
N-party BAR Transfer

Xavier Vilaça, João Leitão, Miguel Correia, and Lúıs Rodrigues

INESC-ID, Instituto Superior Técnico, Universidade Técnica de Lisboa

Abstract. We introduce the N-party BAR transfer problem that con-
sists in reliably transferring arbitrarily large data from a set of N pro-
ducers to a set of N consumers in the BAR model, i.e., in the presence
of Byzantine, Altruistic, and Rational participants. The problem consid-
ers the existence of a trusted observer that gathers evidence to testify
that the producers and consumers have participated in the transfer. We
present an algorithm that solves the problem for N ≥ 2f + 1, where f
is the maximum number of Byzantine processes in each of the producer
and consumer sets. We do not impose limits on the number of Rational
participants, although they can deviate from the algorithm to improve
their utility. We show that our algorithm provides a Nash equilibrium.

1 Introduction

Peer-to-peer systems may be used to provide temporary or long-term storage ser-
vices. Such services are useful in a number of settings. For instance, peer-to-peer
systems can be used to process large volumes of data using volunteer compu-
tation, as illustrated by projects such as SETI@home [4] and, more recently, by
the Boinc infrastructure that supports several computationally intensive research
projects [3]. If such computations are performed using MapReduce, information
produced by mappers needs to be transferred to the reducers or to intermediate
storage. Volunteer storage nodes may not be willing to store data indefinitely,
so they have to transfer data to other nodes after serving the system for some
time. In any case, volunteers expect to be recognized for their contribution, for
instance by being awarded credits that make them appear in a chart with the
top contributors of the project.

In scenarios such as the ones listed above, a reliable protocol to transfer data
from a set of producers to a set of consumers is an important building block.
Any realistic service for this environment has to consider the existence of both
Byzantine and Rational nodes, i.e., of nodes that deviate from the protocol, re-
spectively, in an arbitrary way (Byzantine) and with the purpose of gaining some
measurable benefit like being listed as top contributors without really executing
jobs (Rational). A system model that captures the existence of these different
kinds of participants is the Byzantine-Altruistic-Rational (BAR) model [2].

This paper introduces the N-party BAR Transfer problem (BAR-Transfer).
This problem can be informally defined as follows. There are N producers and
N consumers, which we generically call processes. Up to f processes of each
of these sets can be Byzantine; the remainder are either Altruistic or Rational.
All non-Byzantine producers have the same piece of arbitrarily large data that

they have to transfer to all non-Byzantine consumers. Altruistic processes follow
the protocol, Byzantine processes deviate arbitrarily from the protocol (e.g.,
omitting or sending modified messages), and Rational processes deviate from the
protocol following a strategy to increase their utility. There is an abstract trusted
observer that is not involved in the transfer, but that collects evidence about it.
BAR-Transfer is the problem of reliably transferring data from the producers to
the consumers, while providing the trusted observer enough evidence to testify
which processes participated in the transfer.

Systems not designed to cope with Rational behaviour may fall into the
Tragedy of Commons [15]: the job is not done because all participants are Ratio-
nal and aim for profit by not performing (part of) their role. To model Rational
behaviour, we use an approach based on Game Theory [25]. The protocol exe-
cuted by the processes is modelled as a game, in which each player (i.e., process)
follows a strategy to increase its utility. To contradict this behaviour, an al-
gorithm to solve BAR-Transfer should provide a Nash equilibrium, so that no
Rational process has an incentive to deviate from the protocol. We model the
BAR-Transfer problem as a strategic game, in which players choose a strategy
simultaneously, once and for all [25], i.e., without knowledge of the others strate-
gies and without the ability of changing it during the algorithm execution. This
is not a restriction in the case of our algorithm as explained later. We do the
usual assumption [9] that processes are risk-averse, i.e., that they do not follow
a strategy that may put their profit at risk.

Besides introducing the BAR-Transfer problem, we present an algorithm that
solves it in a synchronous message-passing distributed system. We prove its cor-
rectness and that it provides a Nash equilibrium which is a dominant strategy.
Therefore, all Rational processes should follow our solution. The paper makes
the following main contributions: i) defines the BAR-Transfer problem; ii) pro-
poses an algorithm that solves BAR-Transfer; iii) proves the correctness of the
algorithm and that it provides a Nash equilibrium.

The remaining of the paper is structured as follows. Section 2 compares
this work with related work. Section 3 describes the system model and defines
the BAR-Transfer problem. The algorithm to solve the problem is presented in
Section 4. The correctness and cost of the algorithm are analysed in Section 5.
Finally, Section 6 concludes the paper.

2 Related Work

The BAR-Transfer problem is related to classical distributed systems problems
such as Byzantine Agreement (BA), Reliable Broadcast (RB), Terminating Re-
liable Broadcast (TRB), and Interactive Consistency (IC) [19, 11, 7]. A first and
major difference is that these algorithms are executed among a single set of
processes, while BAR-Transfer is about communication and agreement between
two sets: producers and consumers. In that sense there is some resemblance
with Paxos with its three process roles – proposers, acceptors, learners – but in
BAR-Transfer all producers are proposers of the same value, a notion that does
not exist in Paxos [18]. An algorithm for solving BAR-Transfer might be imple-
mented by running N instances of algorithms that solved these problems, or even

a single one in the case of IC. However, these solutions would be very inefficient
in terms of message, time, and bit complexity because they would not exploit
the fact that all (non-Byzantine) producers send the same data. Furthermore,
these problems do not consider the BAR model. If there were Rational processes,
algorithms that solved these problems would not satisfy their properties. The
same discussion applies to All-to-All Reliable Broadcast (ATA-RB) algorithms
[20, 14]. Although they reduce the number of messages sent when compared with
parallel executions of BA, RB or TRB, to the best of our knowledge there is no
work in ATA-RB algorithms in the BAR model. Besides, these algorithms only
provide probabilistic guarantees.

