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Abstract. Trusted Execution Environment (TEE) technology like ARM
TrustZone allows protecting confidential data using cryptographic keys
that are bound to a specific TEE and device. However, there are good
reasons to allow relocating such data from a TEE to another TEE in an-
other device, often in a non-interactive (offline) and anonymous manner.
We propose the Trusted Relocation Extension (TRX), a TrustZone-based
trusted storage service enabling backup/recovery and sharing of data be-
tween TEEs in different devices. TRX works offline, without previous key
exchange, and ensures the anonymity of the sender and the receiver. We
present an implementation of TRX compatible with OP-TEE and its
evaluation with Raspberry Pi 3 B+ devices.

1 Introduction

Trusted Execution Environment (TEE) technology has the important role of
reducing the Trusted Computing Base (TCB) and the attack surface of services
or functions that run inside the TEE itself [26]. The technology of this type we
consider in the paper is ARM TrustZone, a security extension of ARM processors
that supports two separate environments: the normal world, that runs the Rich
Execution Environment (REE) software stack; and the secure world, that runs
the TEE software. TrustZone provides hardware-enforced isolation to the secure
world, guaranteeing that the REE has no access to the memory and resources of
the TEE. Something similar is offered by the Intel Software Guard Extensions
(SGX) [24] and Sanctum [11], among others.

A service that can be provided by a TEE is trusted storage, used for storing
private and confidential data, since TEEs can isolate data from the REE [17].
This protection is enforced with cryptographic keys bound to the specific TEE
and device that stores the data. Current TrustZone trusted storage systems de-
pend on the Hardware Unique Key (HUK) for deterministically deriving the
Secure Storage Key (SSK) to protect their data. The HUK is a Root of Trust
(RoT) element that is written by the manufacturer on the device’s One Time
Programmable (OTP) memory guaranteeing that trusted storage data is bound
to the device that encrypts it. Although positive from the security angle, this
binding can also be seen as a limitation.

There are good reasons to allow the relocation of encrypted data from a TEE
to a different TEE in another device. One is when applications require sharing
data with another person or system. Another is performing data backups inside
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the TEE and recover them later in another device, as the devices can be stolen
or get broken. In both cases, data transfer is often done offline, i.e., in a non-
interactive manner. For example, data is transferred first to a flash drive or an
external disk, and only then, and when needed, to the destination device. This
avoids the constraint of having the destination device connected and available
when the data is transferred, which is desirable when doing backups. In addition,
in several applications there is a requirement of anonymity of the sender and/or
the receiver. For example, during a data transfer from a clinic to a patient, we
may not want the clinic specialized in cancer to reveal that it is the source of a
personal health report and who is the receiver.

The paper presents the design of the Trusted Relocation Extension (TRX),
a TrustZone-based trusted storage service that allows sharing and backing-
up/recovering data between/in TEEs in different devices. The design goals of
TRX are: (1) DG1 Non-interactivity – data can be transferred offline, i.e., with-
out the need of an online handshake between source and destination TEEs, either
as part of the transfer or at some initial point in time for key exchange; (2) DG2
Anonymity – the identities of the sender and the receiver are not disclosed in
the transference; (3) DG3 Confidentiality – no entity other than the sender and
the receiver can read the data; (4) DG4 Integrity – the receiver can verify if the
data transferred was modified in the transference.

A few classical solutions to this problem come immediately to mind: (1) to
encrypt and export the SSK using public-key cryptography (e.g., RSA or ECC)
and use this key to ensure confidentiality (DG3) and integrity (DG4), but this
requires the distribution of public keys in certificates, breaking non-interactivity
(DG1) and possibly anonymity (DG2); (2) to encrypt and export the SSK with a
password-derived key, but this requires users to memorize and share passwords,
which is inconvenient and breaks non-interactivity (DG1) and anonymity (DG2);
(3) to display a QR code with the SSK in a TEE-controlled display and scan it
with a TEE-controlled camera, but this would bloat the TCB with much image
handling software and break non-interactivity (DG1) and anonymity (DG2).

With the TRX service, each data bundle, called Trusted Volume (TV), is
protected with its own secret key, the Trusted Volume Key (TVK). TRX uses a
very recent cryptographic scheme, Matchmaking Encryption [5], to encrypt the
TVK when relocating a TV. Matchmaking Encryption allows protecting non-
interactive communication between two entities. It allows the sender and the
receiver to impose policies that the other party has to satisfy in order to reveal
the message, TVK in our case.

