
Vulnerability-Tolerant Transport Layer Security
André Joaquim, Miguel L. Pardal, and Miguel Correia

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
{andre.joaquim, miguel.pardal, miguel.p.correia}@tecnico.ulisboa.pt

Abstract
SSL/TLS communication channels play a very important role in Internet security, including
cloud computing and server infrastructures. There are often concerns about the strength of the
encryption mechanisms used in TLS channels. Vulnerabilities can lead to some of the cipher
suites once thought to be secure to become insecure and no longer recommended for use or in
urgent need of a software update. However, the deprecation/update process is very slow and
weeks or months can go by before most web servers and clients are protected, and some servers
and clients may never be updated. In the meantime, the communications are at risk of being
intercepted and tampered by attackers.

In this paper we propose an alternative to TLS to mitigate the problem of secure commu-
nication channels being susceptible to attacks due to unexpected vulnerabilities in its mechan-
isms. Our solution, called Vulnerability-Tolerant Transport Layer Security (vtTLS), is based
on diversity and redundancy of cryptographic mechanisms and certificates to ensure a secure
communication even when one or more mechanisms are vulnerable. Our solution relies on a
combination of k cipher suites which ensure that even if k − 1 cipher suites are insecure or vul-
nerable, the remaining cipher suite keeps the communication channel secure. The performance
and cost of vtTLS were evaluated and compared with OpenSSL, one of the most widely used
implementations of TLS.

1998 ACM Subject Classification C.2.2 Network Protocols; D.4.6 Security and Protection

Keywords and phrases Secure communication channels; Transport layer security; SSL/TLS;
Diversity; Redundancy; Vulnerability tolerance

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.23

1 Introduction

Secure communication protocols are extremely important in the Internet. Transport Layer
Security (TLS) alone is responsible for protecting most economic transactions done using
the Internet, with a value too high to estimate. These protocols allow entities to exchange
messages or data over a secure channel in the Internet. A secure communication channel has
three main properties: authenticity – no one can impersonate the sender; confidentiality –
only the intended receiver of the message is able to read it; and integrity – tampered messages
can be detected.

Several secure communication channel protocols exist nowadays, with different purposes
but with the same goal of securing communication. TLS is a widely used secure channel
protocol. Originally called Secure Sockets Layer (SSL), its first version was SSL 2.0, released
in 1995. SSL 3.0 was released in 1996, bringing improvements to its predecessor such as
allowing forward secrecy and supporting SHA-1. Defined in 1999, TLS did not introduce
major changes in relation to SSL 3.0. TLS 1.1 and TLS 1.2 are upgrades to TLS 1.0
which brought improvements such as mitigation of cipher block chaining (CBC) attacks and
supporting more block cipher modes to use with AES.

© James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão;
licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


23:2 Vulnerability-Tolerant Transport Layer Security

Other widely used secure channel protocols are IPsec and SSH. Internet Protocol Security
(IPsec) is a network layer protocol that protects the communication at a lower level than
SSL/TLS, which operates at the transport layer [18]. IPsec is an extension of the Internet
Protocol (IP) that contains two sub-protocols: AH (Authentication Header) that can assure
full packet authenticity and ESP (Encapsulating Security Payload) that can protect confiden-
tiality and integrity of the payload of the packets. Secure Shell (SSH) is an application-layer
protocol used for secure remote login and other secure network services over an insecure
network [38].

A secure channel protocol becomes insecure when a vulnerability is discovered. Vulner-
abilities may concern the specification of the protocol, the cryptographic mechanisms used,
or specific implementations of the protocol. Many vulnerabilities have been discovered in
TLS originating new versions of the protocol, deprecating cryptographic mechanisms or
enforcing additional security measures. Concrete implementations of TLS have been also
found vulnerable due to implementation bugs. The processes of deprecation or software
update are very slow and can take a long time to become effective [2]. Also, they may not
even reach all the affected servers and clients. This means that the communications between
devices are at risk of interception or tampering by attackers for a long period.

This paper proposes a vulnerability-tolerant communication channel protocol, based on
TLS, named Vulnerability-Tolerant Transport Layer Security (vtTLS). A vulnerability-
tolerant channel is characterized by not relying on individual cryptographic mechanisms, so
that if any one of them is found vulnerable, the channel still remains secure. The idea is to
leverage diversity and redundancy of cryptographic mechanisms and keys by using more than
one set of mechanisms/keys. This use of diversity and redundancy is inspired in previous
works on intrusion tolerance [34], diversity in security [21, 13] and moving-target defenses [7].

Consider for example SHA-1 and SHA-3, two hash functions that may be used to generate
message digests. If used in combination and SHA-1 eventually becomes insecure, vtTLS
would rely upon SHA-3 to keep the communication secure.

vtTLS is configured with a parameter k (k > 1), the diversity factor, that indicates the
number of different cipher suites and different mechanisms for key exchange, authentication,
encryption, and signing. This parameter means also that vtTLS remains secure as long
as less than k vulnerabilities exist. As vulnerabilities and, more importantly, zero-day
vulnerabilities cannot be removed as they are unknown [4], do not appear in large numbers
in the same components, we expect k to be usually small, e.g., k = 2 or k = 3.

Although TLS supports strong encryption mechanisms such as AES and RSA, there are
factors beyond mathematical complexity that can contribute to vulnerabilities. Diversifying
encryption mechanisms includes diversifying certificates and consequently keys (public,
private, shared). Diversity of certificates is a direct consequence of diversifying encryption
mechanisms due to the fact that each certificate is related to an authentication and key
exchange mechanism.