Many Byzantine fault-tolerant algorithms have some relation to our work.
Several papers presented implementations of registers based on Byzantine quo-
rum systems [23, 24]. Others presented algorithms to implement state machine
replication, a generic solution to implement fault-tolerant distributed services
[8, 17]. In both cases the objective is to ensure that Byzantine nodes are unable
to disrupt the consistency of the data stored in the servers or the service pro-
vided by the servers. In contrast, our work aims at ensuring the transference
of a correct value from a set of nodes that produce the data independently, al-
though following a deterministic function, to another set of nodes which have to
determine which is the correct data. A third set of papers presented Byzantine
fault-tolerant consensus algorithms for asynchronous systems, which might also
be used as building blocks of less efficient solutions of BAR-Transfer [12, 6, 10].
Again, none of these works considers the BAR model.

Some works applied Game Theory to problems involving both Rational and
Byzantine players. Eliaz introduced the notion of k-Fault Tolerant Nash equilib-
rium (k-FNTE), as an equilibrium in which no Rational participant has any in-
centive to unilaterally deviate from the expected behaviour, with up to k players
whose strategy is arbitrary [13]. This concept was applied to auctions. Abraham
et al. extended the work of [13] by introducing the notion of (k, t)-robustness,
where k is the maximum number of colluding Rational participants and t is
the upper limit to the number of Byzantine players [1]. The authors propose
a solution for secret sharing that is (k, t)-robust. Contrary to our work, they
assumed that the utility of each player depends only on the output of the al-
gorithm, therefore ignoring communication costs. It has been proved that no
non-trivial distributed protocol for which Rational nodes take into consideration
communication costs can be (k, t)-robust [9].

The Byzantine-Altruistic-Rational (BAR) model was proposed as an abstrac-
tion for capturing these three distinct behaviours of processes [2]. The authors
also proposed a general three-tied architecture for developing BAR-tolerant pro-
tocols, in cooperative distributed systems that span Multiple Administrative
Domains (MAD). The first two levels of the proposed architecture implement a
Replicated State Machine using a BAR-tolerant TRB protocol [9] and a mecha-
nism than enforces periodic work and guarantees responses. Although this archi-
tecture might be used to solve the BAR-Transfer problem, the use of the TRB
protocol for transferring arbitrarily large data is too costly and the guaranteed
response mechanism requires the active participation of a witness, which must

be either a centralized entity or implemented through message broadcast to all
the remaining nodes. Furthermore, the proposed mechanisms are based on the
long-term cooperation between participants modelled as a repeated game [25],
which is not the case of the BAR-Transfer problem.

The same authors [9] have shown that the Dolev and Strong’s TRB proto-
col [11] can be changed to provide a Nash equilibrium in the BAR model using
∞-tit-for-tat mechanisms [5]. The problem is modelled as a repeated game with
an infinite number of rounds. Each round a different participant runs an instance
of the protocol to broadcast its information to all the remaining non-Byzantine
participants. They proved that Rational participants cannot expect any increase
in their utility by omitting messages, even if a fraction of the participants is
Byzantine. In this work we are interested in large peer-to-peer networks in which
it is unlikely that the same participants interact more than once. For that rea-
son we do not consider repeated executions, but model the algorithm instead in
terms of a strategic game in which players interact only once. Therefore, in our
case it is not possible to apply the incentive mechanisms of [2, 22, 21] based on tit-
for-tat. Furthermore, none of these works addresses the problem of transferring
an arbitrarily large value without using an active witness or direct reciprocity.

The BAR model has also been used with gossip data dissemination al-
gorithms [22, 21]. These algorithms are not directly applicable to solve BAR-
Transfer as they assume that the source of the information is trusted and provide
no guarantee that the disseminated information reaches its destination. Further-
more, data transfer between each pair of nodes is performed using direct reci-
procity in a fair exchange process. This requires that each Rational participant
has incentives to transfer data if it expects to receive an equivalent contribution
from its peer. In addition, the pestering mechanism of BAR Gossip [22] only
provides a Nash equilibrium if a certain fraction of the participants are Altruis-
tic [26]. In BAR-Transfer, consumers do not possess any data that may serve as
currency to pay the producers for the transfer, and no assumption is made about
the presence of Altruistic participants. Equicast [16] also implements a dissemi-
nation protocol in an environment with selfish participants, which is proven to
provide a Nash equilibrium. However, it assumes that Rational processes only
deviate from the protocol by adjusting a cooperation factor.

3 System Model and Problem Statement

3.1 System Model
The BAR-Transfer problem involves a set of producers P of cardinality NP
and a set of consumers C of cardinality NC . To simplify the description of our
algorithm, in this paper, we consider that the cardinality of both sets is the
same, i.e., NP = NC = N . We do not address the problem of forming these
sets, in this paper. However, we assume that this mechanism ensures with high
probability that the number of Byzantine processes is upper bounded and that
processes cannot influence this mechanism. There is also a special process called
trusted observer (TO). We use the words processes or participants to designate
these entities. Sometimes we use the word players to designate producers and
consumers, when we model their interaction as a game.

We assume that the system is synchronous (there are maximum commu-
nication and processing delays) and that all processes are fully connected by
authenticated reliable channels. This is a reasonable assumption as we require
that the transfer may terminate after a finite period of time such that Ratio-
nal processes may have some guarantees that they will be eventually rewarded.
However, it is not strictly necessary for the communication and processing delays
to be upper bounded. Nevertheless, in order to simplify the description of our
algorithm, we will make that assumption. We also assume that each process has
a public-private key pair and that there is a public-key infrastructure in place, so
every process has access to the public key of all others. Each process has access
to a collision-resistant hash function (hash) and a signature function based on
public-key cryptography (sign, verifysig).