We implemented a prototype of the TRX service for OP-TEE that runs as a
companion to Linux on a Raspberry Pi (RPI) 3 Model B+.1 Our work is one of
the first to use Matchmaking Encryption [9,33] and the first to use Matchmaking
Encryption with ARM TrustZone. We implemented our own version of Identity-
based Matchmaking Encryption (IB-ME) as a C library (the first IB-ME library)
to avoid bloating the TCB of TRX with the dependencies of the existing IB-ME

1 All software available at: https://github.com/vascoguita/trx
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prototype [5] which is implemented in Python. Our evaluation shows that the
TCB overhead and time costs involved are small.

The main contributions of our work are: (1) TRX, a new solution to relocate
encrypted data from a TEE in a device to another TEE in a different device,
with non-interactivity (DG1), anonymity (DG2), confidentiality (DG3), and in-
tegrity (DG4), which is also one of the first schemes to leverage IB-ME; (2) the
conceptual instantiation of TRX in OP-TEE and TrustZone; (3) the experimen-
tal evaluation of TRX in Raspberry Pi 3 Model B+ devices; (4) the first IB-ME
library (in C); (5) a prototype of the TRX service, and a Proof of Concept (PoC)
Trusted Authority that supports this mechanism.

2 Background

2.1 ARM TrustZone

A physical core of a TrustZone-enabled processor is divided into two virtual
cores [2]: the normal world that hosts the REE, where the main Operating
System (OS) and the untrusted applications run; the secure world that hosts
the TEE, where the trusted software runs. These worlds are isolated from each
other, with independent memory address spaces and different privileges, in such
a way that applications running in the secure world can access memory regions
associated with the normal world, but not the opposite [26]. The context switch
between worlds is handled by the Secure Monitor (that runs in Monitor Mode)
that is responsible for preserving the state of the current world and restoring the
state of the world being switched to; and the processor that switchs from the
normal world to the secure world when some process calls the Secure Monitor
Call (SMC) instruction or a hardware exception is raised.

In a TrustZone-enabled device, the DRAM is partitioned into Secure and
Non-Secure regions, with the assistance of the TrustZone Address Space Con-
troller (TZASC). Peripherals can be reserved for exclusive secure world use by
the TrustZone Protection Controller (TZPC). This feature can be used to im-
plement a Trusted User Interface (TUI) [21] to allow users to interact directy
with the TEE.

Trusted Applications (TAs), also called truslets [26, 28], are programs that
perform sensitive operations in the TEE, therefore isolated from the REE. REE
applications perform requests to a TA using the TEE Client API. This API puts
the request in a message buffer and calls the SMC instruction, which passes the
control to the secure world. Then, the trusted kernel invokes the requested TA,
which takes the request from the message buffer. After executing the requested
operation, the TA responds to the REE application using the same buffer.

The trustworthiness of a TrustZone-based TEE software stack depends on its
Chain of Trust (CoT) [4]. The CoT starts with two implicitly trusted components
of the Trusted Board Boot (TBB) sequence [3]: (1) The hash of the Root of Trust
Public Key (ROTPK), stored on the System-on-a-Chip (SoC)’s OTP memory.
The Root of Trust Private Key (ROTRK) is property of the Original Equipment
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Manufacturer (OEM); and (2) the AP ROM Bootloader (BL1) image stored on
the Application Processor (AP) Trusted ROM. At power on, BL1 executes and
validates Trusted Boot Firmware (BL2) that does the same with three Third
Stage Bootloader (BL3x) images.

The HUK is another important RoT element. The HUK is a per-device unique
symmetric key generated by the OEM and written to the SoC’s OTP memory
[4]. The HUK is accessible only inside the secure world and is used to derive
other keys, providing the TEE with seal and unseal primitives [35]. The Unique
SoC Identifier (SoC_ID) [3] is calculated from the HUK and the ROTPK with:
SoC_ID = SHA-256 (ROTPK ∥ AESHUK (Fixed Pattern))

2.2 Cryptographic Schemes

In Matchmaking Encryption [5], there is a sender that sends a message to a
receiver. The sender and the receiver agree on policies the other must satisfy
to reveal the message. A message is revealed when a match occurs, i.e., when
the sender’s attributes satisfy the policies established by the receiver and the
receiver’s attributes satisfy the policies established by the sender.

Matchmaking Encryption assures that during message decryption no infor-
mation about the parties’ policies is leaked beyond the fact that a match did or
did not occur, namely which policy failed when there is a mismatch, therefore
preserving sender and receiver anonymity (DG2). Furthermore, Matchmaking
Encryption is non-interactive (DG1), meaning that the communicating parties
do not need to be online at the same time to authenticate to each other or to
exchange data.