The main contribution of this paper is vtTLS, a new protocol for secure communication
channels that uses diversity and redundancy to tolerate vulnerabilities in cryptographic
mechanisms. The experimental evaluation shows that vtTLS has an acceptable overhead in
relation to the TLS implementation in OpenSSL v1.0.2g [35].

The rest of the document is organized as follows. Section 2 presents background and
related work. Section 3 presents the protocol and Section 4 its implementation. Section 5
presents the experimental evaluation and Section 6 concludes the paper.



A. Joaquim et. al. 23:3

2 Background and Related Work

This section presents related work on diversity (and redundancy) in security, provides
background information on TLS, and discusses vulnerabilities in cryptographic mechanisms
and protocols.

2.1 Diversity

The term diversity is used to describe multiple version software in which redundant versions
are deliberately created and made different between themselves [21]. Without diversity, all
instances are the same, with the same implementation vulnerabilities. Using diversity it is
possible to present the attacker with different versions, hopefully with different vulnerabilities.
Software diversity targets mostly software implementation and the ability of the attacker to
replicate the user’s environment. Diversity does not change the program’s logic, so it is not
helpful if a program is badly designed. According to Littlewood and Strigini, multi-version
systems on average are more reliable than those with a single version [21]. They also state
that the key to achieve effective diversity is to make the dependence between the different
programs as low as possible. Therefore, attention is needed when choosing the diverse
versions. The trade-off between individual quality and dependence needs to be assessed and
evaluated, as it impacts the correlation between version failures.

Recently there has been some discussion on the need for moving-target defenses. Such
defenses dynamically alter properties of programs and systems in order to overcome vulner-
abilities that eventually appear in static defense mechanisms [11]. There are two types of
moving-target defenses: proactive and reactive [7]. Proactive defenses are generally slower
than reactive defenses as they prevent attacks by increasing the system complexity periodic-
ally. Reactive defenses are faster as they are activated when they receive a trigger from the
system when an attack is detected. This may cause a problem where an attack is performed
but not detected. In this case, reactive defenses are worthless, but proactive defenses may
prevent that attack from being successful. The best approach would be to implement both
[30]. Nevertheless, these defences are as good as their ability to make an unpredictable
change to the system.

Earlier, Avižienis and Chen introduced N-version programming (NVP) [3]. NVP is defined
as the independent generation of N ≥ 2 functionally equivalent programs from the same
initial specification. The authors state that in order to use redundant programs to achieve
fault tolerance the redundant program must contain independently developed alternatives
routines for the same functions. The N in NVP comes from N diverse versions of a program
developed by N different programmers, that do not interact with each other regarding the
programming process. One of the limitations of NVP is that every version is originated
from the same initial specification. There is the need to assure the initial specification’s
correctness, completeness and unambiguity prior to the versions development.

There is some work on obtaining diversity without explicitly developing N versions [20].
Garcia et al. show that there is enough diversity among operating systems for several practical
purposes [13]. Homescu et al. use profile-guided optimization for automated software diversity
generation [15]. Transparent Runtime Randomization (TRR) dynamically and randomly
relocates parts of the program to provide different versions [37]. Proactive obfuscation aims
to generate replicas with different vulnerabilities [26]. We introduced the idea of using
diversity for vulnerability-tolerant channels in a short (4-page) paper [16]. The present paper
greatly expands that previous work.

OPODIS 2017



23:4 Vulnerability-Tolerant Transport Layer Security

2.2 TLS Protocol

TLS has two main sub-protocols: the Handshake Protocol and the Record Protocol.
The Handshake Protocol is used to establish (or resume) a secure session between two

communicating parties – a client and a server. A session is established in several steps, each
one corresponding to a different message.

The Record protocol is the sub-protocol which processes the messages to send and
receive after the handshake, i.e., in normal operation. Regarding an outgoing message, the
first operation performed by the Record protocol is fragmentation. After fragmenting the
message, each block may be optionally compressed, using the compression method defined
in the Handshake. Each potentially compressed block is now transformed into a ciphertext
block by encryption and message authentication code (MAC) functions. Each ciphertext
block contains the protocol version, content type and the encrypted form of the compressed
fragment of application data, with the MAC, and the fragment’s length. When using block
ciphers, padding and its length is added to the block. The padding is added in order to
force the length of the fragment to be a multiple of the block cipher’s block length. When
using AEAD ciphers (MAC-then-Encrypt mode using a SHA-2 variant), no MAC key is used.
The message is then sent to its destination. Regarding an incoming message, the process is
the inverse. The message is decrypted, verified, optionally decompressed, reassembled and
delivered to the application.

2.3 TLS Vulnerabilities

We now discuss some of the vulnerabilities discovered in TLS in the past to show the relevance
of our work to bring added security to communications. TLS vulnerabilities can be classified
in two types: specification and implementation. Specification vulnerabilities concern the
protocol itself. A specification vulnerability can only be fixed by a new protocol version or
an extension. Implementation vulnerabilities exist in the code of an implementation of TLS,
such as OpenSSL. This section presents some of the most recent [28].

An example attack that exploits a specification vulnerability is Logjam [1]. The attack
consists in exploiting several weak parameters in the Diffie-Hellman key exchange. Logjam is
a man-in-the-middle attack that downgrades the connection to a weakened Diffie-Hellman
mode. This man-in-the-middle attack changes the cipher suites used in the DHE_EXPORT

cipher suite, forcing the use of weaker Diffie-Hellman key exchange parameters. As the
server supports this valid Diffie-Hellman mode, the handshake proceeds without the server
noticing the attack. The server proceeds to compute its premaster secret using weakened
Diffie-Hellman parameters. The client sees that the server has chosen a seemingly normal
DHE option and proceeds to compute its secret also with weak parameters. At this point,
the man-in-the-middle can use the precomputation results to break one of the secrets and
establish the connection to the client pretending to be the server.