Participants can be Byzantine, Altruistic, and Rational, in accordance with
the BAR model. We assume that up to f elements of each of the P and C sets
can be Byzantine. Any number of consumers and producers can be Altruistic or
Rational. The trusted observer TO always follows its protocol.

An Altruistic process is one that follows the protocol. A Byzantine process
can deviate arbitrarily from its behaviour, e.g., by sending or not sending cer-
tain messages, or by sending messages in a format or with content that is not
according to the protocol. Byzantine processes however are not able to break
the cryptographic mechanisms used in the algorithm (e.g., they are not able to
generate signatures on behalf of Altruistic or Rational processes).

A Rational process is one that aims at maximizing a utility function, defined
in terms of benefits and costs. A producer has a benefit by proving to the TO
that it has contributed to the transfer; it incurs on the cost of sending the
data. Consumers send to the TO acknowledgements of the reception of the
data. A consumer benefits by obtaining the data and proving its reception to
the TO ; it incurs in the costs of receiving and processing messages and sending
the acknowledgements to the TO. We assume that there is no collusion among
Rational processes.

3.2 The BAR-Transfer Problem

The BAR-Transfer problem can be defined as follows. Each producer p has a
value (or data) of arbitrary size vp such that, for any two non-Byzantine pro-
ducers pi and pj , vpi = vpj = v. Sometimes we refer to this value as the correct
value, to denote that it is the value held by all non-Byzantine producers.

The algorithm terminates successfully when every non-Byzantine consumer
consumes v. A consumer c is said to consume value vc when the primitive con-
sume(c, vc) is called. All non-Byzantine producers start the algorithm by pro-
ducing value v. A producer p is said to produce value vp by calling the primi-
tive produce(p, vp). The TO is said to produce evidence about the transfer by
calling primitive certify(TO, evidence). There are also two predicates hasPro-
duced(evidence, pi) and hasAcknowledged(evidence, cj) that take as input the
evidence produced by the TO to indicate, respectively, if producer pi partic-
ipated in the BAR-Transfer and if consumer cj notified the reception of the
correct value. The problem consists informally in i) transferring the value from

the producers to the consumers; and ii) providing evidence about the transfer.
More formally the problem is defined in terms of the following properties:

– BAR-Transfer 1 (Validity): If a non-Byzantine consumer consumes v, then v
was produced by some non-Byzantine producer.

– BAR-Transfer 2 (Integrity): No non-Byzantine consumer consumes more than
once.

– BAR-Transfer 3 (Agreement): No two non-Byzantine consumers consume differ-
ent values.

– BAR-Transfer 4 (Termination): Every non-Byzantine consumer consumes a
value.

– BAR-Transfer 5 (Evidence): The trusted observer produces evidence about the
transfer.

– BAR-Transfer 6 (Producer Certification): if producer p is non-Byzantine, then
hasProduced(evidence, p) is true.

– BAR-Transfer 7 (Consumer Certification): if consumer c is non-Byzantine, then
hasAcknowledged(evidence, c) is true.

With these definitions in mind, we can provide a more precise characteriza-
tion of the benefits that Rational nodes aim to obtain. The benefit of a producer p
is to have hasProduced(evidence, p) true. The benefit of a consumer c is twofold:
i) to obtain the correct value and ii) to have hasAcknowledged(evidence, c) true.

4 BAR-Transfer Algorithm

We now present an algorithm that solves the BAR-Transfer problem (Alg. 1).
The algorithm requiresN ≥ 2f+1 producers and consumers. The algorithm aims
at ensuring that each consumer receives the value and can decide which is the
correct value, in case it receives several different values (e.g., due to Byzantine
producers). To satisfy this goal, each producer is not required to send a copy of
the (possibly large) value to every consumer. In fact, it is enough that it sends
the value to f + 1 consumers and a signed hash of the value to the remaining
N − f − 1 consumers.

We define a deterministic function that returns the set of consumers that re-
ceive a copy of the value from producer pi, denoted consumerset i, as: consumerset i =
{cj |j ∈ [i...(i+ f) mod N]}. The intuition behind this function is that the con-
sumers are seen as a circular space where each producer is responsible for sending
the value it has computed to a set of consecutive consumers of cardinality f + 1,
which are shifted from one another by one position.

We model the operation of the algorithm in rounds. The round of a pro-
cess is increased as result of a nextRound event. The system is synchronous,
so non-Byzantine processes have their clocks synchronized and the nextRound
event occurs simultaneously in all of them. The synchrony of the system and
reliability of the channels ensure that if in response to event nextRound(n) a
non-Byzantine process sends a message to another non-Byzantine process, that
message is delivered to the destination before nextRound(n+1) is triggered. This
implies that nextround events are triggered periodically with a period greater
than the worst case latency of communication channels. The algorithm executes

in three rounds. In round 0, the producers send values or hashes to consumers.
In round 1, consumers send certificates of reception to the trusted observer. In
round 2, the trusted observer produces the evidence.

In round 0, a producer computes the hash of the value and signs it (lines 106-
108). When the first round starts, it sends the value, its hash, and signature to
the consumers in consumerset i (lines 111-113), but only the hash and signature
to the remaining consumers (lines 114-116).

A consumer starts by waiting for signed values and hashes from producers in
round 1 (lines 209 and 215). Each value, hash, and signature received is stored in
an array named values (lines 214 and 219). If a node does not send the message
it was supposed to in this round, or if the hash or signature are not valid, the
entry in the values set for that producer remains with the special value ⊥, which
will serve to build a proof of misbehaviour for the TO (if f+1 consumers provide
similar certificates).

