
modified to include a malicious payload, signed again, then
placed in a market [2]. Moreover, in some cases it has been
possible to inject malicious code into legitimate Android apps
without damaging the digital signature of the original app [5].

There are mechanisms in place to avoid these problems.
Play Store analyses apps and does not distribute them if
it suspects they are malicious, but some malicious apps

manage to pass undetected [2], [3]. Repackaging requires
reverse engineering, which may be made harder by using code
obfuscation [6], but this obfuscation is not entirely effective.
This work is not concerned with substituting or improving
these mechanisms, but with providing another layer of security.

A. Watermarking

Software watermarking mechanisms allow the verification
of the authenticity and the integrity of an app [7]–[10]. These
mechanisms can be implemented directly into the app’s source
code or executable, or can be external to the app (e.g., as a
service in the mobile OS). The general idea is to embed a
watermark, typically numbers or strings, into the target app,
in such a way that it does not affect the execution of the app
but that it is difficult to remove without detection. Verification
consists in extracting and checking the watermark.

Depending on how the watermark is embedded and ex-
tracted, watermarking schemes can be classified in two classes:
static and dynamic [11], [12]. In static watermarking, the
watermark is embedded into the code or data of an app and is
extracted without executing the app. In contrast, in dynamic
watermarking extracting the watermark involves executing the
app. Adversaries may be able to remove the watermarks by
leveraging reverse engineering. It is possible to make these
attacks harder but not to avoid them altogether, assuming that
the attacker has access to the app’s executable code (bytecode,
in the Android case). This malicious host problem is currently
unsolvable, only mitigable [10].

An alternative solution would be to run (part of) the
protection mechanism in an external device such as a dongle
[13]. A dongle is a small hardware device that is attached
to computers using USB ports or other interfaces. Dongles
are widely employed to prevent software piracy via apps
interacting with the dongle during execution to ensure that
the dongle is present. Nevertheless, this mechanism can be
defeated by emulating the interaction with the dongle or
modifying the app to remove this interaction.

ARM TrustZone [14] is a hardware security extension sup-
ported by recent ARM processors, including ARM Cortex A8,
A9, and A15. The TrustZone technology provides two isolated
execution environments: the secure world that runs trusted
apps on top of a small trusted OS; and the normal world
that runs untrusted apps on top of a rich OS, such as Android.

1

TABLE I
SUMMARY COMPARISON BETWEEN THE THREE TECHNIQUES.

Technique Protection Detection Delay
Measurements best best (collision resistance) worst
Static watermarks best high best
Dynamic watermarks high worst average

The physical core of the processor is divided in two virtual
cores, corresponding to these two execution environments.
The normal world cannot access the system resources (e.g.,
memory space and peripherals) that are assigned to the secure
world; while the secure world has access to the normal world’s
resources.

B. TruApp

This paper presents the design and implementation of TRU-
APP, a software authenticity and integrity verification service
for mobile apps. This service aims to ensure that an app
running in a mobile device (e.g., a smartphone or a tablet)
is genuine and was not modified in an unauthorized way by a
third party or the user. TRUAPP is protected from the mobile
OS, apps, and malware by running in the secure world.

The design explores static watermarking, dynamic water-
marking, and measurements (i.e., cryptographic hashes over
code). An actual implementation of TRUAPP does not have to
implement all these mechanisms, only a subset of them. The
choice of this subset involves tradeoffs that are summarized
in Table I (explained in Section V-C).

We assume that TRUAPP is provided by the TruApp
provider. Moreover, we assume that an app is provided by an
app vendor. This vendor may be designated a service provider,
when the app is an interface for a service, e.g., a home-banking
app that provides access to the bank’s services. In some cases
we use the term TruApp instance to clarify that we are talking
about TRUAPP running in a particular mobile device.

To perform verification of an app authenticity, the app
vendor provides a TRUAPP instance a certificate called a
verification key (VK). This VK describes the characteristics
of the original app and allows TRUAPP to verify if the app is
genuine. VK’s content depends on the detection mechanism(s)
used, e.g., it can be just a hash if only measurements are used.
VK is encrypted and signed in order to ensure its authenticity,
integrity, and confidentiality.

The authenticity verification process works essentially as
follows. When the app starts running, it contacts the entity
to which it has to prove to be authentic and obtains VK and
a nonce (for freshness, i.e., to avoid replay). Then, the app
calls the TRUAPP service in the mobile device and passes it
VK and the nonce. Next, TRUAPP verifies the signature of
VK, extracts the watermarks and/or the measurements, and
checks if they correspond to the information in VK. If they
do, TRUAPP returns a signed certificate containing the nonce.
The app finally sends this certificate to the entity in order to
verify that the app is authentic. Further details of the VK and
authenticity verification process are given in Section III-C.

C. Contributions

The main contributions of this paper are: (1) the design of
a software authenticity and integrity verification service called
TRUAPP, protected using the TrustZone extension; (2) an
authenticity verification process based on static watermarking,
dynamic watermarking, and measurements, plus system in-
tegrity verification; (3) an implementation of TRUAPP running
on an NXP Semiconductors i.MX53 Quick Start Board (QSB);
and (4) an experimental evaluation of TRUAPP.

II. USE CASES

We believe TRUAPP is useful in several use cases. Here we
briefly present two examples.

The first use case is related to service providers, such as
the above-mentioned bank and its home-banking app. The
bank is concerned that the app may be compromised and
used to steal confidential data about the user and user’s bank
account. Therefore, the app is distributed in a reliable market
and includes logic for invoking TRUAPP. When the user starts
to login via the app, the app’s authenticity verification process
explained above is executed. If successful, the service provider
can trust the app to execute as expected. On the contrary,
if the app has been compromised or it is not the original
app (e.g., a repackaged version), then access to the service
is blocked. Note that the authenticity verification must be
successful before the user provides any login or other sensitive
information via the app.