Heartbleed is an example of an implementation vulnerability. It was a bug in C code that
existed in OpenSSL 1.0.1 through 1.0.1f, when the heartbeat extension was introduced and
enabled by default [27]. The Heartbleed vulnerability allowed an attacker to perform a buffer
over-read, reading up to 64 KB from the memory of the victim [6].

2.4 Vulnerabilities in Cryptographic Schemes

This section presents example vulnerabilities in cryptographic mechanisms used by TLS.



A. Joaquim et. al. 23:5

2.4.1 Public-key Cryptography
RSA is a widely-used public-key cryptography scheme. Its security is based on the difficulty
of factorization of large integers and the RSA problem [23]. RSA can be considered to be
broken if these problems can be solved in a practical amount of time.

Kleinjung et al. performed the factorization of RSA-768, a RSA number with 232 digits
[19]. The researchers state they spent almost two years in the whole process, which is clearly
a non-practical time. Factorizing a large integer is different from breaking RSA, which is
still secure. As of 2010, these researchers concluded that RSA-1024 would be factored within
five years. As for now, no factorization of RSA-1024 has been publicly announced, but key
sizes of 2048 and 3072 bits are now recommended [10].

Shor designed a quantum computing algorithm to factorize integers in polynomial time
[29]. However, it requires a quantum computer able to run it, which is still not publicly
available.

2.4.2 Symmetric Encryption
The Advanced Encryption Standard (AES), originally called Rijndael, is the current American
standard for symmetric encryption [25]. AES can be employed with different key sizes – 128,
192 or 256 bits. The number of rounds corresponding to each key size is, respectively, 10, 12
and 14. AES is used by many protocols, including TLS.

The most successful cryptanalysis of AES was published by Bogdanov et al. in 2011,
using a biclique attack, a variant of the MITM attack [5]. This attack achieved a complexity
of 2126.1 for the full AES with 128-bit (AES-128). The key is therefore reduced to 126-bit
from the original 128-bit, but it would still take many years to successfully attack AES-128.
Ferguson et al. presented the first known attacks on the first seven and eight rounds of
Rijndael [12]. Although it shows some advance in breaking AES, AES with a key of 128 bits
has 10 rounds.

2.4.3 Hash Functions
The main uses for hash functions are data integrity and message authentication. A hash, also
called message digest or digital fingerprint, is a compact representation of the input and can
be used to uniquely identify that same input [22]. If a hash function is not collision-resistant,
it is vulnerable to collision attacks. Some generic attacks to hash function include brute
force attacks, birthday attacks and side-channel attacks.

The Secure Hash Algorithm 1 (SHA-1) is a cryptographic hash function that produces a
160-bit message digest. Its use is not recommended for some years [10], although the first
collision was discovered only recently [32]. There have been some previous attacks against
SHA-1. Stevens et al. presented a freestart collision attack for SHA-1’s internal compression
function [33]. Taking into consideration the Damgard-Merkle [24] construction for hash
functions and the input of the compression function, a freestart collision attack is a collision
attack where the attacker can choose the initial chaining value, also known as initialisation
vector (IV). Freestart collision attacks being successful does not imply that SHA-1 is insecure,
but it is a step forward in that direction.

In 2005, Wang et al. presented a collision attack on SHA-1 that reduced the number of
calculations needed to find collisions from 280 to 269 [36]. The researchers claim that this
was the first collision attack on the full 80-step SHA-1 with complexity inferior to the 280

theoretical bound. By the year 2011, Stevens improved the number of calculations needed to
produce a collision from 269 to a number between 260.3 and 265.3 [31].

OPODIS 2017



23:6 Vulnerability-Tolerant Transport Layer Security

3 Vulnerability-Tolerant TLS

vtTLS is a new protocol that provides vulnerability-tolerant secure communication channels.
It aims at increasing security using diverse and redundant cryptographic mechanisms and
certificates. It is based on the TLS protocol. The protocol aims to solve the main problem
originated by having only one cipher suite negotiated between client and server: when
one of the cipher suite’s mechanisms becomes insecure, the communication channels using
that cipher suite may become vulnerable. Although most cipher suites’ cryptographic
mechanisms supported by TLS 1.2 are believed to be secure, Section 2 shows clearly that
new vulnerabilities may be discovered.

Unlike TLS, a vtTLS communication channel does not rely on only one cipher suite.
vtTLS negotiates more than one cipher suite between client and server and, consequently,
more than one cryptographic mechanism will be used for each phase: key exchange, au-
thentication, encryption and MAC. Diversity and redundancy appear firstly in vtTLS in
the Handshake protocol, in which client and server negotiate k cipher suites to secure the
communication, with k > 1.

The strength of vtTLS resides in the fact that even when (k − 1) cipher suites become
insecure, e.g., because (k − 1) of the cryptographic mechanisms are vulnerable, the protocol
remains secure. The server chooses the best combination of k cipher suites according to the
cipher suites server and client have available. However, the choice of the cipher suites might
be conditioned by the certificates of both server and client. vtTLS uses a subset of the k

cipher suites agreed-upon in the Handshake Protocol to encrypt the messages.