When round 1 ends, the consumer picks the value v such that hash(v) appears
in more than f positions of the array (lines 222-223). There are at most f
faulty producers in the system, thus there is at most one value that matches
this condition. Then, the consumer prepares the confirm array to serve as a
certificate that vouches for the correct or incorrect behaviour of all producers,
and that simultaneously proves that it has received and picked the correct value
as described below (lines 224-225). For each producer pi, the consumer either
stores in confirm: i) the received hash and corresponding signature (extracted
from the values set) or ii) the special value ⊥ when no data, or incorrect data,
was received from that producer. The consumer then signs this data structure
with its private key and sends it as a proof of reception to the trusted observer
(lines 226-228). The consumer terminates by outputting the value (line 229).

The trusted observer waits for a certificate from each consumer in round 2
(line 306). The certificates are collected in an array called evidence (line 309).
In the end, the trusted observer produces the array as evidence (line 311).

Considering the data structure that is created by the trusted observer as
evidence, we can now define with more detail the predicates hasProduced and
hasAcknowledged. Let h(v) denote the hash of the value v and let spk(h(v))
denote the hash of v signed by the producer pk:

– hasProduced(evidence, pi) is true if the following condition holds: there are
at least N − f consumers ck ∈ C: evidence[ck][pi] = 〈h(v), spi(h(v))〉. It is
false otherwise.

– hasAcknowledged(evidence, cj) is true if exists a set of producers, named
correctsetj , such that |correctsetj | ≥ N−f and for ∀pk ∈ correctsetj hasPro-
duced(evidence, pk) is true and evidence[cj][pk] = 〈h(v), spk(h(v))〉. It is false
otherwise.

The algorithm does not require the observer to actively participate in the
execution of the algorithm. Furthermore, the verification process performed by
the trusted observer is independent for each transfer. Therefore many instances
of BAR-Transfer can be executed in parallel under the jurisdiction of one or

Algorithm 1: BAR-Transfer Algorithm
producer pi:
101 upon init do
102 myvalue := ⊥;
103 myhash :=⊥;
104 myhashsig := ⊥;
105 round := 0;
106 upon produce(pi,myvalue) ∧ round = 0 do
107 myhash := hash(myvalue);
108 myhashsig := sign (pi, myhash);
109 upon nextRound ∧ round = 0 do // start of round 1
110 round := 1;
111 msgsig := sign (pi, Value || myvalue || myhash || myhashsig);
112 forall cj ∈ consumerseti do
113 send (pi, cj , [Value, myvalue, myhash, myhashsig, msgsig])
114 msgsig := sign (pi, Summary || myhash || myhashsig);
115 forall cj ∈ C\consumerseti do
116 send (pi, cj , [Summary, myhash,myhashsig, msgsig])

consumer cj :

201 upon init do
202 myvalue :=⊥;
203 myhash:=⊥;

204 confirm := [⊥]P ;

205 values := [⊥]P ;
206 round := 0;
207 upon nextRound ∧ round = 0 do // start of round 1
208 round := 1;
209 upon deliver (pi, cj , [Value, pvalue, phash, phashsig, msgsig]) ∧ round = 1 do
210 if (cj ∈ consumerseti)then
211 if verifysig(pi, Value || pvalue || phash || phashsig, msgsig)then
212 if verifysig(pi,phash, phashsig) then
213 if verifyhash(pvalue, phash) then
214 values[pi] := 〈pvalue, phash, phashsig〉;
215 upon deliver (pi, cj , [Summary, phash, phashsig, msgsig]) ∧ round = 1 do
216 if (cj 6∈ consumerseti)then
217 if verifysig(pi, Summary ||phash || phashsig, msgsig) then
218 if verifysig(pi, phash, phashsig) then
219 values[pi] := 〈⊥, phash, phashsig〉;
220 upon nextRound ∧ round = 1 do // start of round 2
221 round := 2;
222 myhash := h : #({p|value[p] = 〈∗, h, ∗〉}) > f .
223 myvalue := v : {p|value[p] = 〈v,myhash, ∗〉}.
224 forall pi: values[pi] = 〈*, myhash, *〉 do
225 confirm[pi] := 〈values[pi].hash, values[pi].signature〉;
226 confsig := sign (cj , confirm);
227 msgsig := sign (cj , Certificate||confirm||confsig);
228 send (cj , TO, [Certificate, confirm, confsig, msgsig])
229 consume (cj , myvalue);

trusted observer TO:
301 upon init do

302 evidence:= [⊥]C ;
303 round := 0;
304 upon nextRound ∧ round < 2 do
305 round := round+1;
306 upon deliver (cj , TO, [Certificate, confirm, confsig, msgsig]) ∧ round = 2 do
307 if verifysig (cj , Certificate||confirm||confsig, msgsig) then
308 if verifysig (cj , confirm, confsig) then
309 evidence[cj] := 〈confirm, confsig〉;
310 upon nextRound ∧ round = 2 do // start of round 3
311 certify (TO, evidence);

more trusted observers, without the trusted entity being a single point of failure
or a bottleneck.

5 Analysis

The analysis of the algorithm has three parts. First, we prove its correctness.
Then, we demonstrate that it is a Nash equilibrium. Finally, we perform a com-
plexity analysis in terms of communication costs.

5.1 Correctness

This section provides a proof of the correctness of the algorithm, i.e., that it
satisfies the properties BAR-Transfer 1-7. The proof assumes that at most f
producers and f consumers are Byzantine and that the rest of the processes
follow the algorithm, i.e., are Altruistic. The case of Rational processes is left for
Section 5.2, in which we show that Rational processes also follow the algorithm.

