
vtTLS: A Vulnerability-Tolerant
Communication Protocol

André Joaquim Miguel L. Pardal Miguel Correia
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa – Lisbon, Portugal

{andre.joaquim, miguel.pardal, miguel.p.correia}@tecnico.ulisboa.pt

Abstract—We present VTTLS, a vulnerability-tolerant com-
munication protocol. There are often concerns about the strength
of some of the encryption mechanisms used in SSL/TLS channels,
with some regarded as insecure at some point in time. VTTLS is
our solution to mitigate the problem of secure communication
channels being vulnerable to attacks due to unexpected vul-
nerabilities in encryption mechanisms. It is based on diversity
and redundancy of cryptographic mechanisms and certificates to
provide a secure communication channel even when one or more
mechanisms are vulnerable. VTTLS relies on a combination of k
cipher suites. Even if k−1 cipher suites are insecure or vulnerable,
VTTLS relies on the remaining cipher suites to maintain the
channel secure. We evaluated the performance of VTTLS by
comparing it to an OpenSSL channel.

Keywords—network protocol, secure communication channels,
diversity, redundancy, vulnerability-tolerance.

I. INTRODUCTION

Secure communication protocols are fundamental building
blocks of the current digital economy. Transport Layer Security
(TLS) alone is responsible for protecting most economic
transactions done using the web, with a value so high that it is
hard to estimate. These protocols allow entities to exchange
messages or data over a secure channel on the Internet,
that provides confidentiality and integrity of communications.
However, vulnerabilities may exist in the specification, the
cryptographic mechanisms used, or in the implementation.

VTTLS is a new protocol proposed in this paper that
provides vulnerability-tolerant communication channels. These
channels do not rely on individual cryptographic mechanisms,
so if one of them is found vulnerable (or possibly a few of
them), the channels remain secure. The idea is to leverage di-
versity and redundancy of cryptographic mechanisms and keys,
i.e., the use of different and multiple sets of mechanisms/keys,
respectively. More specifically, diversity is employed in pair
certificate/private key, key exchange mechanism, authentica-
tion mechanism, encryption mechanism and message authen-
tication code (MAC). This use of diversity and redundancy
is inspired by previous works on computer immunology [1],
diversity in security [2], [3], and moving-target defenses [4].

VTTLS is configured with a parameter k, the diversity
factor (k > 1). This parameter indicates the number of differ-
ent cipher suites and different mechanisms for key exchange,
authentication, encryption, and signing. This parameter means
also that VTTLS remains secure as long as only k − 1 vul-
nerabilities exist. We expect k to be usually small, e.g., k = 2

or k = 3, because vulnerabilities, even if unknown (zero-day),
do not appear in large numbers in the same components [5].

The main contribution of this paper is the VTTLS protocol
and an experimental evaluation that shows that it has an accept-
able overhead when compared with the TLS implementation
in which our prototype is based: OpenSSL [6].

II. BACKGROUND AND RELATED WORK

This section presents related work on diversity (and redun-
dancy) in security, provides background on TLS, and discusses
vulnerabilities in cryptographic mechanisms.

A. Diversity in Security

The term diversity is used to describe multi-version soft-
ware in which redundant versions are deliberately created and
made different between themselves [2]. Without diversity, all
instances are the same, with the same implementation vulner-
abilities. Using diversity it is possible totw present different
versions to the attacker, hopefully with different vulnerabilities.
Software diversity targets mostly software implementation and
the ability of the attacker to replicate the user’s environment.
Diversity does not change the program’s logic, so it is not
helpful if a program is badly designed. According to Little-
wood and Strigini [2], multi-version systems on average are
more reliable. They also state that the key to achieving effective
diversity is that the dependence between the different programs
needs to be as low as possible.

B. SSL/TLS Protocol Vulnerabilities

TLS is composed by the Handshake Protocol and the
Record Protocol. The Handshake Protocol is used to establish
or resume a secure session between two communicating parties
– client and server. The Record protocol is responsible for
processing all the messages to sent and received.