In TRX we use a construction of Matchmaking Encryption called Identity-
based Matchmaking Encryption. In IB-ME access policies are simply bit-strings
that represent identities. Therefore, an attribute x ∈ {0, 1}∗ only satisfies the
access policy A if A = x, i.e., the sender s and the receiver r just specify a single
identity in place of general policies.

In relation to Matchmaking Encryption, the decryption algorithm of IB-ME
does not require a decryption key DK S associated with a policy S chosen by
the receiver and satisfied by the sender’s attributes. This not only simplifies this
Matchmaking Encryption construction, but also makes it more scalable since a
receiver does not have to request different DK S, from the Trusted Authority, for
different senders. Notice that this does not ensure the anonymity of the sender to
the receiver after the ciphertext has been decrypted, since a successful decryption
implies that the receiver specified the sender’s identity string; however, this is
not a requirement of our anonymity property (see the definition of DG2).

IB-ME relies on a Trusted Authority that yields a Master Public Key (MPK)
and a Master Secret Key (MSK) generated by a Setup function on input 1λ,
where λ ∈ N is the security parameter: (MPK ,MSK ) ← Setup(1λ). The MPK
is published, and both the sender and the receiver have access to it.

The encryption key EKs, associated with the sender identity s, is generated
by the Trusted Authority with an SKGen function: EncryptionKey(EK )s ←
SKGen(MSK , s). Afterwards, EK s is sent to the sender s. In a similar manner,
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the decryption key DK r, associated with the receiver identity r, is generated
by the Trusted Authority with a RKGen function: DecryptionKey(DK )r ←
RKGen(MPK ,MSK , r). The DK r key is sent to the receiver r, e.g., by the
Trusted Authority.

Having the encryption key EK s, the sender s can encrypt a message m spec-
ifying the receiver identity r’ as an access policy resulting in a ciphertext c:
c ← EncIB-ME(MPK ,EKs , r

′,m). Upon receiving the ciphertext c, the receiver
r can try to decrypt it with the decryption key DK r and specifying the sender
identity s’ : m ′ ← DecIB-ME(MPK ,DK r, s

′, c). If a match occurs (r = r′∧s = s′),
the message is revealed (m′ = m). In case of a mismatch (r ̸= r′ ∨ s ̸= s′), the
decryption function returns an error (m′ = ⊥).

Another cryptographic scheme, Authenticated Encryption with Associated
Data (AEAD) [27], is used to ensure confidentiality and integrity (DG3, DG4).
Specifically, TRX encrypts the Trusted Volume data with AEAD. AEAD has
operations EncAEAD(K,N,P,A) → (C, T ) for authenticated encryption and
DecAEAD(K,N,C,A, T )→ P ′ for authenticated decryption. EncAEAD has four
inputs: a secret key K, a nonce N, plaintext P and Additional Authenticated Data
(AAD) A. The output consists of a ciphertext C and a tag T. P is encrypted,
producing C, but A is not encrypted. T authenticates P and A. DecAEAD has
five inputs: K, N, C, A and T, as above. If all inputs are authentic, P is revealed
(P ′ = P ), otherwise an error is returned (P ′ = ⊥).

3 TRX: A Data Relocation Service

3.1 TRX Service

TRX is a trusted storage service for TrustZone TEEs that supports transferring
TVs with Persistent Objects (POs) to the TrustZone TEEs of other devices.
IB-ME is used to share and import the POs with the four properties DG1-DG4.
All TRX sensitive operations are performed within the TEE; on the contrary,
the REE is entrusted only with confidentiality-and-integrity-protected data. A
TUI is assumed to exist for the user to grant/deny authorization.

Figure 1 shows how TRX can be used to transfer data (a TV with several
POs) between two devices. TRX organizes POs in shareable bundles called TVs
(one TV is a set of POs). Each TV is protected with a master key (TVK),
then stored in a directory on the REE File System (FS). TRX shares a TV
with another device by sharing both the cryptographically protected TV and its
TVK. Each device has a Unique Device Identifier (UDID). The sender encrypts
the TVK using the EncIB-ME function and specifying the receiver UDID. TRX
imports a foreign TV by decrypting its TVK. The receiver decrypts the TVK
using the DecIB-ME function and specifying the sender UDID. The transfer itself
is made offline using some storage device, e.g., a flash drive.

TRX also supports the backup and recovery of TVs. The process is similar
to the one shown in the figure with two changes. First, the receiver device is
the same as the sender device. Second, the storage device is not used to transfer
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Fig. 1. Sharing a TV with TRX

the TV to the receiver device but to/from the backup device (or it can be the
backup device itself).