We now show with the following Lemmas that the algorithm presented in
Section 4, satisfies each of the BAR-Transfer properties.

Lemma 1. (Validity) If a non-Byzantine consumer consumes v, then v was
produced by some non-Byzantine producer.

Proof. A non-Byzantine consumer c consumes v only if it receives a hash(v)
from at least f + 1 producers and v from at least one producer. There are at
most f Byzantine producers, which implies that c receives hash(v) from at least
a non-Byzantine producer pi. Thus, c consumes v only if v was input by pi.

Lemma 2. (Integrity) No non-Byzantine consumer consumes more than once.

Proof. A consumer consumes a value when the consume primitive is called. A
trivial inspection of the algorithm shows that this primitive can be called only
once in a non-Byzantine consumer, thus it consumes the value no more than
once.

Lemma 3. (Agreement) No two non-Byzantine consumers consume different
values.

Proof. By Lemma 1, if a non-Byzantine consumer consumes v, then v was pro-
duced by some non-Byzantine producer. By assumption, every non-Byzantine
producer produces the same value. Therefore, non-Byzantine consumers never
deliver a value different from v.

Lemma 4. (Termination) Every non-Byzantine consumer consumes a value.

Proof. All the non-Byzantine producers produce and send v or its hash to all
the consumers in the beginning of round 1. Given that channels are reliable and
synchronous, all non-Byzantine consumers receive these values in that round.
Therefore, when round 2 begins, every non-Byzantine consumer must possess
both the correct value and f + 1 or more hashes of that value, so it executes the
consume primitive which means consuming v.

These four properties ensure the reliable transfer of the correct value in the
presence of Byzantine participants. In the following Lemmas, we prove that the
properties BAR-Transfer 5-7 related to Rational behaviour are fulfilled, therefore
ensuring that each node that obeys the protocol is rewarded after the completion
of the transfer.

Lemma 5. (Evidence) The trusted observer produces evidence about the trans-
fer.

Proof. A trivial inspection of the algorithm shows that certify(TO, evidence) is
executed at the end of round 2, which is the same as saying the trusted observer
produces evidence.

Lemma 6. (Producer Certification) If producer p is non-Byzantine, then hasPro-
duced(evidence, p) is true.

Proof. By Lemmas 3 and 4, every non-Byzantine consumer delivers the same
value v. Before delivering these consumers send their confirm vectors to the
trusted observer. Therefore, there are at least N − f non-Byzantine consumers
ck ∈ {c1 . . . cN−f} that send confirm vectors to the trusted observer at the start
of round 2. If producer pi followed the algorithm, each of these consumers ck
has received hash(v) from pi, and included 〈h(v), spi(h(v))〉 in the message sent
to the trusted observer. Since all those messages are included in the evidence
generated by the trusted observer, hasProduced(evidence, pi) is true.

Lemma 7. (Consumer Certification) If consumer c is non-Byzantine, then ha-
sAcknowledged(evidence, c) is true.

Proof. A non-Byzantine consumer sends its confirm vector to the trusted ob-
server. Also, since there are at least N − f non-Byzantine producers, consumer
cj includes 〈h(v), spi(h(v))〉 for each of these non-Byzantine producers pi in the
confirm vector sent to the trusted observer. According to Lemma 6, there ex-
ists a set correctset of at least N − f producers pk ∈ {p1 . . . pN−f} for which
hasProduced(evidence,pk) is true (the set of N − f non-Byzantine producers).
Therefore, hasAcknowledged(evidence, cj) becomes true for any non-Byzantine
consumer cj .

Theorem 1. (Correctness) If all non-Byzantine participants follow the protocol,
then the provided algorithm solves the BAR-Transfer problem defined in terms
of properties BAR-Transfer 1-7.

Proof. The proof follows directly from Lemmas 1, 2, 3, 4, 5, 6, and 7.

5.2 Game Theoretic Analysis

To prove that the protocol provides a Nash equilibrium, we model the BAR-
Transfer problem as a strategic game Γ = (M,SM ,u), where M = P

⋃
C is the

set of players, SM the set of all possible strategies, and u is a vector with the
utility functions of all players.

Each player decides its strategy (or plan of action) once and it remains valid
for all its actions during the execution of BAR-Transfer. These decisions about
the strategy are made simultaneously and, as Rational players do not collude
among themselves, without knowledge of the strategies selected by other players.
The set of possible strategies for player i is denoted Si. SM consists on the set of
all possible strategies, i.e., of Si for all i ∈ M . The set of all possible strategies
of producers is SP . Altruistic producers send hash(v) to all consumers and the
value v to the consumers of consumerset i. Rational producers send hash(v) to
any subset of C and the value to any subset C′ ⊆ C. Similarly, SC denotes
the set of all possible strategies that can be followed by consumers. Altruistic
consumers process all the information received from producers, send it to the TO,
and consume one value. Rational consumers may or may not: consume a value,
process all the values or hashes received from producers, and send the received
information to the TO. Byzantine players follow an arbitrary strategy from SF ,
where F = FP ∪ FC is the set of all Byzantine producers (FP) and Byzantine
consumers (FC), such that |FP | ≤ f and |FC | ≤ f . Notice that these are pure
strategies, that is, the decisions about which strategy to follow is deterministic.