TLS vulnerabilities discovered in the past can be classified
in two types: specification vulnerabilities that concern the
protocol itself and can only be fixed by a new protocol version
or an extension; and implementation vulnerabilities that exist
in the code of some of the implementations of SSL/TLS.

One of the most recent attacks against a specification
vulnerability is Logjam, a man-in-the-middle attack exploiting
several Diffie-Hellman key exchange weaknesses [7]. Heart-
bleed is one of the most recent implementation vulnerabilities.
It was a bug in OpenSSL 1.0.1 through 1.0.1f, when the
heartbeat extension was introduced and enabled by default
which allowed an attacker to perform a buffer over-read [8].978-1-5090-3216 7/16/$31.00 c© 2016 IEEE

C. Vulnerabilities in Cryptographic Schemes

The Advanced Encryption Standard (AES) is the current
American standard for symmetric encryption [9]. AES can be
employed with different key sizes – 128, 192 or 256 bits.
The number of rounds corresponding to each key size is,
respectively, 10, 12 and 14. The most successful cryptanalysis
of AES was published by Bogdanov et al. in 2011, using a
biclique attack. Ferguson et al. [10] presented the first known
attacks on the first seven and eight rounds of AES.

Regarding public-key cryptography, Kleinjung et al. [11]
performed the factorization of RSA-768, a number with 232
digits. The researchers spent almost two years in the whole
process, which is clearly a non-feasible time for most attacks.

Some generic attacks to hash function include brute force
attacks, birthday attacks, and side-channel attacks. SHA-1 is a
cryptographic hash function which produces a 160-bit message
digest. Although there is no public knowledge of collisions
for SHA-1, it is no longer recommended for use [12]. Stevens
et al. [13] presented a freestart collision attack for SHA-1’s
internal compression function, where the attacker can choose
the initial chaining value, known as initialization vector (IV).
Regarding SHA-2 and its security, Khovratovich et al. [14] pre-
sented a biclique attack against SHA-2’s preimage resistance.
For several years, other researchers have also tried differential
attacks for finding collisions and pseudo-collisions [15], [16].

III. VULNERABILITY-TOLERANT TLS

VTTLS is a protocol for diverse and redundant vulnerabi-
lity-tolerant secure communication channels. Unlike TLS, it
negotiates more than one cipher suite between client and
server. Diversity and redundancy appear firstly in VTTLS in
the Handshake protocol, in which client and server negotiate
the k cipher suites to be used in the communication. The server
chooses the best combination of k cipher suites according
to the cipher suites server and client have, and the available
certificates. VTTLS uses a subset of the k cipher suites to
encrypt the messages.

A. Protocol Specification

The VTTLS Handshake Protocol is similar to the TLS
Handshake Protocol. The first message to be sent is CLIEN-
THELLO containing a list of the client’s available cipher
suites. The server responds with a SERVERHELLO message
containing the k cipher suites to be used in the communication.
The server proceeds to send a (SERVER) CERTIFICATE mes-
sage containing its k certificates. The SERVERKEYEXCHANGE
message is then sent to the client. For every k cipher suites
using ECDHE or DHE, the server sends a SERVERKEYEX-
CHANGE messages containing the server’s DH ephemeral
parameters for that cipher suite. Instead of computing all the
ephemeral parameters and sending them all on a single larger
message, the server sends each one immediately.

After sending its certificates, the client sends k CLIEN-
TKEYEXCHANGE messages to the server. The content of
these messages is based on the k cipher suites chosen. Client
and server now exchange CHANGECIPHERSPEC messages.
Just like in the Cipher Spec Protocol of TLS 1.2, from that
moment on, they use the previously negotiated cipher suites

for encrypting messages. In order to finish the Handshake, the
client and server send each other a FINISHED message. These
are the first encrypted messages sent using the k cipher suites.