3.2 IB-ME use in TRX

In Identity-Based Encryption (IBE), entities obtain private keys associated with
their identities from a Trusted Authority; the public key is the identity/identifier
that has an application-dependent format, e.g., an e-mail address. This process
involves no direct communication between potential sender and receiver partic-
ipants: they only interact once with the Trusted Authority, during setup.

IB-ME, used by TRX, also allows expressing the policies necessary to decrypt
the message (TVK) in terms of the identities of the sender and the receiver.
With this scheme, the TVK is revealed only if the specified identities match
those of the participants; otherwise, nothing is leaked, namely, the identity of the
participants, so anonymity (DG2) is satisfied. The data inside a TV is encrypted
with AEAD, which provides confidentiality (DG3) and integrity (DG4) [27].

In TRX, the IB-ME keys of each participant are kept protected inside its
TEE, and the relocation of data between TEEs is carried out by encrypting a
TVK and specifying the receiver identity. A relocated TV is imported by decrypt-
ing the TVK. Relocating and importing TVs requires no interaction between the
sender and receiver devices, i.e., it can be carried out in a non-interactive way
(DG1), e.g., using a flash drive or a dead drop. TRX provides an API that al-
lows applications running in the secure world to write and read persistent data
objects, and to share and import TVs.

Before sharing a TV, the system requests user authorization using a TUI (e.g.,
a touchscreen) such as those that extend TrustZone [7]. A TUI is a user interface
controlled by the TEE and isolated from the REE [13] and provides: (1) Secure
Display – information displayed to the user cannot be observed, modified or
removed by REE software. TZASC and TZPC are used to switch the control
of the display to the secure world and protect the display data [21]. (2) Secure
Input – information entered by the user cannot be observed or modified by
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REE software. The Generic Interrupt Controller (GIC) is used to register TEE
interrupt handlers for the input device and isolate the control of the device
from the normal world [19]. (3) Secure Indicator (optional) – indication that the
displayed screen can be considered trusted by the user. An LED under exclusive
control of the TEE can be used to indicate when the screen is controlled by the
TEE [34].

3.3 Threat Model and Trust Assumptions

We trust the device’s hardware, including the TrustZone extensions, the SoC’s
OTP memory and trusted ROM. We trust the OEM for securing the ROTRK,
the software vendors of the TBB images for securing the secure world private
key and the BL3x private keys, and the TEE software vendor for securing the
TEE private key (Section 2.1).

The Secure Monitor and the secure world software stack are trusted. The
normal world software stack, including the OS, device drivers and libraries, is
not trusted. The network is also not trusted. Denial of Service (DoS) attacks
issued by the REE OS or any individual with physical access to the device or
its peripherals are not considered. Side-channel attacks [20] and other physical
attacks that fall outside the defense capabilities of ARM TrustZone are also not
considered.

The Trusted Authority is also trusted, similarly to the Attestation Service
used in all SGX solutions [18], or a Certificate Authority in a PKI. We assume
the assumptions of the cryptographic schemes are held, so they work as expected.

3.4 System Architecture

Figure 2 shows the architecture of a device with TRX, where grayed boxes
represent new TRX components or original TrustZone components that were
modified for TRX. The original TrustZone system has the following compo-
nents: (1) Trusted Kernel : a program that provides run-time support for TAs:
cross-world and cross-TA communication management, TUI management and a
Kernel Managed Trusted Storage (KTS) service. The KTS implements a hybrid
setting in which data is encrypted inside the TEE and then stored in the file sys-
tem of the REE, and a master hash that protects this data is stored in the TEE.
The trusted kernel has a driver for controlling the User Interface (UI) device
leveraged for TUI; (2) TAs: TEE user-level applications. Each TA has a Unique
Trusted Application Identifier (TA_ID). TAs are signed with the TEE software
vendor private key and the signature covers the TA_ID. The TEE software ven-
dor public key is embedded into the trusted kernel for authenticating the TAs;
(3) Storage device: a storage device with support for rollback-protection, such as
an embedded Multi-Media Controller (eMMC) device. This storage device backs
the REE FS and has a rollback-protected region, such as a Replay Protected
Memory Block (RPMB) partition, that is controlled by the TEE; (4) Internal
API : an interface that exposes the core services of the trusted kernel to the
TAs. The Internal API provides functions for cross-world communication and
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Fig. 2. Architecture of a device with TRX, plus a Trusted Authority

cross-TA communication, and for accessing the KTS; (5) TUI API : allows the
secure display of information to the user and the secure input of information
from the user. The UI wields a Secure Indicator such as a LED, under exclusive
control of the TEE; (6) TEE Supplicant : user-level service running in the REE
that listens to requests from the TEE and performs operations on the REE FS
on its behalf; (7) TEE Client API : allows REE applications to perform requests
to TAs; (8) TEE Driver: driver used by the REE kernel to handle low-level
interactions with the TEE.