We now identify the reasons why modelling the BAR-Transfer problem as a
strategic game is not a limitation of our analysis. Strategic games are appropriate
for interactions between players where a player cannot form his expectation
from the behaviour of the other players on the basis of information about the
way that the game was played in the past. The information gathered by each
process regarding the past behaviour of other processes is determined by the
number of instances of BAR-Transfer in which those processes interacted, which
depends on the mechanism used to form the sets of processes in each instance.
This mechanism must ensure that with high probability the number of Byzantine
processes of each set is upper bounded by f . Furthermore, in a large peer-to-peer
network, it is true that N is much smaller than the total number of processes in
the system, and the processes connected to the network during the periods when
that mechanism is applied vary from instance to instance. Thus, it is reasonable
to assume that processes interact with a very small frequency, which implies that
the information of each process regarding the nature of other processes is limited
and never certain. Since processes do not incur in risks, they cannot form their
expectation from the behaviour of the other players on the basis of information
about the way that the game was played in the past. Therefore, it is reasonable
to model our solution as a strategic game.

In addition, it is only adequate to model a protocol as a strategic game if
players do not change their strategy during the execution of the game, which is
true in our protocol. Producers cannot increase their knowledge of the strategies
of other players during the execution of the algorithm, as they do not obtain any
information from any other participant. Thus, the initial chosen strategy remains
adequate for the three rounds of the protocol. On the other hand, each consumer
cj learns about the behaviour of producers in round 1, so it can determine which
producers adopted the strategy of sending it the value or its hash. However, ac-
cording to the definition of hasAcknowledged, the TO rewards cj based not only
on the information included in the certificate sent by the consumer, but also

based on the information the producers (certified by cj) sent to the remaining
consumers. Therefore, the information gathered by cj is insufficient for the con-
sumer to determine if an alternative strategy provides greater expected profits.
For these reasons, it is reasonable to assume that Rational participants do not
change their strategy during the execution of the protocol.

We define a profile of strategies as the correspondence between players and
their respective strategy: σM : M 7→ SM . By definition, σi denotes the strategy
followed by player i ∈ M . We define σM as the composition of different profile
strategies for disjoint subsets of playersM1,M2, ...,MN : σM = (σ1

M1
,σ2

M2
, ...,σNMN

),

where σiMi
is the strategy followed by all players of Mi and M = M1 ∪M2 ∪

. . . ∪MN .

We also define an utility function ui(σM) = βi(σM) − νi(σM) as the profit
that player i obtains when all the players follow the strategy specified by σM .
βi denotes the benefit obtained by player i. It is assumed that a producer p
gets a benefit of φP only if hasProduced(evidence, p) holds true. Otherwise, the
benefit is 0. A consumer c only gets a benefit φC if it consumes the correct
value v (therefore, all non-Byzantine consumers consume the correct value) and
if hasAcknowledged(evidence, c) holds true. The function νi(σM) maps the costs
incurred by player i when every player follows the strategies specified by σM . We
assume that φP > νp(σM) and φC > νc(σM) for any non-Byzantine producer p
and consumer c, respectively. To distinguish the arbitrary behaviour of Byzantine
players from the strategies of Altruistic and Rational players, we denote by
πP ∈ ΠP the profile of strategies of Byzantine producers and by πC ∈ ΠC the
profile of strategies of Byzantine consumers.

The remaining of this section provides a proof that the protocol provides a
Nash equilibrium. In the BAR model, Rational players also take into consid-
eration Altruistic and Byzantine behaviour [2]. A utility function for Rational
player i that considers Byzantine, Altruistic and Rational behaviour, denoted
by ūi, is the expected utility for i if it obeys a given Rational strategy σi when
all the remaining participants either obey a non-Byzantine strategy specified by
the profile σM (that includes the Altruistic strategy of following the protocol)
or follow a Byzantine strategy specified by the profile πF . Given that Byzan-
tine participants may behave arbitrarily, in the definition of the expected utility
function it is necessary to consider not only the expected number of Byzantine
players but also the probability of each Byzantine player following each of the
possible Byzantine strategies. In this work, we assume that players are risk-
averse, therefore the expected utility considers the worst possible scenario of
Rational and Byzantine behaviour, i.e., it assumes that all non-Byzantine play-
ers are Rational and all Byzantine players adopt a strategy that minimizes the
utility of non-Byzantine players.

Hereupon, we provide a definition for the expected utility ūi(σM) of player
i ∈ M when all Rational players follow the strategy specified by σM . Let
σ′M\F,πP ,πC = (σM\F ,πP ,πC) be a profile of strategies where no player in M is
Altruistic, all Rational players follow the strategy specified by σM\F , Byzantine
producers follow the strategy specified by πP , and Byzantine consumers follow

the strategy specified by πC . The expected utility of player i is given by the
following equation:

ūi(σM) = min
FP :|FP |≤f,FC :|FC|≤f

◦ min
πP∈ΠP ,πC∈ΠC

ui(σ
′
M\F,πP ,πC) (1)

Notice the distinction between the expected utility ūi(σM), which denotes
the minimum utility Rational player i expects to obtain when all Rational partic-
ipants follow the strategy specified by σM , and the effective utility ui(σ

′
M\F,πP ,πC),

which is the difference between the benefits obtained and the costs incurred by
i when Byzantine players follow the specific strategies specified by πP and πC .

We can now define the functions β̄i(σM) and ν̄i(σM) as the expected benefits
and costs for the worst possible scenario of Rational and Byzantine behaviour.
Thus, the expected utility of player i ∈ M can also be defined as ūi(σM) =
β̄i(σM)− ν̄i(σM).

We now introduce the notion of Nash equilibrium. Let σ∗M\{i},σ∗i
= (σM\{i}, σ

∗
i)

denote the profile of strategies where all Rational players follow the strategy spec-
ified by σM\{i} and player i follows a given strategy σ∗i . A Nash equilibrium is a
profile of strategies for which no player benefits from deviating from its strategy,
which can be stated as follows:

Definition 1. σM is a Nash equilibrium if ∀i∈M∀σ∗i ∈Si ūi(σM) ≥ ūi(σ∗M\{i},σ∗i).