The second use case is inspired by a recent project we
were involved in. The PCAS project designed a hardware
component called a secure portable device (SPD) [15], [16].
This component is essentially a mobile device that is highly
secure, supports biometric authentication, has a large memory,
has the form of a smartphone sleeve, and is supposed to be
connected to smartphone (it does not have communications,
other than a USB connection to the phone). The objective is
to store private data such as its owner’s personal health record
and medical exams. The SPD limits the data it provides to
the smartphone, but a malicious app might obtain some useful
information. The PCAS app that runs in the smartphone could
be protected using TRUAPP. The app would contact the SPD,
receive a nonce and proceed with the authenticity verification
process explained above. Notice that, in this case, the resulting
authenticity is known to a hardware component connected to
the mobile device, rather than to an external service or backend
as in the previous use case.

III. SYSTEM ARCHITECTURE AND DESIGN

A. Threat Model and Assumptions

We leverage the ARM TrustZone hardware protection to
run most of TRUAPP in the secure world, isolated from the
mobile OS. We assume that the software running in the normal
world, including the mobile OS, is untrusted, i.e., it may be
malicious or compromised by malware or hackers. In contrast,
we assume the secure world software, including the TRUAPP
software, is trustworthy.

2

We minimize the software installed in the secure world as
much as possible to minimize the size of the trusted computing
base (TCB) [17]. Specifically, we use a small tailor-made
kernel (Section IV-A), do not install unnecessary libraries, and
have no network stack. We also reduce the size of the API to
the secure world to reduce the attack surface and carefully
validate inputs to that API, to make software attacks against
the secure world infeasible; hence we assume they cannot be
successful.

A small part of TRUAPP runs in the normal world. The
rest of TRUAPP verifies the integrity of the normal world
and, specifically, the part of TRUAPP running there, hence
we assume neither malware or attackers can compromise it.

We assume the TRUAPP service provider has a public-
private key pair (Kutasp,Krtasp) for some public-key cryp-
tographic scheme (e.g., RSA), with a key size considered
secure (3072 bits for RSA [18]). That entity keeps the private
key Krtasp for itself and installs the public key Kutasp in
the TRUAPP service in the mobile devices. Furthermore,
the service provider also generates a public-private key pair
(Kuta,Krta) for each TRUAPP instance running in a mobile
device, plus a public key certificate C(Kuta)Krtasp (e.g., in
the X.509 format [19]). Both keys and the certificate are stored
in TRUAPP, in the secure world of the device. Finally, every
app vendor has also a public-private key pair (Kuav,Krav).

We assume the existence of a collision-resistant hash func-
tion [20], e.g., SHA-2 with 512-bit output [18]. We also
assume a secure symmetric encryption system (e.g., AES with
256-bit keys [18]) with cipher block chaining (CBC) mode.

B. Architecture

Figure 1 depicts the architecture of TRUAPP. The mobile
OS and the apps it executes, and parts of TRUAPP (i.e.,
syscalls tracer and TZ Driver) are run in the normal world.
The syscalls tracer is a module of TRUAPP that intercepts
and logs kernel level system calls made by an app running in
the normal world. This is only used in conjunction with the
dynamic watermarking scheme. TZ Driver is a kernel driver
that supports cross-world communication between software
in the normal world and TRUAPP components in the secure
world. This driver allocates a shared memory buffer that is
used for the software in the normal world to pass selected
data to TRUAPP in the secure world, and for TRUAPP to return
back verification results to the requesting app.

The secure world software architecture is designed to run
the TRUAPP modules (app verifier, system verifier, and in-
terface) on top of a small trusted OS that provides basic OS
functions (e.g., process management and file access). The app
verifier module implements a set of techniques to verify the
authenticity and integrity of an app running in the normal
world. The system verifier checks the integrity of the TRUAPP
component that runs in the normal world (the syscalls tracer)
and the Android kernel, as the normal world is vulnerable to
attacks. The interface module acts as an interface between the
normal world and TRUAPP. It is responsible for receiving and
replying to requests, e.g., a request from an app in the normal

 Mobile OS

TZ Driver

N
or

m
al

 W
or

ld

Syscalls Tracer

Applications

Trusted OS

Application Verifier

TruApp

Se
cu

re
 W

or
ld

External
Device

System Verifier

Interface

External Service

Secure
Storage

Fig. 1. Architecture of a mobile device running TRUAPP. The grey boxes
are components of the TRUAPP service.

world for an authenticity verification. It also validates all the
incoming data from the normal world and protects against
buffer overflows and other input attacks. In addition to the
private memory, a private persistent storage area is reserved
in the secure world (shown as secure storage in the figure).

C. Authenticity Verification Process

This section describes the authenticity verification process,
which mainly involves the app verifier module and the in-
terface module of Figure 1. In this section we assume the
integrity of the syscalls tracer module (we defer to Section
III-D an explanation on how this assumption is enforced).

1) Verification Key: The authenticity verification process is
based on watermarking and measurements. These techniques
require information about the app. For this purpose, the app
vendor creates a certificate called verification key (VK) that
contains this information (i.e., hash value, static watermark
data, and dynamic watermark data).