TRX extends the base TrustZone architecture with the following components:
(1) TRX API : an interface that exposes the TRX write, read, share and mount
functions to TAs (see Table 1); (2) TRX Manager : a TA responsible for managing
TRX key materials, handling data encryption and decryption, and enforcing
access control of TRX resources and operations; (3) Trusted Authority : an entity
that issues IB-ME keys; (4) IB-ME Library : provides the IB-ME functions: Setup,
SKGen, RKGen, EncIB-ME and DecIB-ME . The library also defines the IB-ME
key types: MPK, MSK, EK and DK. (5) REE FS Proxy: a trusted kernel service
which allows TAs to access the REE FS by forwarding FS operation requests to
the TEE Supplicant; (6) REE FS API exposes REE FS file operation functions
to the TAs.

TRX protects the POs in a device with the following types of keys: (1) TVK
– a randomly generated per-TV key, used to derive the Trusted Storage Space
Key. Each TVK is stored on the TV record of the TV it protects; (2) Trusted
Storage Space Key (TSSK) – a key derived from a TVK and a TA_ID. A
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Function Description
write(path, data) Write data into PO
read(path) → data Read data from PO
share(UDID ,mountpoint , label) → (C, dir) Share TV
mount(UDID ,mountpoint , C, dir) Mount shared TV

Table 1. The Trusted API of TRX

TSSK protects a Trusted Storage Space (TSS) within one TV. The TSSK is
not persistently stored as it can be deterministically derived from the TVK;
(3) Persistent Object Key (POK) – a randomly generated key for protecting a
PO. PO data is encrypted with the POK and stored in the body of the PO file.
The POK is encrypted with the TSSK and stored in the header of the PO file.

3.5 Workflow

TAs use the TRX API to perform the TRX operations: write, read, share and
mount. The TRX Manager has an entry point for each operation. The TRX API
uses the Internal API to request the trusted kernel for a session with the TRX
Manager and to call a TRX Manager’s entry point. The trusted kernel establishes
the session and provides the TRX Manager with a set of client properties. This
set of properties includes the client type, which may be a REE application or a
TA, and the TA_ID, if the client is a TA. The TRX Manager filters each request
and enforces the following access policies: (1) Only TA clients are granted access
to the TRX operations; (2) The write and read entry points select the client’s
TSS based on its TA_ID; (3) The share and mount entry points require user
authorization via TUI.

The TRX Manager persistently stores data using the KTS and the REE FS
Proxy. The Internal API interacts with the KTS, whereas the REE FS API
interacts with the REE FS Proxy. Each function of the REE FS API calls an
Supervisor Call (SVC) function implemented in the REE FS Proxy. The REE
FS Proxy sends REE file operation commands to the TEE Supplicant through
a series of Remote Procedure Call (RPC) requests [29]. The TEE Supplicant
performs the requested operations on the REE FS and responds. The TRX
Manager encrypts the plaintext data before using the REE FS Proxy to store
it to REE FS files. The KTS stores the Trusted Volume Table (TVT) which
contains key materials for protecting the REE FS files. The KTS implements
the hybrid setting (cf. Section 3.4), so a master hash of the KTS is stored to the
TEE-controlled storage region. When the TRX Manager updates the TVT, the
KTS updates the master hash, providing integrity (DG4) and rollback-protection
to the TVT.

When a TA requests the share and mount operations to the TRX Manager,
the TRX Manager uses the TUI API to request user authorization for the opera-
tion. The TUI API calls the SVC functions implemented in the TUI management
service of the trusted kernel. The TUI management service uses a device driver
to handle low-level interactions with a UI device, such as a touchscreen.
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Algorithm 1 TRX Write Operation
1: function write(path, data)
2: Get (M,PO_ID)← path
3: Get UDID
4: Read TVT from KTS
5: if TVT has record of TV mounted on M then
6: Get (TVK ,VTSST ,UDIDTSST , d)← TV record
7: Read CTSST from d/fTSST

8: TSST ← DecTRX (TVK ,TA_IDMGR, VTSST ,UDIDTSST ,PO_IDTSST ,CTSST )
9: else

10: Generate d and random TVK
11: Initialize TSST and set VTSST ← 0
12: Add TV record ← (M,TVK ,VTSST ,UDID, d)
13: end if
14: Get TA_IDCLI ← client properties
15: if TSST has TSS record for TA_IDCLI then
16: Get POT ← TSS record
17: else
18: Initialize POT
19: Add TSS record ← (TA_IDCLI ,POT)
20: end if
21: if POT has PO record for PO_ID then
22: Get (VPO , fPO )← PO record
23: else
24: Generate fPO and set VPO ← 0
25: Add PO record ← (PO_ID,VPO ,UDID, fPO )
26: end if
27: Increment VPO