B. Combining Diverse Cipher Suites

Regarding integrity, all of VTTLS’ cipher suites use ei-
ther AEAD (Authenticated Encryption with Associated Data)
(MAC-then-Encrypt mode), SHA-2 (SHA-256 or SHA-384),
SHA-1 or MD5. The choice starts from the current security
status of each hash function. While AEAD (which is not an
hash function) and SHA-2 are considered secure, SHA-1 is
being deprecated and MD5 is considered insecure. Therefore,
we excluded SHA-1 and MD5 from the possible combinations
of hash functions. Our choice for creating maximum diversity
relies on AEAD plus a variant of SHA-2. As AEAD is a
different approach to MACs, it is expected to be vulnerable to
different attacks than the ones targeting hash functions, such
as SHA-2. Using a combination of two SHA-2 variants would
not create maximum diversity, because even though they have
different digest sizes and rounds, their structure is identical. If
SHA-3 was available in TLS, it could also be used.

As we want to increase diversity in order to increase
security, we prioritize mechanisms which grant perfect forward
secrecy (PFS) instead of mechanisms with disjoint mathe-
matical hard problems. After comparing several public-key
encryption mechanisms, we concluded that the best three com-
binations are: RSA + ECDH(E), ECDSA + ECDH(E) and ECDSA

+ RSA. VTTLS uses public-key encryption mechanisms for
key exchange and authentication. Regarding authentication,
the preferred combination is ECDSA + RSA. Regarding key
exchange, the preferred is RSA + ECDH(E).

The symmetric mechanisms chosen for comparison were
AES, Camellia, SEED, and 3DES EDE. We also included ARIA

in our comparison, even though it is not available in VTTLS.
Symmetric-key encryption mechanisms’ three most important
metrics are structure, mode of operation and common known
attacks. In a certain sense, these metrics are related: attacks
target a specific structure or mode of operation. Therefore,
the combinations of symmetric encryption mechanisms we
consider to be the most diverse are: AES + CAMELLIA (using
a different mode of operation and key size), and AES256-GCM

+ SEED128-CBC. We consider the most diverse combination to
be AES256-GCM + CAMELLIA128-CBC due to the fact that their
structure is different, as its mode of operation and the set of
known attacks is disjoint. Although, using a cipher suite that
contains Camellia or SEED, in order to maximize diversity
in symmetric encryption would force reduced diversity and
security essentially in MAC. In the end, the best combination
is AES256-GCM + AES128-CBC which can be considered diverse,
although it is not the most diverse of all the ones considered.

Concluding, the best combination of cipher suites is
arguably: TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 and
TLS_RSA_WITH_AES_128_CBC_SHA256. The least diverse mech-
anisms are MAC and symmetric encryption, due to the fact
that TLS 1.2 does not support SHA-3 and OpenSSL does
not support Camellia keyed-hash message authentication code
(HMAC) based cipher suites.

Fig. 1: First four steps regarding the ordering of the encryption
and signing of VTTLS using a diversity factor k = 2.

IV. IMPLEMENTATION

VTTLS’ implementation is a modified version of OpenSSL
v1.0.2g. Existing software such as OpenSSL has the advantage
of being extensively tested. Furthermore, creating a new secure
communication channel, and consequently a new API, would
create adoption barriers to programmers otherwise willing to
use our protocol. Therefore, we chose to implement VTTLS
based on OpenSSL and keeping the same API. Nevertheless,
OpenSSL is a huge code base (currently 438,841 lines of code)
and modifying it so support diversity was quite a challenge.
VTTLS adds a few functions to the OpenSSL API. They allow
defining additional certificates, keys, cipher suites, etc. The
signing and encryption ordering is very important for VTTLS.
Figure 1 shows the ordering for one cipher and one MAC in
the OpenSSL implementation.

The approach taken was the following, ordered from first
to last: apply the first MAC to the plaintext; encrypt the first
message and its MAC with the first encryption mechanism;
apply the second MAC to the ciphertext; encrypt the ciphertext
and its MAC with the second encryption mechanism. Figure
2 shows the final ordering of VTTLS communication data.