The following Lemmas provide the complete proof that neither the producers
nor the consumers benefit from deviating from the protocol. We use σP and
σC to denote the profile of strategies of, respectively, producers and consumers
that comply with the protocol. σM denotes the composition of the profiles of
strategies σP and σC , and σ∗M denotes an alternative profile of strategies.

In the next Lemma and Corollary, we show that a producer does not benefit
from sending the expected information to less than N consumers and from not
sending the value to all consumers of consumerset. Then, in Theorem 2, we show
that no producer can increase its utility by deviating from the protocol, when
all consumers follow the expected strategy.

Lemma 8. For each producer p ∈ P, for each k such that 0 ≤ k < N , let σ∗M =
(σP\{p},σC , σ

∗
p) be a deviating profile of strategies, where σ∗p is the strategy of

sending a value or its signature to k consumers. Then, β̄p(σ
∗) = 0.

Proof. According to the Equation 1, Rational players determine their utility
considering the worst case scenario of Byzantine and Rational behaviour. Sup-
pose the set of k consumers to which p sends the information includes all the
Byzantine players. According to the protocol, the trusted observer only receives
vectors containing signed hashes in the second round. Hence, if p only sends
the signature of the value or its hash to k < N consumers at the beginning of
the first round and if no Byzantine consumer sends their vectors to the trusted
observer, the trusted observer only receives max(k− f, 0) < N − f vectors that
contain 〈h(v), sp(h(v))〉 in the second round. Therefore, evidence will not contain
N−f entries with 〈h(v), sp(h(v))〉, hasProduced(evidence, p) will hold false, and
β̄p(σ

∗) = 0.

Corollary 1. For each producer pi ∈ P, for each k such that 0 ≤ k < f + 1,
let σ∗M = (σP\{pi},σC , σ

∗
pi) be a deviating profile of strategies, where σ∗pi is the

strategy of sending the value to k consumers. Then, β̄pi(σ
∗) = 0.

Proof. The proof comes trivially from the previous lemma.

Theorem 2. No producer has any incentives to deviate from the protocol.

Proof. It follows from Lemma 8 and Corollary 1 that if the producer p follows
an alternative strategy specified by σ∗M , then β̄p(σ

∗
M) = 0, ūp(σ

∗
M) = −ν̄p(σ∗M),

and ūp(σ
∗
M) < 0, for the worst possible scenario. According to the Theorem 1,

β̄p(σM) = φP , up(σM) = φP − ν̄p(σM), and ūp(σM) > 0, since φP > ν̄p(σM).
Therefore, ūp(σM) > ūp(σ

∗
M). Since it is assumed that Rational participants

are risk-averse, producers do not have incentives to deviate from the protocol.

We now show that no consumer benefits either by not sending the confirm
vector to the TO or by not processing all the information it receives from the
producers. Then, in Theorem 4, we prove that no consumer can increase its
utility by deviating from the protocol, given that producers follow the expected
behaviour.

Lemma 9. For any consumer c ∈ C, let σ∗M = (σP ,σC\{c}, σ
∗
c) be a deviating

profile of strategies, where σ∗c is the strategy of not sending its vector containing
hashes sent by producers to the trusted observer in round 2. Then, β̄(σ∗M) = 0.

Proof. The proof derives directly from that fact that, if a consumer c does not
send its vector, this information is not included in the evidence and hasAcknowl-
edged(evidence, c) hods false. Hence, β̄c(σ

∗
M) = 0.

Lemma 10. For any consumer c ∈ C, let Pc be the set of producers that sent
the correct value or hash to the consumer c, and let σ∗M = (σP ,σC\{c}, σ

∗
c) be a

deviating profile of strategies, where σ∗c is the strategy of sending an incomplete
vector of hashes to the trusted observer with only f + 1 ≤ k < |Pc| entries
different from the ⊥ value. Then, β̄c(σ

∗
M) = 0.

Proof. The worst possible scenario for a non-Byzantine consumer cj occurs when
|FP | = f and for all these Byzantine producers hasProduced is false, while they
still send valid information to cj . In this case, there is only one set correctsetj ,
where, for all p ∈ correctsetj , hasProduced(evidence,p) is true: the set of non-
Byzantine producers. If cj does not set hashes[pi] = 〈hash(v), spi(hash(v)) and
pi is non-Byzantine, then, at the trusted observer, evidence[cj] will not con-
tain the information of at least N − f producers from correctsetj . Therefore,
hasAcknowledged(evidence,c) holds false, and β̄c(σ

∗
M) = 0.

Theorem 3. No consumer has any incentives to deviate from the protocol.

Proof. It follows from Lemmas 9 and 10 that if the consumer c follows an al-
ternative strategy specified by σ∗M , then β̄c(σ

∗
M) = 0, ūc(σ

∗
M) = −ν̄c(σ∗M),

and ūc(σ
∗
M) < 0, for the worst possible scenario. According to the Theorem 1,

β̄c(σM) = φC , ūc(σM) = φC − ν̄c(σM), and ūc(σM) > 0, since φC > ν̄c(σM).
Therefore, ūc(σM) > ūc(σ

∗
M). Since it is assumed that Rational participants are

risk-averse, consumers do not have any incentive to deviate from the protocol.

The following Theorem concludes that the protocol provides a Nash equilib-
rium.

Theorem 4. (Nash equilibrium) The profile of strategies σM where every
player follows the protocol is a Nash equilibrium.