28: CPO ← EncTRX (TVK ,TA_IDCLI ,VPO , UDID,PO_ID, data)
29: Write CPO to d/fPO

30: Update PO record with VPO and UDID
31: Increment VTSST

32: CTSST ← EncTRX (TVK ,TA_IDMGR, VTSST ,UDID,PO_IDTSST ,TSST)
33: Write CTSST to d/fTSST

34: Update TV record with VTSST and UDID
35: Write TVT to KTS
36: end function

The Trusted Authority uses the IB-ME library to generate IB-ME keys. The
TRX Manager uses the IB-ME library and the IB-ME keys to encrypt a TVK
when a TV is being shared, and to decrypt a TVK when a TV is being mounted.

Write is the TRX operation for inserting data in a PO. Algorithm 1 shows
the procedure of the write operation, which has two inputs: the PO path and
the plaintext data. On lines 2 to 4, the mount point M and the PO Identifier
(PO_ID) are parsed from the PO path (path = M/PO_ID), then the device’s
UDID is fetched and the TVT is read from the KTS using the Internal API.
If the TVT has a record of a TV mounted on M (lines 5 to 8), the TVK, the
Trusted Storage Space Table (TSST) version VTSST , the UDID of the device
which wrote the TSST UDIDTSST and the REE directory path d of the TV are
read from the TV record. Then, the encrypted TSST CTSST is read from the
TSST file of d using the REE FS API. The filename of a TSST file fTSST is a fixed
string defined in the TRX Manager (e.g., tsst.trx ). Then, CTSST is decrypted
with DecTRX . DecTRX receives the TVK, the TA_ID of the TRX Manager
TA_IDMGR, VTSST , UDIDTSST , the PO_ID of the TSST PO_IDTSST and
CTSST as input and outputs the TSST. PO_IDTSST is a fixed string defined in
the TRX Manager (e.g., “TSST”). If the TVT has no record of a TV mounted
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on M (lines 9 to 12), a new TV is created and mounted on M. To create a new
TV, the TRX Manager randomly generates a TVK, selects a new d, initializes
an empty TSST and sets VTSST to zero. Then, the new TV is mounted on M
by creating a new TV record on the TVT with M, TVK, VTSST , UDID and d.

Once the TSST of the TV is mounted on M, the TRX Manager uses the
client’s TA_ID, TA_IDCLI , to find the TSS record of the client. The Internal
API is used to fetch the TA_IDCLI from the set of client properties provided
by the trusted kernel. If the TSST has a TSS record for the client (lines 15 to
16), the Persistent Object Table (POT) of the client’s TSS is read from the TSS
record. Otherwise, a TSS for the client is created on the TV mounted on M. To
create a TSS for the client, an empty POT is initialized and a new TSS record is
created on the TSST with the TA_IDCLI and the new POT. Having the POT
of the client’s TSS, the TRX Manager queries the record of the PO with the
specified PO_ID. If the POT has a record of the PO with the specified PO_ID
(lines 21 to 22), the PO version VPO and the filename of the PO file fPO are
read from the PO record. Otherwise, a new PO is created on the TSS of the
client (lines 23 to 25). To create a new PO, the TRX Manager generates a new
fPO and sets VPO to zero. Then, a new PO record containing the PO_ID, VPO ,
UDID and fPO is added to the POT.

Finally, having VPO and fPO , the TRX Manager encrypts the PO with TRX
encryption mechanism and stores it to the REE FS (lines 27 to 29). Before en-
crypting the PO, VPO is incremented. Then, the PO plaintext data is encrypted
with EncTRX . EncTRX receives the TVK, the TA_IDCLI , the VPO , the UDID,
the PO_ID and the plaintext data as input and outputs the encrypted PO CPO.
CPO is written to the PO file d/fPO with the REE FS API. After persistently
storing the PO to the REE FS, the TSST is updated and persistently stored as
well (lines 30 to 33). First, the PO record is updated with the incremented VPO

and the UDID. Note that the TSST contains the POT which in turn contains the
PO record. Before encrypting the TSST, VTSST is incremented as well. Then, the
TSST is encrypted with EncTRX . EncTRX receives the TVK, the TA_IDMGR,
the VTSST , the UDID, the PO_IDTSST and the TSST as input and outputs
CTSST . CTSST is written to the TSST file of d using the REE FS API. After
persistently storing the TSST to the REE FS, the TVT is updated and persis-
tently stored as well (lines 34 to 35). First, the TV record is updated with the
incremented VTSST and the UDID. Note that the TVT contains the TV record.
Finally, the updated TVT is stored to the KTS using the Internal API.