In relation to the Record Protocol, signing and encrypting k
times has a cost in terms of message size. Figures 1 and 2 show
also the expected increase of the message size due to the use of
a second MAC and a second encryption function (for k = 2).
For OpenSSL, the expected size of a message is first len =
eivlen+msg length+ padding +mac size, where eivlen
is the size of the initialization vector (IV), msg length the
original message size, padding the size of the padding in case
a block cipher is used, and mac size the size of the MAC.
For VTTLS, the additional size of the message is eivlen sec+

Fig. 2: Final three steps regarding the ordering of the encryp-
tion and signing of VTTLS using a diversity factor k = 2.

first len+padding sec+mac size sec, where eivlen sec
is the size of the IV associated with the second cipher and
mac size sec the size of the second MAC.

In the best case, the number of packets is the same for
OpenSSL and VTTLS. In the worst case, one additional packet
may be sent if the encryption function requires a fixed block
size and the maximum size of the packet is exceeded by,
at least, one byte after the second MAC and the second
encryption. In this case, an additional full packet is needed
due to the constraint of having fixed block size.

V. EXPERIMENTAL EVALUATION

Implementing diversity has performance costs as it creates
overhead in the communication. Every message sent needs
to be ciphered and signed k − 1 times more than using a
TLS implementation and every message received needs to be
deciphered and verified also k − 1 times more. In the worst
case, users should experience a connection k times slower than
using OpenSSL. We considered k = 2 in all experiments, as
this is the value we expect to be used in practice (we expect
vulnerabilities to appear rarely, so the ability to tolerate one
vulnerability per mechanism is sufficient). All the tests were
done in the same controlled environment and same geographic
locations in order to maintain the evaluation valid, exact
and precise. We evaluated VTTLS’s performance and costs
and considered the OpenSSL implementation of TLS as the
baseline.

A. Performance

In order to evaluate VTTLS performance, we exe-
cuted several tests in order to understand if the overhead
of VTTLS is lower, equal, or bigger than k comparing
to OpenSSL. We configured VTTLS to use the follow-
ing cipher suites: TLS_RSA_WITH_AES_256_GCM_SHA384 and
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384. The suite used
with OpenSSL was the latter.

To evaluate the performance of the handshake, we exe-
cuted 100 times the Handshake Protocol of both VTTLS and

Fig. 3: Comparison between the time it takes to send and
receive a message using VTTLS and OpenSSL.

OpenSSL. In average, the VTTLS handshake took 3.909 mil-
liseconds to conclude whereas the OpenSSL handshake took
2.345 milliseconds. Therefore, the VTTLS handshake takes
66.7% longer than the OpenSSL handshake which is better
than the worst case (that would be 100% longer).

B. Data Communication

We also performed data communication tests to assess the
overhead generated by the diversity and redundancy of mech-
anisms. The communication is expected to be, at most, k = 2
times slower than using TLS. For this test, we considered a
sample of 100 messages sent and received using VTTLS, and
other 100 messages sent and received using OpenSSL. Figure
3 shows the comparison between the time it takes to send and
receive a message using VTTLS and OpenSSL.

In average, a message sent through a VTTLS channel
takes 22.88% longer than a message sent with OpenSSL. For
example, a 50 MB message takes, in average 534.55 ms to be
sent with VTTLS. Using OpenSSL, the same message takes
435.01 ms to be sent. The overhead generated is much smaller
than the worst case.

We evaluated the message size increase of the ciphertext
of several plaintexts with different sizes. A 1 MB plaintext
message corresponds to a ciphertext of 1, 029, 054 bytes using
VTTLS, while using OpenSSL the same message converts into
a message of 1, 025, 856 bytes i.e. sending 1 MB through a
VTTLS channel costs an additional 3, 198 bytes over using an
OpenSSL channel.

VI. CONCLUSIONS

VTTLS is a diverse and redundant vulnerability-tolerant
secure communication protocol designed for communication
on the Internet. It aims at increasing security using diverse
cipher suites to tolerate vulnerabilities in the encryption mech-
anisms used in the communication channel. In order to evaluate
our solution, we compared it to an OpenSSL communication
channel. While expected to be k = 2 times slower than an
OpenSSL channel, the evaluation showed that using diversity
and redundancy of cryptographic mechanisms in VTTLS does
not generate such a high overhead. VTTLS takes, in average,

22.88% longer to send a message than TLS/OpenSSL, but con-
sidering the increase in security, this overhead is acceptable.
Overall, considering the additional costs of having an extra
certificate, the time increase, and potential management costs,
VTTLS provides an interesting trade-off for a set of critical
security applications.