Proof. It follows from Theorems 2 and 4 that for every player i ∈ M and,
for all alternative profiles of strategies σ∗M where i deviates from the protocol,
ūi(σ

∗
M) < ūi(σM). Hence, σM is a Nash equilibrium.

From the previous proofs, it is possible to observe that our solution is a dom-
inant strategy, that is, any other Nash equilibrium has a utility lower than the
utility that each Rational process expects to obtain when following our solution.
Hence, Rational processes should obey our algorithm.

5.3 Complexity Analysis

This section briefly evaluates the algorithm in terms of time, message, and bit
complexity. The time complexity is the number of rounds for termination and in
this case is constant: 3 rounds. For the other two we consider the case in which
all processes follow the protocol. The message complexity, i.e., the number of
messages sent by the algorithm, is N2 +N , or O(N2). The bit complexity, i.e.,
the number of bits sent, is O(Nflv + N2ls), where lv is the bit length of the
value and ls the bit length of a signature, assuming that 3ls � 2lh, where lh is
the bit length of an hash.

6 Conclusions

In this paper we have introduced the BAR-Transfer problem that abstracts the
problem of transferring data from a set of producers to a set of consumers under
the BAR system model. We have presented an algorithm that solves the BAR-
Transfer problem for N ≥ 2f + 1, where N is the number of producers and
consumers. We have shown that our algorithm is a Nash equilibrium, so Rational
participants are unable to extract any benefit from deviating from the algorithm.
BAR-Transfer is a powerful construct to build peer-to-peer systems that support
distributed storage and parallel processing based on volunteer nodes. We are
building such a system, based on a P2P architecture, which aims at supporting
distributed computations using the MapReduce model.

Acknowledgment: This work was partially supported by the FCT (INESC-ID
multi annual funding through the PIDDAC Program fund grant and by the project
PTDC/EIA-EIA/102212/2008).

References

1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game
theory: robust mechanisms for rational secret sharing and multiparty computation.
In: PODC’06. pp. 53–62. Denver, USA (Jul 2006)

2. Aiyer, S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: BAR fault
tolerance for cooperative services. In: SOSP’05. pp. 45–58. Brighton, United King-
dom (Oct 2005)

3. Anderson, D.: Boinc: A system for public-resource computing and storage. In:
GRID’04. pp. 4–10. Pittsburgh, USA (Nov 2004)

4. Anderson, D., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home:
an experiment in public-resource computing. Communications of the ACM 45(11),
56–61 (Nov 2002)

5. Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)
6. Baldoni, R., Helary, J.M., Raynal, M., Tanguy, L.: Consensus in Byzantine asyn-

chronous systems. J. Discrete Algorithms 1(2), 185–210 (2003)
7. Canetti, R., Rabin, T.: Fast asynchronous Byzantine agreement with optimal re-

silience. In: STOC’93. pp. 42–51. New York, USA (1993)
8. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery.

ACM Transactions on Computer Systems 20(4), 398–461 (2002)
9. Clement, A., Napper, J., Li, H., Martin, J.P., Alvisi, L., Dahlin, M.: Theory of bar

games. In: PODC’07. pp. 358–359. Portland, USA (Aug 2007)
10. Correia, M., Neves, N.F., Lung, L.C., Verissimo, P.: Low complexity Byzantine-

resilient consensus. Distributed Computing 17(3), 237–249 (2005)
11. Dolev, D., Strong, H.: Authenticated algorithms for Byzantine agreement. SIAM

J. Comput. 12(4), 656–666 (1983)
12. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-

chrony. J. of ACM 35, 288–323 (April 1988)
13. Eliaz, K.: Fault tolerant implementation. Review of Economic Studies 69(3), 589–

610 (2002)
14. Fraigniaud, P.: Asymptotically optimal broadcasting and gossiping in faulty hyper-

cube multicomputers. Computers, IEEE Transactions on 41(11), 1410–1419 (Nov
1992)

15. Hardin, G.: The tragedy of the commons. Science 162(3859), 1243–47 (1968)
16. Keidar, I., Melamed, R., Orda, A.: Equicast: Scalable multicast with selfish users.

In: PODC06. pp. 63–71 (Jul 2006)
17. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative

Byzantine fault tolerance. In: SOSP’07. pp. 45–58. Stevenson, USA (Oct 2007)
18. Lamport, L.: The part-time parliament. ACM Trans. on Computer Systems 16(2),

133–169 (May 1998)
19. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.

Program. Lang. Syst. 4, 382–401 (Jul 1982)
20. Lee, S., Shin, K.: Interleaved all-to-all reliable broadcast on meshes and hypercubes.

Parallel and Distributed Systems, IEEE Transactions on 5(5), 449–458 (May 1994)
21. Li, H., Clement, A., Marchetti, M., Kapritsos, M., Robison, L., Alvisi, L., Dahlin,

M.: Flightpath: Obedience vs choice in cooperative services. In: OSDI’08. San
Diego, USA (Dec 2008)

22. Li, H., Clement, A., Wong, E., Napper, J., Roy, I., Alvisi, L., Dahlin, M.: BAR
gossip. In: OSDI’06. pp. 191–204. Seattle, USA (Nov 2006)

23. Malkhi, D., Reiter, M.: Byzantine quorum systems. In: STOC’97. pp. 569–578. El
Paso, USA (1997)

24. Martin, J.P., Alvisi, L., Dahlin, M.: Minimal Byzantine storage. In: DISC’02. pp.
311–325. Toulouse, France (Oct 2002)

25. Martin, O., Ariel, R.: A Course in Game Theory. MIT Press (1994)
26. Wong, E.L., Leners, J.B., Alvisi, L.: It’s on me! the benefit of altruism in BAR

environment. In: DISC’10. pp. 406–420. Cambridge, USA (Sep 2010)