We omit a similar explanation for the other three operations for lack of space.

4 Evaluation

We implemented the TRX prototype as an extension to OP-TEE [30], a TEE
implementation for ARM TrustZone (and Linux as REE) compliant with the
GlobalPlatform specifications [14]. We extended OP-TEE with the TRX Man-
ager TA, the TRX API, the REE FS API, the IB-ME library and the REE FS
proxy. As Secure Monitor, the Trusted Firmware-A (TF-A) implementation is
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Fig. 3. TRX Prototype

Fig. 4. Impact of TRX on the TCB size

used [31]. TRX was deployed on RPI 3 Model B+ boards. This is a single-board
computer with a BroadCom SoC, a quad-core ARM Cortex-A53 with TrustZone,
and 1 GB of RAM. The experimental setting is shown in Figure 3.

We evaluated experimentally the impact of TRX on the TCB, the perfor-
mance of IB-ME library, and the performance of the main operations.

4.1 Impact on the Trusted Computing Base

This section assesses the impact of TRX on the TCB of a TrustZone-enabled
system by comparing the TCB size before and after adding our extension to a
system with OP-TEE. Figure 4 shows the TCB size of the system with OP-TEE
and without/with our implementation of TRX. Before adding TRX, the TCB
was composed of TF-A and OP-TEE OS. After adding TRX, the TCB was com-
posed of TF-A, our fork of OP-TEE OS (which includes the REE FS Proxy and
the REE FS API), the ports of the GNU Multiple Precision Arithmetic (GMP)
and Pairing-Based Cryptography (PBC) libraries, the OP-TEE IB-ME library,
the TUI simulator, the TRX Manager and the TRX API. TRX increased the
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Mainstream (Core i5) OP-TEE (BCM2837B)
Function µ (ms) σ (ms) µ (ms) σ (ms)

Setup 2.32 0.55 40.26 0.49
SKGen 3.41 0.96 67.48 0.50
RKGen 4.80 1.57 87.66 0.48
EncIB-ME 6.38 1.09 173.44 0.67
DecIB-ME 3.90 0.42 146.18 0.48

Table 2. Execution Time of the IB-ME Functions

TCB size in 25.49%. The GMP library port is the component which increased
the TCB the most (+22.38%). This last result was not unexpected as the port
of this library was not optimized. A lower impact on the TCB can be achieved
by shrinking our port of the GMP library, which was left for future work. Note
that originally the PBC library had 65130 lines of code (LoC) and that shrink-
ing reduced the PBC library to 9700 LoC – a reduction of 85.11%. A similar
reduction might be achieved with the GMP library, reducing the impact on the
TCB size from 22.38% to less than 4%. We estimate that shrinking the GMP
library would drop the impact of TRX on the TCB size to less than 8%.

4.2 IB-ME Library Performance

This experiment compares the performance of the IB-ME C library, that we de-
veloped for TRX, in two environments: one with an Intel Core i5-8265U CPU and
a mainstream Linux system (mainstream version); and another with a Broad-
com BCM2837B0 SoC adapted for OP-TEE (OP-TEE version). The Trusted
Authority uses the mainstream version and the TRX Manager uses the OP-
TEE version.

Table 2 shows the average execution time µ and standard deviation σ of the
IB-ME functions for both versions of our IB-ME library. The observed timings
suggest that both versions are practical for data encryption and decryption, and
for key generation. The OP-TEE version takes, in average, 173.44 ms to encrypt
data, thus being responsible for 98.60% of the share function average execution
time, which is 175.90 ms. To decrypt data, the OP-TEE version takes, in average,
146.18 ms, being responsible for 39.96% of the mount function average execu-
tion time, which is 368.86 ms. There is a performance discrepancy between the
mainstream version and the OP-TEE versions because the Intel CPU is faster.
In addition, the OP-TEE version is executed on OP-TEE on a system scheduled
by Linux; although the world switch is controlled by the Secure Monitor, the
REE determines when the TEE is executed and when it is paused. Therefore,
the IB-ME operations of the OP-TEE library take longer to finish.