VK is digitally signed. There are two options for this
signature:

1) the signature is issued by the TRUAPP provider using its
private key Krtasp, upon request from the app vendor;

2) the signature is issued by the app vendor using its own
private key Krav . As the private key is not in the mobile
device, the app vendor provides also a public key certificate
C(Kuav)Krtasp signed by the service provider with its
private key Krtasp.
In the first case, the signature is verified in the TRUAPP

interface module using the public key Kutasp. In the second,
VK comes with the certificate C(Kuav)Krtasp , the signature
of VK is verified using Kuav from the certificate, and the
signature of certificate is verified using Kutasp.

VK is encrypted using hybrid encryption [21]. This scheme
consists essentially in obtaining a random secret key Ks (e.g., a
256-bit key for AES-256), encrypting the content of VK with
Ks, and encrypting Ks with the public key of the TRUAPP
instance Kuta. VK consists of three parts: the encrypted
content, the encrypted Ks, and the signature.

When VK is received by TRUAPP in the device, the verifica-
tion and decryption process consists: verifying the signature as
explained above, decrypting Ks, and using this key to decrypt
the contents of VK.

This combination of mechanisms ensures the following
security properties:

3

App
(normal	world)

TruApp
(secure	world)

nonce,	VK

get	hash	&	watermarks

hash	&	watermarks
Hash
Static	watermark
Dynamic	watermark

certificate

Fig. 2. Authenticity verification scheme.

• authenticity – VK must have been created by the TRUAPP
service provider or the app vendor, as they are the only
entities that have, respectively, Krtasp and Krtav to sign
the message.

• integrity – VK cannot be modified and its signature modified
to match its content for the same reason as for authenticity;

• confidentiality – the contents of VK cannot be disclosed by
entities other than the TRUAPP instance or the entity who
generated the VK. As only these entities know the plain text
version of the VK or have the private key Krta necessary
to decrypt the key Ks (that is encrypted with Kuta), and the
key Ks is required to decrypt the content of VK.

2) Overview of the Authenticity Verification Process: It is
up to the app to show to the external service or external device
that it is authentic (Section II). Therefore, the VK is embedded
in the app package that is downloaded and installed from the
app market. The app typically gets a nonce – a number that
is never reused – from the external service/device, which it
passes together with VK to the TZ Driver, which passes them
to the interface module within the secure world. This process
is equivalent to the app calling a remote procedure

cert_t TruApp_verify(nonce_t nonce, vk_t vk);

where nonce_t is the type of the nonce (e.g., a 64-bit
unsigned integer), vk_t the type of VK, and cert_t the
type of the certificate returned by the function showing that
the verification was successful (otherwise it returns null).
This certificate is signed using the private key of the TRUAPP
instance (Krta).

Figure 2 presents this process but shows also that, between
the function call and the result being returned, TRUAPP
interacts with the app. Specifically it obtains measurements
and/or watermarks, which it uses to evaluate the authenticity
of the app.

The app verifier module is composed of three sub-modules,
corresponding to the three schemes for verifying authenticity:
measurement checker, static watermarker, and dynamic wa-
termarker.

3) Measurement Checker: The measurement checker mod-
ule calculates the hash of the app using a collision-resistant
hash function and validates it against the hash value presented
in the corresponding VK, in order to verify that the app was
not modified. A small change to the app results in a different
hash value due to the collision resistance property, so if the
new hash value does not match the hash value in the VK, the

app (or VK) must have been modified.
This verification is possible because the secure world can

access the resources of the normal world. Android apps are
distributed in the Android app package (APK) format. In this
mechanism, the secure world inspects the app’s APK file
stored typically in internal memory (in the part assigned to
the normal world).

4) Static Watermarker: For static watermarking, we use a
scheme in which a watermark is represented by the values
of particular bytes in the app bytecode, instead of the usual
method of having the value of the watermark stored in a
variable (e.g., a string or an integer) of the app source code.
The app developer can select which bytes to use and store their
positions, i.e., an index to locate a byte, and value of each
selected byte in the VK of the app. The higher the number
of bytes used and the more scattered they are, the lower the
chances of having two apps with the same values for all of
these bytes. The static watermarker module running in the
secure world reads the position of each byte from the VK and
compares its corresponding value with the value of the byte at
that position in the target app’s bytecode. If any of the bytes
do not match, then the app is not authentic.

This checking is possible because the secure world can
access all the resources of the normal world. Again, the secure
world inspects the app’s APK file.

5) Dynamic Watermarker: Android is based on Linux, so
just as Linux it provides system calls (syscalls) that allow apps
in user mode to perform various low level system operations,
for example, with files (e.g., read, write), processes (e.g.,
fork, exec), and networks (e.g., socket, connet). The
syscalls made by an app provide relevant information about
the runtime behavior of the app [22].

We propose to use syscall traces (sequences of syscalls) of
the app as dynamic watermarks. The syscalls tracer module
running in the normal world intercepts and logs syscalls made
by the target app, using itself the ptrace syscall. When a
certain time elapse or number of syscalls has been made (a
configuration parameter), the syscalls tracer sends the trace –
the sequence of syscalls – to the secure world via TZ Driver.
We designate this trace Trun.

The dynamic watermarker module running in the secure
world does the verification essentially by comparing Trun with
a reference trace, obtained with the genuine app, that comes
in VK: Tref . This cannot be a trivial comparison of two call
sequences because two executions of the same app normally
do not produce the same trace, as the exact order of syscalls
depends on timing and interaction with other components.

To take these effects into consideration, we do a similarity
comparison using the Needleman-Wunsch algorithm [23]. This
algorithm was designed for finding similarities in the amino-
acid sequences of two proteins, not traces. The algorithm
essentially compares sequences of letters: it adds points when
a match is found, subtracts points when a gap is found (i.e., a
match that requires discarding letters in one of the sequences),
and subtracts more points when a mismatch is found. The

4

algorithm solves the dynamic programming problem of finding
and evaluating the best match between two sequences.