3.1 Protocol Specification
The vtTLS Handshake Protocol is similar to the TLS Handshake Protocol. We use the
same names for the messages in order to help the reader familiarized with TLS.

The messages that require diversity are ClientHello, ServerHello, k-ServerKey-
Exchange, Server and Client Certificate, and k-ClientKeyExchange.

The first message to be sent is ClientHello to inform the server that the client wants
to establish a secure channel for communication.

The server responds with a ServerHello message. This is where the server sends to
the client the k cipher suites to be used in the communication. The server also sends its
protocol version, a Random structure identical to the one received from the client, the session
identifier, and the k cipher suites chosen by the server from the list the client sent.

The server proceeds to send a Server Certificate message containing its k certificates
to the client. The k chosen cipher suites are dependent from the server’s certificates. Each
certificate is associated with one key exchange mechanism (KEM). Therefore, the k cipher
suites must use the key exchange mechanisms supported by the server’s certificates.

vtTLS behaves correctly if the server has c certificates, with 0 < c ≤ k . The cipher
suites to be used are chosen considering the available certificates. If c < k, the diversity is
not fully achieved due to the fact that a number of cipher suites will share the same key
exchange and authentication mechanisms.

The ServerKeyExchange message is the next message to be sent to the client by
the server. This message is only sent if one of the k cipher suites includes a key exchange
mechanism like ECDHE or DHE that uses ephemeral keys, i.e., that generate new keys for
every key exchange. The contents of this message are the server’s DH ephemeral parameters.
For every other k − 1 cipher suites using ECDHE or DHE, the server sends additional
ServerKeyExchange messages with additional diverse DH ephemeral parameters. Instead



A. Joaquim et. al. 23:7

Figure 1 vtTLS Handshake messages with diversity factor k. The places where diversity and
redundancy are introduced are marked in bold and underlined.

of computing all the ephemeral parameters and sending them all on a single larger message,
the server, after computing one parameter, sends it immediately, sending each parameter in
a separate message.

The remaining messages sent by the server to the client at this point of the negotiation,
CertificateRequest and ServerHelloDone, are identical to those in TLS 1.2 [9].

The client proceeds to send a (Client) Certificate message containing its i certificates
to the server, analogous to the (Server) Certificate message the client received previously
from the server.

After sending its certificates, the client sends k ClientKeyExchange messages to the
server. The content of these messages is based on the k cipher suites chosen. If m of the
cipher suites use RSA as KEM, the client sends m messages, each one with a RSA-encrypted
pre-master secret to the server (0 ≤ m ≤ k). If j of the cipher suites use ECDHE or DHE, the
client sends j messages to the server containing its j Diffie-Hellman public values (0 ≤ j ≤ k).
Even if a subset of the k cipher suites share the same KEM, this methodology still applies as
we introduce diversity by using different parameters for each cipher suite being used.

The server needs to verify the client’s i certificates. The client digitally signs all the
previous handshake messages and sends them to the server for verification.

Client and server now exchange ChangeCipherSpec messages, like in the Cipher Spec
Protocol of TLS 1.2, in order to state that they are now using the previously negotiated
cipher suites for exchanging messages in a secure fashion.

In order to finish the Handshake, the client and server send each other a Finished
message. This is the first message sent encrypted using the k cipher suites negotiated earlier.

OPODIS 2017



23:8 Vulnerability-Tolerant Transport Layer Security

Its purpose is for each party to receive and validate the data received in this message. If the
data is valid, client and server can now exchange messages over the communication channel.

3.2 Combining Diverse Cipher Suites
Diversity between cryptographic mechanisms can be taken in a soft sense as the use of
different mechanisms, or in a hard sense as the use of mechanisms that do not share common
vulnerabilities (e.g., because they are based on different mathematical problems). In vtTLS
we are interested in using strong diversity in order to claim that no common vulnerabilities will
appear in different mechanisms. Measuring the level of diversity is not simple, so we leverage
previous research by Carvalho on heuristics for comparing diversity among cryptographic
mechanisms [8]. Moreover, not all cryptographic mechanisms can be used together in the
context of TLS 1.2 and other security protocols. Here we consider only the combinations of
two algorithms, i.e., k = 2, for simplicity.

After comparing several hash functions, Carvalho concluded that the best three combina-
tions are the following:

SHA-1 + SHA-3: not possible in vtTLS as SHA-1 is not recommended and TLS 1.2
does not support SHA-3;
SHA-1 + Whirlpool: not possible in vtTLS as SHA-1 is not recommended and TLS 1.2
does not support Whirlpool;
SHA-2 + SHA-3: also not possible in vtTLS as TLS 1.2 does not support SHA-3.

All the remaining combinations suggested in that work cannot also be used because
TLS 1.2 does not support SHA-3. All vtTLS cipher suites use either AEAD or SHA-2
(SHA-256 or SHA-384). Having a small range of available hash functions limits the maximum
diversity factor achievable concerning hash functions. In a near future, it is expected that
a new TLS protocol version supports SHA-3 and makes possible the use of diverse hash
functions. Nevertheless, it still possible to achieve diversity by using different variants of
SHA-2: SHA-256 and SHA-384.

After comparing several public-key encryption mechanisms, Carvalho concluded that the
best four combinations are:

DSA + RSA: possible as TLS 1.2 supports both functions for authentication. However,
TLS 1.2 specific cipher suites only support DSA with elliptic curves (ECDSA);
DSA + Rabin-Williams: not possible as TLS 1.2 does not support Rabin-Williams;
RSA + ECDH: possible as TLS 1.2 supports both functions for key exchange;
RSA + ECDSA: possible as TLS 1.2 supports both functions for authentication.