4.3 Write and Read Operations Performance

This experiment benchmarks the TRX API against the OP-TEE implementation
of the GlobalPlatform trusted storage API for Data and Keys to evaluate the
relative performance of TRX write and read operations.
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Fig. 5. Write Operation Benchmark

Figure 5 shows the average time t, in milliseconds, required to write a PO
of size ℓ, in kilobytes. The performance of writing POs with the TRX API and
GlobalPlatform trusted storage API for Data and Keys was modeled with the
linear regressions tTRX and tOPTEE , respectively: tTRX = 0.4ℓ + 93.773 and
tOPTEE = 2.7ℓ + 35.954. The correlation coefficient R2 of tTRX equals 0.9971
and the correlation coefficient of tOPTEE equals 0.9997. tOPTEE has a bigger
gradient than tTRX , meaning that the execution time t required to write a PO
of an increasing size ℓ increases at a higher rate with the GlobalPlatform trusted
storage API than with the TRX API. The two lines intersect when ℓ = 25.139,
meaning that the GlobalPlatform trusted storage API for Data and Keys is
faster than TRX for writing POs smaller than 25 KB and the TRX API is faster
for POs larger than 25 KB.

Figure 6 shows the average execution time t, in milliseconds, required to read
a PO of size ℓ, in kilobytes. The performance of reading POs with the TRX API
and GlobalPlatform trusted storage API for Data and Keys was modeled with
the linear regressions tTRX and tOPTEE , respectively: tTRX = 0.3ℓ + 3.5354
and tOPTEE = 0.3ℓ+ 16.175. The correlation coefficients R2 of both regressions
equals 1 – a perfect positive correlation. Both regressions have the same gradi-
ent, meaning that the execution time t required to read a PO of an increasing
size ℓ increases at the same rate with both Application Programming Interfaces
(APIs). However, the TRX API is, in average, 9 ms faster to read a PO than
the GlobalPlatform trusted storage API for Data and Keys.

The results show that TRX outperforms the OP-TEE trusted storage to
write POs larger than 25 KB. However, the OP-TEE trusted storage duplicates
all fields of its PO system to ensure atomicity while writing a PO and the TRX
prototype does not ensure atomicity, which gives TRX a performance advantage
over OP-TEE. Implementing a mechanism to ensure the atomicity of the TRX
operations is left for future work.
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Fig. 6. Read Operation Benchmark

TRX outperforms OP-TEE in reading POs since the OP-TEE trusted storage
mechanism reads and decrypts the dirf.db file, which lists all files in trusted
storage as well as their versions and MAC tags, before reading and decrypting
a PO file whereas TRX only needs to read and decrypt the PO file itself due to
optimizations in TVT and TSST.

5 Related Work

This section briefly presents the work related to TRX. The section is necessarily
brief due to lack of space; many other works exist. Although several considered
the use of TrustZone or TEEs for data storage [15, 17, 28], to the best of our
knowledge, none focused on the transfer, backup, and recovery of TrustZone-
protected data providing properties DG1-DG4.

Intel SGX TEEs, called enclaves, can seal data, i.e., to encrypt enclave data
for persistent storage. Sealing keys are derived from a key burned into on-chip
OTP memory, thus the sealed data is bound to the device [10]; therefore, Intel
Software Guard Extensions (SGX) shares with TrustZone the challenge of ac-
cessing sealed data in a different device. Several enclave migration solutions for
SGX use a variation of the first alternative presented in the introduction, with its
limitations in terms of non-interactivity (DG1) and anonymity (DG2) [1,22,25].

There is a large literature on anonymization of communications, but unre-
lated to TEEs, such as Chaum’s Mix-Net that hides the match between sender
and receiver by wrapping messages in layers of public-key cryptography, relay-
ing them through mixes [8]. The Tor network does something similar but with
better performance and a large practical adoption [12]. Babel is a proposal for
anonymity (DG2) in e-mail communications [16].

Matchmaking Encryption is a recent cryptographic scheme [5]. We only found
four other works on Matchmaking Encryption: Xu et al. present Matchmaking



16 Guita et al.

Attribute-based Encryption (MABE) and use it to design a secure fine-grained
bilateral access control data sharing system for cloud-fog computing [32]; Xu
et al. present Lightweight Matchmaking Encryption (LME) and use it in the
domain of distributed access control [33]; Lin et al. provide a Functional En-
cryption for Deterministic Functionalities (FE) [6] construction for Matchmak-
ing Encryption [23]; recently, Certificateless Matchmaking Encryption (CL-ME)
was introduced IB-ME [9].

6 Conclusion

We introduce TRX, a trusted storage mechanism that enables TrustZone-TEEs
to relocate data to other TEEs with confidentiality, integrity and anonymity
guarantees in a non-interactive way. TRX is one of the first systems based on
Matchmaking Encryption. We implemented TRX for Raspberry Pi, obtaining a
small TCB increase and a delay that is practical.
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