In TRUAPP, every syscall in Trun and Tref is converted to
a letter using some deterministic criteria. Next, the algorithm
configured with appropriate values is used to compute their
similarity (in the experiments, a match had 4 points, a gap
−1, and a mismatch −2). Finally, a threshold Tresh 6= is used
to decide if the apps that produced the traces were the same
(result above or equal to Tresh6=) or not (result below).

D. Normal World Integrity Verification

In Section III-C we assumed the integrity of the syscalls
tracer module, although this module is executed in the normal
world. In this section we explain how this assumption is en-
forced. This enforcement involves three aspects – trusted boot,
system integrity verification, and tracer integrity verification –
that are implemented by the TRUAPP system verifier module
(Figure 1). This module is further divided into three sub-
modules: boot support, system verifier, and tracer checker.

The normal world integrity verification is made at two
moments. First, when the device is started a trusted boot is ex-
ecuted. Second, when an authenticity verification is requested
(Section III-C), first a system integrity verification is executed,
then a tracer integrity verification is done. If any of these two
verifications fails, then the authenticity verification terminates
immediately with failure (i.e., returns null).

1) Trusted Boot: The boot of a system involves executing
a sequence of modules, typically starting at the BIOS, then a
bootloader, the OS kernel, etc. In a trusted boot process, the
first module executed (e.g., the BIOS) is designated static root
of trust for measurement (SRTM), as the integrity of the whole
process depends on the trust we can have in that component
[24]. The process consists in each module, starting with the
SRTM, measuring the next one and storing this measurement
(a hash obtained using a collision-resistant hash function) in a
safe place. The best-known implementation of the concept uses
the Trusted Platform Module (TPM) [25], a hardware board
currently available on the motherboard of many commodity
PCs. The TPM contains an array of Platform Configuration
Registers (PCRs) where the measurements are stored (e.g.,
one measurement per PCR).

In our system we implement this basic idea. We assume that
when the device boots, the secure world is booted first, then it
passes control to the normal world. This is the most common
configuration of devices that have TrustZone, such as i.MX53.
Therefore, in our case, the secure world is the SRTM, so it
computes a hash over the normal world. The module in charge
of obtaining this hash is the boot module. The boot module
boots the Android kernel and computes its hash. When the
Android kernel starts to run, it does a measurement of the init
program, in charge of initializing several elements of Android,
and passes this hash to the secure world boot module. To do
so it contacts the TZ Driver in a manner similar to calling a
remote procedure

TruApp_store_measurement(hash_t hash);

Then, init measures the program app process, which when
executed becomes the zygote process, i.e., the first instance
of the Dalvik VM (the VM that executes all Android apps).
Again, init calls the same function to pass the measurement
to the boot module. The secure world does not have PCRs as
it is not a TPM, but instead it stores the hashes in a vector
that plays a similar role to the array of PCRs. Notice that
the function does not take any input other than the hash; the
hashes are simply stored by the boot module in the order it
obtains them.

This process allows later verification of whether the normal
world has been compromised.

2) System Integrity Verification: The system verifier mod-
ule detects whether the normal world has been compro-
mised. The module does measurements of the components
measured during the trusted boot process: kernel, init, and
app process/zygote. Then, it compares these hashes with those
stored during the boot process. If they differ, then the system
must have been compromised due to the collision resistance
property of the hash function, hence the verification fails.
Otherwise, the verification passes.

3) Tracer Integrity Verification: The tracer checker is re-
sponsible for verifying the integrity of the code of the syscall
tracer module to validate the syscall traces collected by the
module. When it is called, it calculates a hash h of the syscall
tracer module. Then, it compares this hash with the hash of
the module it keeps in secure storage (hst). The value of hst

comes with TRUAPP, it is not obtained during the trusted boot,
as it is not part of the boot process.

The syscall tracer might be maliciously modified just after
the tracer integrity verification. However, the system integrity
verification provides assurance that the software running in
kernel mode (the kernel itself) is not compromised. However,
such a modification would still be possible if there was a
vulnerability in the kernel or the syscall tracer itself. A
solution would be to repeat the verification of the syscall tracer
multiple times during the capture of a trace; however, this
scheme might be attacked using a race [26], but the probability
would be much lower. A protection that makes such an attack
almost impossible is for the external service or device to accept
only a limited number of authenticity verification attempts for
each mobile device.

IV. IMPLEMENTATION

This section describes the implementation of a prototype of
TRUAPP. Most of the implementation is independent of the
device, but a few aspects may depend on the specific hardware
we used: an i.MX53 QSB board equipped with a Cortex-A8
single core 1 GHz processor, 1 GB DDR memory, and a 4GB
MicroSD card.

A. Runtime Environment

The kernel used in the secure world is based on Genode, a
framework of components to implement small OS kernels. In
the secure world we use a small kernel based on a custom
kernel (base-hw) provided by the Genome project for our

5

board. This kernel provides the tz vmm driver to support calls
from the normal world to the secure world.

In the normal world, we installed a version of Android for
the i.MX53 series from Adeneo/Freescale [27]. The Android
kernel is patched to be executed in the normal world. This
kernel has to be modified to obtain the measurements and send
them to the secure world. Our current implementation still does
not support this feature, but it could be implemented following
a similar mechanism implemented in the Linux kernel that
sends hashes to the TPM (e.g., the TrustedGrub bootloader).

In order to store sensitive data in a persistent way (e.g.,
VKs from different apps), a part of the SD card or internal
memory has to be accessible exclusively by the secure world
(the secure storage in Figure 1). We use the Genode partition
manager (part blk) for this purpose. It supports partition tables
such as MSDOS and GPT, and provides a block session for
each partition on a SD card. This allows the partitions to be
addressable as separate block sessions and makes it is easy to
grant or deny access to them.