Regarding authentication, although DSA + RSA is stated as the most diverse combination,
TLS 1.2 preferred cipher suites use ECDSA instead of DSA. Using elliptic curves results in a
faster computation and lower power consumption [14]. With that being said, the preferred
combination for authentication is RSA + ECDSA.

Regarding key exchange, the most diverse combination is RSA + ECDH. However, in
order to grant perfect forward secrecy, the ECDH with ephemeral keys (ECDHE) has to be
employed. Concluding, the preferred combination for key exchange is RSA + ECDHE.

The study in [8] did not present any conclusions regarding symmetric-key encryption.
However, both AES and Camellia are supported by TLS 1.2 and are considered secure. The
most diverse combination is AES256-GCM + CAMELLIA128-CBC: the origin of the two
algorithms is different, they were first published in different years, they both have semantic
security (as they both use initialization vectors) and the mode of operation is also different.
One constraint of using this combination is that there is no cipher suite that uses RSA for



A. Joaquim et. al. 23:9

key exchange, Camellia for encryption and a SHA-2 variant for MAC. Although RFC 6367
[17] describes the support for Camellia HMAC-based cipher suites, extending TLS 1.2, these
cipher suites are not supported by OpenSSL 1.0.2g. Using a cipher suite that uses Camellia,
in order to maximize diversity, implies using also SHA-1 for MAC and not using ECDHE
for key exchange nor ECDSA for authentication in that cipher suite. Concluding, using
Camellia increases diversity in encryption but reduces security in MAC, forcing the use of an
insecure algorithm. Nevertheless, diversity in encryption is still an objective to accomplish.
We decided that the best option is:

AES256-GCM + AES128: possible as TLS 1.2 supports both functions.

These functions are, in theory, the same, but employed with a different strength size and
mode of operation, they can be considered diverse, although they have an inferior degree of
diversity comparing to any of the combinations above.

Concluding, the best combination of cipher suites is arguably:

TLS_ECDHE_ECDSA_WITH_AES_ 256_GCM_SHA384 and
TLS_RSA_WITH_AES_128_CBC_SHA256

For key exchange, vtTLS will use Ephemeral ECDH (ECDHE) and RSA; for authentica-
tion, it will use Elliptic Curve DSA (ECDSA) and RSA; for encryption, it will use AES-256
with Galois/Counter mode (GCM) and AES-128 with cipher block chaining (CBC) mode;
finally, for MAC, it will use SHA-2 variants (SHA-384 and SHA-256). Using this combination
of cipher suites, the lowest diversity is with the MAC, due to the fact that TLS 1.2 does not
support SHA-3 for now.

4 Implementation

Our implementation of vtTLS was obtained by modifying OpenSSL version 1.0.2g.1. Imple-
menting a vtTLS from scratch would be a bad option as it might lead to the creation of
vulnerabilities; existing software such as OpenSSL has the advantage of being extensively
debugged, although serious vulnerabilities like Heartbleed still appear from time to time.
Furthermore, creating a new secure communication protocol, and consequently a new API,
would create adoption barriers to programmers otherwise willing to use our protocol. There-
fore, we chose to implement vtTLS based on OpenSSL, keeping the same API as far as
possible. Although being based on OpenSSL, vtTLS is not fully compatible with it due
to its diversity and redundancy features. It is noteworthy that OpenSSL is a huge code
base (438,841 lines of code in version 1.0.2g) so modifying it to support diversity has been a
considerable engineering challenge.

In order to establish a vtTLS communication channel, additional functions are required
to fulfill the requirements of vtTLS, such as loading two certificates and corresponding
private keys. These functions have a similar name of the ones belonging to the OpenSSL
API, to reduce the learning curve. The most relevant functions regarding the setup of the
channel are the functions that allow to load the second certificate and private key and allow
to check if the second private key corresponds to the second certificate.

Regarding the Handshake Protocol, we opted for sending k ServerKeyExchange and
ClientKeyExchange messages instead of sending one single ServerKeyExchange and

1 https://www.openssl.org

OPODIS 2017



23:10 Vulnerability-Tolerant Transport Layer Security

Figure 2 First four steps in the creation of a data message in vtTLS with k = 2: first encryption
and MAC.

one single ClientKeyExchange, each one with several parameters. This is due to the fact
that it makes the code easier to understand and to maintain. If k needs to be increased, it is
just needed to send an additional message instead of changing the code related to sending
and retrieving ServerKeyExchange and ClientKeyExchange messages.

The encryption and signing ordering is also important in vtTLS. Figure 2 shows the
initial steps of the creation of a data message. The figure considers k = 2, but shows only
the steps regarding the first encryption and the first signature.

Figure 3 shows the final steps of the preparation of a vtTLS message. We opted for
maintaining the creation of the MAC prior to the encryption. Using this approach, both
message and MACs are encrypted with both ciphers. In this case there is no chance that
both MACs are identical, if the hash function used is secure (SHA-2 is considered secure).

The whole sequence is the following:
Apply the first MAC to the plaintext message;
Encrypt the original message and its MAC with the first encryption function;
Apply the second MAC to the first ciphertext;
Encrypt the first ciphertext and its MAC with the second encryption function.