Acknowledgements This work was supported by the European Com-
mission through project H2020-653884 (SafeCloud) and by national
funds through Fundação para a Ciência e a Tecnologia (FCT) with
reference UID/CEC/50021/2013 (INESC-ID).

REFERENCES

[1] S. Forrest, S. A. Hofmeyr, and A. Somayaji, “Computer immunology,”
Communications of the ACM, vol. 40, no. 10, pp. 88–96, Oct. 1997.

[2] B. Littlewood and L. Strigini, “Redundancy and diversity in security,”
in Computer Security – ESORICS 2004, 9th European Symposium on
Research Computer Security, 2004, pp. 227–246.

[3] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro, “OS
diversity for intrusion tolerance: Myth or reality?” in Proceedings of
the IEEE/IFIP 41st International Conference on Dependable Systems
and Networks, 27–30 June 2011, pp. 383 –394.

[4] M. Carvalho and R. Ford, “Moving-target defenses for computer
networks,” IEEE Security and Privacy, vol. 12, no. 2, pp. 73–76, 2014.

[5] L. Bilge and T. Dumitras, “Before we knew it: an empirical study
of zero-day attacks in the real world,” in Proceedings of the ACM
Conference on Computer and Communications Security, 2012, pp. 833–
844.

[6] J. Viega, M. Messier, and P. Chandra, Network Security with OpenSSL:
Cryptography for Secure Communications. O’Reilly, 2002.

[7] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green,
J. Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta,
B. Vandersloot, E. Wustrow, and S. Paul, “Imperfect forward secrecy:
How Diffie-Hellman fails in practice,” in Proceedings of the 22nd ACM
Conference on Computer and Communications Security, October 2015.
[Online]. Available: https://weakdh.org/imperfect-forward-secrecy.pdf

[8] M. Carvalho, J. DeMott, R. Ford, and D. A. Wheeler, “Heartbleed 101,”
IEEE Security Privacy, vol. 12, no. 4, pp. 63–67, July 2014.

[9] V. Rijmen and J. Daemen, “Advanced Encryption Standard,” U.S.
National Institute of Standards and Technology (NIST), vol. 2009, pp.
8–12, 2001.

[10] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and
D. Whiting, “Improved cryptanalysis of Rijndael,” in Proceedings of
Fast Software Encryption, G. Goos, J. Hartmanis, J. van Leeuwen, and
B. Schneier, Eds. Springer, 2001, vol. LNCS 1978, pp. 213–230.

[11] T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thomé, J. Bos,
P. Gaudry, A. Kruppa, P. Montgomery, D. Osvik, H. Te Riele, A. Timo-
feev, and P. Zimmermann, “Factorization of a 768-bit RSA modulus,” in
Proceedings of the 30th Annual Conference on Advances in Cryptology,
vol. LNCS 6223, 2010, pp. 333–350.

[12] ENISA, “Algorithms, key size and parameters report – 2014,” nov 2014.
[13] M. Stevens, P. Karpman, and T. Peyrin, “Freestart collision on full

SHA-1,” Cryptology ePrint Archive, Report 2015/967, 2015.
[14] D. Khovratovich, C. Rechberger, and A. Savelieva, “Bicliques for

Preimages: Attacks on Skein-512 and the SHA-2 family,” Cryptology
ePrint Archive, Report 2011/286, 2011, http://eprint.iacr.org/.

[15] C. Dobraunig, M. Eichlseder, and F. Mendel, “Analysis of SHA-512/224
and SHA-512/256,” Cryptology ePrint Archive, Report 2016/374, 2016,
http://eprint.iacr.org/.

[16] M. Eichlseder, F. Mendel, and M. Schlffer, “Branching Heuristics in
Differential Collision Search with Applications to SHA-512,” Cryptol-
ogy ePrint Archive, Report 2014/302, 2014, http://eprint.iacr.org/.