B. TruApp Components

As shown in Figure 1, TRUAPP has several components,
both in the normal and the secure world. In this section, we
describe the implementation of these components.

We used strace to implement the syscalls tracer in the
normal world. strace is a debugging tool for Linux that can be
used to trace the syscalls made by a process. It relies on ptrace
syscall and can be consider as an interface between the user
space and ptrace syscall. The syscalls tracer module records
only the name of each system call. The above-mentioned data
is stored in a data structure to be processed and analyzed by
the app verifier module in the secure world.

In the secure world, we implemented the app verifier, system
verifier, and interface modules based on a user level VMM
app called tz vmm that runs on top of the Genode kernel.
The TrustZone configuration within Genode partitions the
DDR RAM between the secure world and tz vmm is able
to request the normal world’s RAM via an IOMEM session
during its start-up routine. The memory is mapped as uncached
to the secure worlds address space, thus the whole normal
world memory can be accessed by the system verifier module
running in the secure world. We also configured the Android
file system partitions to be accessed by the secure world,
so that the app verifier module can access the app’s APK
in the normal world to verify its integrity and authenticity.
The implementation of the Needleman-Wunsch algorithm was
based on the seq-align library [28].

V. EXPERIMENTAL EVALUATION

A. Authenticity Verification

We conducted experiments to evaluate the detection per-
formance of the three authenticity verification techniques
individually (measurements, static watermarks, and dynamic
watermarks). These experiments assess the ability of TRUAPP
to play its role and enables app vendors to choose which

verification techniques to use. In the experiments, every non-
genuine app provided TRUAPP with the VK of the corre-
sponding genuine app, in attempt to be considered genuine
by TRUAPP; otherwise these apps could not possibly show to
an external service or device that they were genuine.

We started by using TRUAPP to compare if pairs of apps
could be taken to be the same. For that purpose we used a
set A of around 20 random apps downloaded from the Play
Store. For every app A in A with verification key VKA, we
used TRUAPP to verify if all other apps A’ in A could be
taken to be A, by providing VKA as the verification key. In
all cases all the three techniques said the app was not genuine,
as expected, as the apps were different.

1) Datasets: After that initial phase, we did experiments
with apps that were similar, i.e., we compared if a repackaged
app A’ could be taken for the genuine app A. We used two
datasets for that purpose: (1) manually repackaged apps and
(2) real repackaged apps.

For creating dataset (1), we downloaded 41 legitimate
Android apps from Google Play Store and repackaged them
ourselves. The repackagement involved the following steps: (i)
unpack the APK file using the Apktool [29]; (ii) convert the
bytecode (DEX file) to Smali code (human-readable bytecode)
using the same tool; (iii) add to the Smali code a simple
malicious code snippet that deletes the user’s contacts (taken
from [30]); (iv) modify the file manifest.xml to give the
app more permissions (in this case to read and write the
contacts) and to trigger the code when the mobile device
finishes booting; (v) repack the app with the Apktool; (vi)
sign the APK file and add a self-signed certificate.

For dataset (2), we had first to find repackaged apps and
the corresponding genuine apps (from Play Store), which was
not simple. We found 20 pairs of apps in such conditions
(Table II). The repackaged apps were mostly mod games, i.e.,
games modified to give the player some kind of advantage
(e.g., unlimited gems in Clash of Clans).

2) Verification: Both measurements and static watermarks
always detected that the repackaged apps were not genuine. In
the case of measurements, this happened because repackaging
modifies the app bytecode, leading to a different hash value.
In the case of static watermarks, the cause was the fact that the
repackaging introduces the code snippet and creates a shift of
the bytes past the position where the snippet is added, so the
original byte values are not found in the expected position.
Therefore, we concluded that for evaluating verification the
important case are dynamic watermarks.

To measure the detection performance of dynamic water-
marks, we need to obtain execution traces, which involves
executing all apps with the same sequence of inputs. For
this purpose, we ran and traced the apps using the Monkey
application exerciser [31] to generate a stream of user events
such as clicks, key presses and screen touches. If Monkey
is re-run with the same seed value, it can generate the same
sequence of events. Due to the complexity of using Monkey
and executing these experiments in the board, we run the apps
in Google’s Android emulator [32], setting it to emulate an

6

TABLE II
DETECTION RATE FOR DATASET (2), REAL REPACKAGED APPS.

APKs \ Tresh6= 1700 1750 1800 1850 1900
Angry Birds 7.5 0 0 0 0 0
Bomb Squad Pro 1.4.121 0.95 1 1 1 1
CCLeaner 1.19.76 0 0 0 0 0
Clash of Clans 9.24.15 0 0 0.05 0.05 0.05
Clash Royale 1.9.2 0 0 0 0 0
Crossy Road 2.4.4 0 0 0 0 0
FIFA Mobile Soccer 6.1.1 0.1 0.1 0.15 0.2 0.2
Flags Quiz 2.4 1 1 1 1 1
Flick Kick FootballLegends 1.9.85 0 0 0 0 0
Last Day on Earth 1.5.6 0 0 0 0 0
Last Hope TD 3.31 0.25 0.25 0.25 0.25 0.25
Magikarp Jump 1.1.0 0 0 0.1 0.1 0.1
Mo n Ki World Dash 1.6 0.15 0.15 0.2 0.2 0.35
Once Upon a Tower 3 1 1 1 1 1
Realm Defense 1.8.4 0.05 0.05 0.1 0.1 0.1
Sniper 3D Assassin 2.0.2 0 0 0 0 0
Super Mario Run 2.1.1 0 0 0 0 0.1
Zombie Castaway 2.8.1 0 0 0 0 0.05
8 Ball Pool 3.10.3 0 0 0 0 0.1
8 Ball Pool 3.10.1 0 0 0 0 0

ARM CPU. We ran and collected 30 traces for each of the
manually repackaged apps and 20 traces for each of the real.