In relation to the Record Protocol, signing and encrypting k times has a cost in terms of
message size. Figures 2 and 3 show also the expected increase of the message size due to the
use of a second MAC and a second encryption function (for k = 2). For TLS 1.2 (OpenSSL),
the expected size of a message is first_len = eivlen + msg_length + padding + mac_size,
where eivlen is the size of the initialization vector (IV), msg_length the original message size,
padding the size of the padding in case a block cipher is used, and mac_size the size of the
MAC (Figure 2). For vtTLS, the additional size of the message is eivlen_sec + first_len +



A. Joaquim et. al. 23:11

Figure 3 Remaining three steps in the creation of a data message in vtTLS with k = 2: second
encryption and MAC.

padding_sec + mac_size_sec, where eivlen_sec is the size of the IV associated with the
second cipher and mac_size_sec the size of the second MAC.

In the best case, the number of packets is the same for OpenSSL and vtTLS. In the
worst case, one additional packet may be sent if the encryption function requires fixed block
size and the maximum size of the packet, after the second MAC and the second encryption,
is exceeded by, at least, one byte. In this case, an additional full packet is needed due to the
constraint of having fixed block size.

5 Evaluation

We evaluated vtTLS in terms of two aspects: performance and cost. We considered OpenSSL
1.0.2g as the baseline, due to the fact that vtTLS is based on that software and version.

Diversity has performance costs and creates overhead in the communication. Every mes-
sage sent needs to be ciphered and signed k − 1 times more than using a TLS implementation
and every message received needs to be deciphered and verified also k − 1 times more. In the
worst case, users should experience a connection k times slower than using OpenSSL. We
considered k = 2 in all experiments, as this is the value we expect to be used in practice
(we expect vulnerabilities to appear rarely, so the ability to tolerate one vulnerability per
mechanism sufficient). With this experimental evaluation, we want to be able to state if
vtTLS is a viable mechanism for daily usage, i.e., if the penalty for replacing TLS channels
by vtTLS channels is not prohibitive.

In order to perform these tests, we used two virtual machines in the same Intel Core i7
computer with 8 GB RAM. The virtual machines run Debian 8 and openSUSE 12 playing
the roles of server and client, respectively. All the tests were done in the same controlled
environment and same geographic location.

5.1 Performance
In order to evaluate the performance of vtTLS, we executed several tests. The main
goal was to understand if the overhead of vtTLS is lower, equal, or bigger than k

times in relation to OpenSSL. We configured vtTLS to use the following cipher suites:

OPODIS 2017



23:12 Vulnerability-Tolerant Transport Layer Security

Average (ms) Standard deviation Confidence interval (95%)
vtTLS 3.909 0.963 ±0.180
OpenSSL 2.345 0.933 ±0.174
Table 1 Handshake time comparison

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 MB 10 MB 50 MB 100 MB 500 MB 1 GB

Ti
m

e 
(m

ill
is

ec
o

n
d

s)

Message Size

vtTLS Send vtTLS Receive OpenSSL Send OpenSSL Receive

Figure 4 Time to send and receive a message with vtTLS and OpenSSL.

TLS_RSA_WITH_AES_256_GCM_SHA384 and TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384. The suite used
with OpenSSL was the latter.

To evaluate the performance of the handshake, we executed 100 times the Handshake
Protocol of both vtTLS and OpenSSL. In average, the vtTLS handshake took 3.909
milliseconds to conclude and the OpenSSL handshake 2.345 milliseconds. Therefore, the
vtTLS handshake is only 1.67 slower than the OpenSSL handshake, which is better than
the worst case. Table 1 provides more details.

After evaluating the Handshake, we performed data communication tests to assess the
overhead generated by the diversity and redundancy of mechanisms. As the Handshake, the
communication is expected to be at most k = 2 times slower than a TLS communication.
For this test, we considered a sample of 100 messages sent and received with vtTLS and
100 messages sent and received with OpenSSL.

Figure 4 shows the comparison between the time it takes to send and receive a message
with vtTLS and OpenSSL/TLS. Tables 2 and 3 show more details.

The measurements concern the time each channel needs to perform the local operations

vtTLS Send OpenSSL Send
Average St. dev. Conf. I. (95%) Average St. dev. Conf. I. (95%)

1 MB 12.80 3.324 ±0.652 11.28 3.985 ±0.781
10 MB 105.89 17.573 ±3.444 76.61 10.413 ±2.041
50 MB 534.55 149.697 ±29.340 435.01 212.065 ±41.564
100 MB 1004.30 194.701 ±38.161 757.02 206.709 ±40.514
500 MB 4579.40 727.519 ±142.591 2834.18 217.378 ±42.605
1 GB 8289.78 757.167 ±148.402 5851.08 480.423 ±94.161
Table 2 Time to send a message with vtTLS and OpenSSL.



A. Joaquim et. al. 23:13

vtTLS Receive OpenSSL Receive
Average St. dev. Conf. I. (95%) Average St. dev. Conf. I.(95%)

1 MB 14.70 3.324 ±0.652 13.48 3.985 ±0.781
10 MB 113.41 17.573 ±3.444 80.42 10.413 ±2.041
50 MB 549.61 149.697 ±29.340 443.10 212.065 ±41.564
100 MB 1004.54 194.701 ±38.161 757.13 206.709 ±40.514
500 MB 4580.13 727.519 ±142.591 2834.37 217.378 ±42.605
1 GB 8227 757.167 ±148.402 5850.96 480.423 ±94.161
Table 3 Time to receive a message with vtTLS and OpenSSL.