We considered different threshold values for the Needleman-
Wunsch algorithm to decide whether the traces are the same or
not. For each threshold value, we measured the detection rate,
which is the ratio of non-genuine applications that are detected
to be so. For dataset (1), the detection rate was 0, i.e., the
dynamic watermarking technique failed detecting non-genuine
applications. The reason for this is that the malicious code
snippet runs only after a reboot, so it was never executed and
the repackaged applications were confused with the genuine
ones. We did the same experiment for dataset (2). The results
of these experiments are shown in the Table II. Again, the
results were quite bad, with values near 0. The reason for this
is that these repackaged applications have a behavior that is
very similar to the genuine application.

For dataset (1), we also compared the 30 traces of each
app with the reference trace of each of the other apps.
We measured six common performance metrics for different
threshold values. Consider that: a positive (P) is an application
detected by TRUAPP to be non-genuine; a negative (N) is an
application classified as genuine; a wrong positive or negative
are denominated respectively false positive (FP) and false
negative (FN); the opposite are a true positive (TP) and a true
negative (TN). The definitions of the metrics used are:

Accuracy = (TP + TN)/(TP + TN + FP + FN)
False Positive Rate (FRP) = FP/(FP + TN)
False Negative Rate (FNR) = FN/(FN + TP)
Recall = True Positive Rate (TPR) = TP/(TP + FN)
Precision = TP/(TP + FP)
Fmeasure = 2× Recall × Precision/(Recall + Precision)

The results of these experiments are shown in Table III.
The best performance depends on the metric considered, e.g.,
it was for Tresh 6= = 1830 for the Fmeasure metric. Notice
that the accuracy does not vary much with Tresh 6=, wereas
recall goes down and precision up.

Table IV summarizes the values of the metrics for the three
techniques. For dynamic watermarks we consider the values of

TABLE III
EVALUATION OF DYNAMIC WATERMARKING.

Tresh6= Accuracy FPR FNR Recall Precision Fmeasure
1750 0.977 0.019 0.051 0.949 0.894 0.921
1770 0.975 0.017 0.061 0.939 0.902 0.920
1790 0.977 0.015 0.071 0.929 0.910 0.919
1810 0.978 0.012 0.083 0.918 0.928 0.913
1830 0.980 0.009 0.092 0.908 0.947 0.927
1850 0.981 0.003 0.112 0.888 0.978 0.930

TABLE IV
COMPARISON OF THE THREE TECHNIQUES.

Technique Accur. FPR FNR Recall Prec. Fmeas.
Measurements 1 0 0 1 1 1
Static watermarks 1 0 0 1 1 1
Dynamic watermarks
(Table II)

– – 1 0 – –

Dynamic watermarks
(Table III)

.980 .009 .092 .908 .947 .927

Tables II (the worse case; some metrics are not filled as there
is no value for TN) and III (for Tresh 6= = 1830). The table
shows essentially that measurements and static watermarks
provide better detection results than dynamic watermarks.

B. Performance Overhead

We also evaluated the performance overhead incurred by the
authenticity verification techniques to study which technique
is best in this aspect.

In order to evaluate the overhead of the measurements
technique, we evaluated the time for the measurement checker
module to calculate the hash of the app using SHA-512 and
compare it against the hash value present in VK. We repeated
this experiment for different sizes of APK files. The results
in Table V show that the time (t) grows linearly with the file
size (s). The trend observed is t = 0.9388× s− 0.0562.

We also evaluated the overhead of static watermarking. The
static watermarker module running in the secure world reads
the position of each byte listed in the VK and compares its
corresponding value against the value of byte in that position
in the target app bytecode. Therefore, we measured the time
(t) to perform these operations. Since this time depends on
the number of bytes (n) used as watermark, we repeated this
experiment for different numbers of bytes (Table VI). The
trend is t = 3.0056× n− 90.24.

For dynamic watermarks, we did not measure the time of
the whole detection process as the time to extract the traces
is configurable. We measured the total time required for the

TABLE V
TIME TO DO MEASUREMENTS.

Size (MBytes) Time (ms)
3.3 3,090
4.9 4,580

13.3 12,430
17.5 16,350
18.6 17,370
25.6 23,970
28.3 26,510
37.7 35,160
59.0 55,540
91.5 85,790

7

TABLE VI
TIME TO DO STATIC WATERMARKING.

No. Bytes Time (ms)
4 66
8 68

16 72
32 81
64 97

128 130
256 196
512 1,556

1024 3,059
2048 6,071

TABLE VII
TIME TO DO TRACE CONVERSION AND COMPARISON.

No. Letters Conversion (ms) Comparison (ms) Total (ms)
200 96.97 107.43 204.4
400 114.68 108.72 223.4
600 132.53 188.42 321.0
800 159.73 312.63 472.4

1000 168.89 415.21 584.1

syscall tracer module in the normal world to transfer the trace
data (syscalls traces) to the interface module in the secure
world. This time includes the performance delay introduced
by context switching between the two worlds, copying the
trace data into the shared buffer, and sending it to the secure
world. For this, we measured the time for copying different
sized chunks of data into the shared buffer and sending them
into the secure world. The average throughput to perform the
above operations is 17.51 MB/s. We also measured the time
for the dynamic watermarker to convert a syscall trace into a
sequence of an alphabetical letter and to compare the traces
to detect if they are same or not. We repeated this experiment
for different number of letters (l) in the converted sequence
of letters (200. 400, 600, 800, and 1000). The results are in
Table VIII. For each number of events, the total time (t) to
complete the above operations is shown in the last column of
the table. The trend is t = 0.5042× l + 58.534.