Message
size

vtTLS OpenSSL Overhead (diff.)
Encrypted
message size

Average
#packs

Encrypted
message size

Average
#packs Packets Message

size
100,000 102,771 6.3 102,603 5.3 1 168

1,000,000 1,029,054 38.3 1,025,856 37.6 0.7 3,198
100,000,000 105,362,077.10 2,830.2 104,956,194.50 2,553.5 276.7 405,883
Table 4 Message sizes in vtTLS and OpenSSL.

in order to send the message (including encryption, signing, second encryption and second
signing). These values do not include the time taken by the message to reach its destination
through the network. The timer is started before the call to SSL_write and stopped after the
function returns. As for the results regarding the reception of messages, the measured time is
the time taken to perform the operations necessary to retrieve the message (including second
decrypting and second verifying), i.e. the time of execution of SSL_read. This methodology
is only possible due to the fact that SSL_write is a synchronous call. It only returns after
writing the message to the buffer. And also due to the fact that SSL_read is also synchronous
as it only returns when the message is read.

In average, a message sent through a vtTLS channel takes 22.88% longer than a message
sent with OpenSSL. For example, a 50 MB message takes an average of 534.55 ms to be sent
with vtTLS. With OpenSSL, the same message takes 435.01 ms to be sent. The overhead
generated by using diverse encryption and MAC mechanisms exists, as expected, but it is
much smaller than the expected worst case.

In order to validate the premise that the message increase is the same considering the same
message size, we measured the increase in the message size comparing once again vtTLS
and OpenSSL channels. A 100 KB plaintext message converts into a ciphertext of 102,771
bytes with vtTLS. With OpenSSL, the same message corresponds to a ciphertext of 102,603
bytes. Concluding, sending a 100 KB message through vtTLS costs an additional 168 bytes.
Therefore, as stated before, the number of extra bytes sent is not directly proportional to
the message size.

We also evaluated the message size of the ciphertext of a 1 MB plaintext message. A 1
MB plaintext message corresponds to a ciphertext of 1,029,054 bytes using vtTLS, while
using OpenSSL the same message has 1,025,856 bytes. Concluding, sending 1 MB through
a vtTLS channel costs an additional 3,198 bytes than using a OpenSSL channel. Table 4
shows all the results obtained and the comparison between the message sizes.

OPODIS 2017



23:14 Vulnerability-Tolerant Transport Layer Security

5.2 Cost
Similarly to TLS, vtTLS uses certificates that require some management effort and costs.
A server using OpenSSL/ TLS to protect the communication with clients needs only one
certificate. If the administrator decides to use vtTLS instead of TLS, at least 2 certificates
are needed for maximum diversity, and at most k certificates. Although certificates are not
expensive, they represent a cost. vtTLS can be used with just one certificate, but this
reduces the diversity and, consequently, the potential security benefit.

Regarding management, there is the need to manage two certificates instead of one. We
believe this does not represent a substantial increase in management effort. If it is decided to
use vtTLS with a diversity factor k > 2, the management costs of maintaining k certificates
might represent an significant increase of management costs.

6 Conclusions

vtTLS is a diverse and redundant vulnerability-tolerant secure communication protocol
designed for communication on the Internet. It aims at increasing security using diverse
cipher suites to tolerate vulnerabilities in the encryption mechanisms used in the commu-
nication channel. In order to evaluate our solution, we compared it to an OpenSSL 1.0.2g
communication channel. While expected to be k = 2 times slower than an OpenSSL channel,
the evaluation showed that using diversity and redundancy of cryptographic mechanisms in
vtTLS does not generate such a high overhead. vtTLS takes, in average, 22.88% longer to
send a message than TLS/OpenSSL, but considering the increase in security, this overhead
is acceptable. Overall, considering the additional costs of having an extra certificate, the
time increase, and potential management costs, vtTLS provides an interesting trade-off for
a set of critical applications.

Acknowledgements This work was supported by the European Commission through project
H2020-653884 (SafeCloud) and by national funds through Fundação para a Ciência e a
Tecnologia (FCT) with reference UID/CEC/50021/2013 (INESC-ID)

References
1 D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. Halderman, N. Heninger,

D. Springall, E. Thomé, L. Valenta, B. Vandersloot, E. Wustrow, and S. Paul. Imperfect
forward secrecy: How Diffie-Hellman fails in practice. In Proceedings of the 22nd ACM
Conference on Computer and Communications Security, pages 5–1, October 2015.

2 M. R. Albrecht, J. P. Degabriele, T. B. Hansen, and K. G. Paterson. A surfeit of SSH
cipher suites. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1480–1491, 2016.

3 A. Avižienis and L. Chen. On the implementation of N-version programming for software
fault tolerance during execution. In Proceedings of the IEEE International Computer Soft-
ware and Applications Conference, pages 149–155, 1977.

4 L. Bilge and T. Dumitras. Before we knew it: an empirical study of zero-day attacks in
the real world. In Proceedings of the ACM Conference on Computer and Communications
Security, pages 833–844, 2012.

5 A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique cryptanalysis of the full
AES. In Proceedings of the 17th International Conference on the Theory and Application
of Cryptology and Information Security, volume LNCS 7073, pages 344–371, 2011.



A. Joaquim et. al. 23:15

6 M. Carvalho, J. DeMott, R. Ford, and D. Wheeler. Heartbleed 101. IEEE Security &
Privacy, 12(4):63–67, 2014.

7 M. Carvalho and R. Ford. Moving-target defenses for computer networks. IEEE Security
and Privacy, 12(2):73–76, 2014.

8 R. Carvalho. Authentication security through diversity and redundancy for cloud comput-
ing. Master’s thesis, Instituto Superior Técnico, Lisbon, Portugal, 2014.