Finally, we evaluated the performance overhead incurred
by the normal world integrity verification process. The system
verifier checks the integrity of the normal world by calculating
hashes of the Android kernel, init, and app process using
SHA-512, and comparing them against their known-good
values. The tracer checker also does the same operations for
the syscall tracer module running in the normal world to verify
its integrity. Therefore, we measured the time to perform those
operations (Table VII). The results are the average of 1000
repetitions. The table shows both the size and the time to
check the integrity of the modules. The last line shows the
total for the two values. The total time required to check the
integrity of the normal world is around 2 seconds in our board.

C. Tradeoffs on Detection Techniques

Table I presents a comparison of the three techniques. In
relation to protection from the normal world (second column),
it is now clear that the measurements and static watermarks
techniques are executed only in the secure world, so they have
the best protection from the normal world. On the contrary, the

TABLE VIII
TIME TO DO INTEGRITY VERIFICATION.

File name Size (Kbytes) Time (ms)
app_process 5.7 7.48
init 90.1 48.71
syscalls tracer module 1126 829.55
Android kernel 8324 932.66
Total 9545.8 1818.4

dynamic watermarks technique requires running a module in
the normal world (syscalls tracer), so its degree of protection
is lower, although still high due to the use of the integrity
verification mechanisms.

In relation to their ability to detect if an app is not authentic
(third column), measurements are clearly the best technique
because they leverage the collision resistance property of hash
functions. For the other two, their capacity to detect if an
app is not authentic depends on the modifications made to
the app, modifying, respectively, the bytes checked with the
static watermarks, or the syscall sequence for the dynamic
watermarks. Our experimental results show that this is high
for static watermarks, but lower for dynamic watermarks.

In relation to the time to execute the technique (third
column), the highest overhead is from obtaining cryptographic
hashes, so measurements tend to be the worst, then dynamic
watermarks. Static watermarks are lightweight.

This discussion and the table show clearly that there are
tradeoffs that the designer of a TRUAPP implementation can
explore, allowing the optimization of different metrics.

VI. RELATED WORK

In the context of mobile devices, Jang et al. [33] proposed a
static watermarking mechanism based on steganography tech-
niques. It embeds watermarks into Android apps by reordering
the sequence of instruction in the basic blocks of the app DEX
files. AppMark [34] and Droidmarking [11] are examples of
dynamic watermarking mechanisms that embed a watermark
generator into Android apps that are guaranteed to be executed
and dynamically create a watermark instance at runtime. The
watermark code is combined with the original app with strong
data dependency in such a way that it is difficult for attackers
to identify and tamper the code by analyzing data dependency
AppInk [12] has adopted traditional graph-based dynamic
watermarking, implementing it on Android apps. However,
adversaries can remove the watermark code embedded in
the target app using reverse engineering tools or disable the
protection implemented external to the app (e.g., in the mobile
OS). In contrast, TRUAPP runs the protection or the watermark
code inside the secure world, isolated from the mobile OS,
apps and malware by leveraging the TrustZone.

Recent research has begun to use the ARM TrustZone
security extension to provide security guarantees in mobile
devices despite the mobile OS being compromised. Several
works have designed framework to separate small components
that do security sensitive computations from the apps and the
OS, by running these components in the secure world [16],
[35]. Another line of research provides secure storage that is

8

only accessible to the secure world to protect sensitive data
such as private keys [36]. ARM TrustZone has been recently
used to implement watermarking [37], [38]. TrustICE [37]
uses TrustZone-based watermarking to dynamically protect
memory regions in the normal world. The other work uses
watermarking for video, not software. We use ARM TrustZone
in a very different way: for assessing the authenticity and
integrity of apps and keeping the assessment mechanisms
isolated from Android and its apps.

VII. CONCLUSION

We present TRUAPP, a software authenticity and integrity
verification service for mobile devices. TRUAPP is protected
using ARM TrustZone. It is executed mostly on the secure
world, which also verifies the integrity of part of the normal
and of the TRUAPP code that runs in that environment.
TRUAPP uses watermarking and measurements to assess the
authenticity of mobile apps. We present an implementation of
TRUAPP for the i.MX53 QSB and an experimental evaluation.

Acknowledgements This work was supported by the European Com-
mission through the Erasmus Mundus Doctorate Programme under
Grant Agreement No. 2012-0030 (EMJD-DC) and project H2020-
653884 (SafeCloud), and by national funds through Fundação para a
Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013
(INESC-ID).

REFERENCES

[1] IDC, “Smartphone OS market share, 2016 Q3,” http://www.idc.com/
promo/smartphone-market-share/os, 2016.

[2] Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization
and evolution,” in Proceedings of the 2012 IEEE Symposium on Security
and Privacy, 2012, pp. 95–109.

[3] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative Android
markets,” in Proceedings of the 19th Annual Network and Distributed
System Security Symposium, 2012, pp. 5–8.

[4] Y. Zhauniarovich, O. Gadyatskaya, B. Crispo, F. L. Spina, and E. Moser,
“FSquaDRA: Fast detection of repackaged applications,” in Proceedings
of the IFIP Annual Conference on Data and Applications Security and
Privacy, 2014, pp. 130–145.

[5] SecurityLedger, “Exploit code released for Android security hole,”
https://securityledger.com/2013/07/exploit-code-released-for-android-
security-hole/.