9 T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol, Version 1.2
(RFC 5246), 2008.

10 ENISA. Algorithms, key size and parameters report – 2014. nov 2014.
11 D. Evans, A. Nguyen-Tuong, and J. Knight. Effectiveness of moving target defenses. In

Moving Target Defense, volume 54, pages 29–48. Springer, 2011.
12 N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and D. Whiting. Im-

proved cryptanalysis of Rijndael. In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen,
and Bruce Schneier, editors, Proceedings of Fast Software Encryption, volume LNCS 1978,
pages 213–230. Springer, 2001.

13 M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro. OS diversity for intrusion
tolerance: Myth or reality? In Proceedings of the IEEE/IFIP 41st International Conference
on Dependable Systems and Networks, pages 383 –394, 27–30 June 2011.

14 V. Gupta, S. Gupta, S. Chang, and D. Stebila. Performance analysis of elliptic curve
cryptography for SSL. In Proceedings of the 1st ACM Workshop on Wireless Security,
pages 87–94, 2002.

15 A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz. Profile-guided automated
software diversity. In Proceedings of the 2013 IEEE/ACM International Symposium on
Code Generation and Optimization, pages 1–11, 2013.

16 A. Joaquim, M. L. Pardal, and M. Correia. vtTLS: A vulnerability-tolerant communication
protocol. In Proceedings of the 15th IEEE International Symposium on Network Computing
and Applications, pages 212–215, 2016.

17 S. Kanno and M. Kanda. Addition of the Camellia cipher suites to transport layer security
(TLS) (RFC 6367), 2011.

18 S. Kent and K. Seo. Security architecture for the internet protocol (RFC 4301), 2005.
19 T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thomé, J. Bos, P. Gaudry, A. Kruppa,

P. Montgomery, D. Osvik, H. Te Riele, A. Timofeev, and P. Zimmermann. Factorization
of a 768-bit RSA modulus. In Proceedings of the 30th Annual Conference on Advances in
Cryptology, volume LNCS 6223, pages 333–350, 2010.

20 P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. SoK: Automated software diversity.
In Proceedings of the 2014 IEEE Symposium on Security and Privacy, pages 276–291, 2014.

21 B. Littlewood and L. Strigini. Redundancy and diversity in security. In Computer Security
– ESORICS 2004, 9th European Symposium on Research Computer Security, pages 227–246,
2004.

22 A. Menezes, P. van Oorschot, and S. Vanstone. Hash functions and data integrity. In
Handbook of Applied Cryptography, chapter 9. CRC Press, 1996.

23 A. Menezes, P. van Oorschot, and S. Vanstone. Public-key encryption. In Handbook of
Applied Cryptography, chapter 8. CRC Press, 1996.

24 R. C. Merkle. Secrecy, Authentication, and Public Key Systems. PhD thesis, Stanford, CA,
USA, 1979.

25 V. Rijmen and J. Daemen. Advanced encryption standard. U.S. National Institute of
Standards and Technology (NIST), 2009:8–12, 2001.

26 T. Roeder and F. B. Schneider. Proactive obfuscation. ACM Transactions on Computer
Systems, 28:4:1–4:54, July 2010.

OPODIS 2017



23:16 Vulnerability-Tolerant Transport Layer Security

27 R. Seggelmann, M. Tuexen, and M. Williams. Transport layer security (TLS) and datagram
transport layer security (DTLS) heartbeat extension (RFC 6520), 2012.

28 Y. Sheffer, R. Holz, and P. Saint-Andre. Summarizing Known Attacks on Transport Layer
Security (TLS) and Datagram TLS (DTLS) (RFC 7457), 2015.

29 P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM Journal on Scientific and Statistical Computing, 26:1484, 1995.

30 P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo. Highly available
intrusion-tolerant services with proactive-reactive recovery. IEEE Transactions on Parallel
and Distributed Systems, 21(4):452–465, April 2010.

31 M. Stevens. Attacks on Hash Functions and Applications. PhD thesis, Mathematical
Institute, Leiden University, 2012.

32 M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov. The first collision for
full SHA-1. IACR Cryptology ePrint Archive, 2017:190, 2017.

33 M. Stevens, P. Karpman, and T. Peyrin. Freestart collision on full SHA-1. Cryptology
ePrint Archive, Report 2015/967, 2015.

34 P. Verissimo, N. F. Neves, and M. Correia. Intrusion-tolerant architectures: Concepts and
design. In R. Lemos, C. Gacek, and A. Romanovsky, editors, Architecting Dependable
Systems, volume 2677, pages 3–36. 2003.

35 J. Viega, M. Messier, and P. Chandra. Network Security with OpenSSL: Cryptography for
Secure Communications. O’Reilly, 2002.

36 X. Wang, Y. Yin, and H. Yu. Finding collisions in the full SHA-1. In Proceedings of the 25th
Annual International Conference on Advances in Cryptology, pages 17–36. Springer-Verlag,
2005.

37 J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime randomization for security. In
Proceedings of the 22nd International Symposium on Reliable Distributed Systems, pages
260–269, 2003.

38 T. Ylonen and C. Lonvick. The secure shell (SSH) protocol architecture (RFC 4251), 2006.


	Introduction
	Background and Related Work
	Diversity
	TLS Protocol
	TLS Vulnerabilities
	Vulnerabilities in Cryptographic Schemes
	Public-key Cryptography
	Symmetric Encryption
	Hash Functions


	Vulnerability-Tolerant TLS
	Protocol Specification
	Combining Diverse Cipher Suites

	Implementation
	Evaluation
	Performance
	Cost

	Conclusions