[6] B. Horne, L. Matheson, C. Sheehan, and R. E. Tarjan, “Dynamic self-
checking techniques for improved tamper resistance,” in ACM Workshop
on Digital Rights Management, 2001, pp. 141–159.

[7] C. Collberg and C. Thomborson, “Software watermarking: Models and
dynamic embeddings,” in Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 1999,
pp. 311–324.

[8] R. Venkatesan, V. Vazirani, and S. Sinha, “A graph theoretic approach
to software watermarking,” in International Workshop on Information
Hiding, 2001, pp. 157–168.

[9] G. Naumovich and N. Memon, “Preventing piracy, reverse engineering,
and tampering,” Computer, vol. 36, no. 7, pp. 64–71, 2003.

[10] C. S. Collberg and C. Thomborson, “Watermarking, tamper-proofing,
and obfuscation-tools for software protection,” IEEE Transactions on
Software Engineering, vol. 28, no. 8, pp. 735–746, 2002.

[11] C. Ren, K. Chen, and P. Liu, “Droidmarking: resilient software water-
marking for impeding Android application repackaging,” in Proceedings
of the 29th ACM/IEEE International Conference on Automated Software
Engineering, 2014, pp. 635–646.

[12] W. Zhou, X. Zhang, and X. Jiang, “AppInk: watermarking Android apps
for repackaging deterrence,” in Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security,
2013, pp. 1–12.

[13] U. Piazzalunga, P. Salvaneschi, F. Balducci, P. Jacomuzzi, and C. Mo-
roncelli, “Security strength measurement for dongle-protected software,”
IEEE Security & Privacy, vol. 5, no. 6, pp. 32–40, 2007.

[14] ARM, “ARM security technology, building a secure system using
TrustZone technology,” http://www.arm.com, 2009.

[15] PCAS, “PCAS project,” https://www.pcas-project.eu/.
[16] S. D. Yalew, G. Q. Maguire, and M. Correia, “Light-SPD: a platform to

prototype secure mobile applications,” in Proceedings of the 1st ACM
Workshop on Privacy-Aware Mobile Computing, 2016, pp. 11–20.

[17] National Computer Security Center, “Trusted computer systems evalua-
tion criteria,” Aug. 1983.

[18] ENISA, “Algorithms, key size and parameters report – 2014,” Nov. 2014.
[19] “International Telecommunication Union. ITU-T Recommendation

X.509: The Directory: Public-Key and Attribute Certificate Frame-
works,” 2000.

[20] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1997.

[21] R. Cramer and V. Shoup, “Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack,”
SIAM Journal on Computing, vol. 33, no. 1, pp. 167–226, 2003.

[22] S. D. Yalew, G. McGuire, S. Haridi, and M. Correia, “T2Droid: A
TrustZone-based dynamic analyser for Android applications,” in Pro-
ceedings of the 16th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications, Aug. 2017, pp. 25–36.

[23] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of Molecular Biology, vol. 48, no. 3, pp. 443–453, 1970.

[24] B. Parno, J. M. McCune, and A. Perrig, Bootstrapping Trust in Modern
Computers. Springer, 2011.

[25] Trusted Computing Group, “TPM main specification level 2 version
1.2, revision 116,” 2011, https://trustedcomputinggroup.org/tpm-main-
specification/.

[26] M. Bishop and M. Dilger, “Checking for race conditions in file access,”
Computing Systems, vol. 9, no. 2, pp. 131–152, 1996.

[27] Witekio, “NXP i.MX 53 reference BSP,” http://witekio.com/cpu/i-mx-
53/.

[28] I. Turner, “seq-align: Smith-Waterman & Needleman-Wunsch alignment
in C,” https://github.com/noporpoise/seq-align.

[29] C. Tumbleson and R. Wisniewski, “Apktool,” https://ibotpeaches.github.
io/Apktool/.

[30] W. Du, “SEEDlabs: Android repackaging attack lab,” http://www.cis.syr.
edu/˜wedu/seed/Labs Android5.1/Android Repackaging/.

[31] Monkey, https://developer.android.com/studio/test/monkey.html.
[32] Android Developers, “Run apps on the Android emulator,”

https://developer.android.com/studio/run/emulator.html.
[33] J. Jang, H. Ji, J. Hong, J. Jung, D. Kim, and S. K. Jung, “Protecting An-

droid applications with steganography-based software watermarking,” in
Proceedings of the 28th Annual ACM Symposium on Applied Computing,
2013, pp. 1657–1658.

[34] Y. Zhang and K. Chen, “Appmark: A picture-based watermark for
Android apps,” in Proceedings of the 8th IEEE International Conference
on Software Security and Reliability, 2014, pp. 58–67.

[35] M. Pirker and D. Slamanig, “A framework for privacy-preserving mobile
payment on security enhanced arm trustzone platforms,” in Proceedings
of the 11th IEEE International Conference on Trust, Security and
Privacy in Computing and Communications, 2012, pp. 1155–1160.

[36] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala, “On-board cre-
dentials with open provisioning,” in Proceedings of the 4th International
Symposium on Information, Computer, and Communications Security,
2009, pp. 104–115.

[37] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, “TrustICE: hardware-
assisted isolated computing environments on mobile devices,” in Pro-
ceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2015, pp. 367–378.

[38] P. A. del Pino, A. Monsifrot, C. Salmon-Legagneur, and G. Doërr, “Se-
cure video player for mobile devices integrating a watermarking-based
tracing mechanism,” in Proceedings of the 11th IEEE International
Conference on Security and Cryptography, 2014, pp. 1–8.

9

