
Equipping WAP with WEAPONS to Detect Vulnerabilities
Practical Experience Report

Ibéria Medeiros
LaSIGE, Faculdade de Ciências

Universidade de Lisboa – Portugal
ibemed@gmail.com

Nuno Neves
LaSIGE, Faculdade de Ciências

Universidade de Lisboa – Portugal
nuno@di.fc.ul.pt

Miguel Correia
INESC-ID, Instituto Superior Técnico

Universidade de Lisboa – Portugal
miguel.p.correia@tecnico.ulisboa.pt

Abstract—Although security starts to be taken into account
during software development, the tendency for source code to
contain vulnerabilities persists. Open source static analysis tools
provide a sensible approach to mitigate this problem. However,
these tools are programmed to detect a specific set of vulnerabili-
ties and they are often difficult to extend to detect new ones. WAP
is a recent popular open source tool that detects vulnerabilities
in the source code of web applications written in PHP. The paper
addresses the difficulty of extending these tools by proposing a
modular and extensible version of the WAP tool, equipping it with
“weapons” to detect (and correct) new vulnerability classes. The
new version of the tool was evaluated with seven new vulnerability
classes using web applications and plugins of the widely-adopted
WordPress content management system. The experimental results
show that this extensibility allows WAP to find many new (zero-
day) vulnerabilities.

Keywords—Web applications; software security; input validation
vulnerabilities; source code analysis; false positives; automatic
protection; data mining; modularity; security.

I. INTRODUCTION

Web applications are part of our daily life. Although
security starts to be taken into account during web application
development, the tendency for source code to contain vulnera-
bilities persists. The input validation vulnerability category is
arguably the most relevant. This is comproved by the fact that
code injection vulnerabilities such as SQL injection (SQLI)
and cross-site scripting (XSS) remain at the center of this ten-
dency, as reported by OWASP in its top 10 [25] and confirmed
by the recent Ashley Madison fiasco [4]. Nevertheless, new
technologies are becoming widely deployed as part of web
applications. An example are NoSQL databases, particularly
convenient to store “big data”. With new technologies come
also new attack vectors, with 600 TB of data recently stolen
from the most used [7] NoSQL database, MongoDB [23].

Static analysis is a technique often used by companies to
mitigate the problem of software vulnerabilities [24]. Static
analysis tools search for vulnerabilities in source code, helping
programmers to fix the code. However, these tools are pro-
grammed to detect specific sets of flaws, often SQLI and XSS
[10], [15], occasionally a few other [11], [6], and are typically
hard to extend to search for new classes of vulnerabilities.

WAP [2] is a recent open source static analysis tool
that detects vulnerabilities of eight classes in PHP code, the
language most used in web applications [9]. It is apparently
popular, as sourceforge shows more than 6700 downloads.
The tool uses data mining to predict false positives (false
vulnerability alarms) and adds fixes (small pieces of PHP code)

to remove vulnerabilities. Nevertheless, by analysing its source
code, it is possible to understand that WAP is hard to extend
for new classes of vulnerabilities.

The paper addresses the difficulty of extending these tools
by proposing a modular and extensible version of the WAP
tool, equipping it with weapons (WAP extensions) to detect
and correct new vulnerability classes. This involves restructur-
ing the tool in: (1) modules for the vulnerability classes that it
already detects; and, more importantly, (2) a new module to be
configured by the user to detect and correct new vulnerability
classes without additional programming. This latter module
takes as input data about the new vulnerability class: entry
points (input sources), sensitive sinks (functions exploited by
the attack), and sanitization functions (functions that neutralize
malicious input). Then it automatically generates a weapon
composed of: a detector to search for vulnerabilities, symptoms
to predict false positives, and a fix to correct vulnerable code.
We used this scheme to enhance the new version of WAP
with the ability to detect 7 new classes of vulnerabilities:
session fixation, header injection (or HTTP response splitting),
email injection, comment spamming injection, LDAP injec-
tion, XPath injection, and NoSQL injection.

The paper also demonstrates that this modularity and
extensibility can be used to create weapons that deal with non-
native entry points, sanitization functions, and sensitive sinks.
We demonstrate this point by creating a weapon to detect SQLI
vulnerabilities in WordPress [27], the most popular content
management system (CMS) [9].

The paper presents a second improvement to WAP. It
improves the false positive prediction to make it more precise
and accurate. We propose to increase the granularity of the
analysis, adding more symptoms to the original set and a new,
larger, data set. A re-evaluation of machine learning classifiers
was performed to select the new top 3 classifiers.

The version of WAP presented in the paper is the first static
analysis tool configurable to detect and correct new classes
of vulnerabilities without programming. To the best of our
knowledge, it is also the first static analysis tool that detects
NoSQL injection and comment spamming injection. The latter
is currently the most exploited vulnerability in applications
based on WordPress [9].

We evaluated the tool experimentally with 54 web appli-
cation packages and 115 WordPress plugins, adding up to
more than 8,000 files and 2 million lines of code. The tool
discovered respectively 366 and 153 zero-day vulnerabilities,
i.e., 519 previously-unknown vulnerabilities, presently being

reported to their developers. In our experiments, our modular
and extensible tool has shown a much higher ability to detect
zero-day vulnerabilities than the original version.

The contributions of the paper are: (1) a modular and
extensible static analysis tool that allows creating weapons to
detect and correct new vulnerability classes, without requiring
programming; (2) a new version of the WAP tool able to detect
vulnerabilities of 15 classes, instead of the original 8 classes.

II. THE ORIGINAL WAP TOOL

This section presents briefly the original WAP tool [2],
[12]. WAP detects input validation vulnerabilities in PHP web
applications. The tool combines source code static analysis
(taint analysis) to detect candidate vulnerabilities and data
mining to predict if the flagged candidate vulnerabilities are
false positives. It is also able to correct source code by inserting
fixes. The version currently available (v2.1) handles eight
vulnerability classes: SQLI, XSS (reflected and stored), remote
file inclusion (RFI), local file inclusion (LFI), directory or path
traversal (DT/PT), OS command injection (OSCI), source code
disclosure (SCD), and PHP command injection (PHPCI). WAP
is now a OWASP project [1].

The tool, developed in Java, is composed of 3 modules
(Fig. 1): (1) Code analyzer: parses the source code, gen-
erates an abstract syntax tree (AST), does taint analysis,
and generates trees describing candidate vulnerable data-flow
paths (from an entry point to a sensitive sink). The code
analyzer may return false positives as it may not recognize
that certain code structures effectively sanitize data flows.
(2) False positive predictor: obtains symptoms (source code
features) from the candidate vulnerable data-flow paths and
uses a combination of 3 classifiers to make the prediction
(Logistic Regression, Random Tree, Support Vector Machine).
(3) Code corrector: identifies the fixes to add and the places
where they have to be inserted; then modifies the source code
with the fixes.

 vulnerabilities
fixed

Code
analyzer

False positives
predictor

Code
corrector

trained
data sets

entry points
sensitive sinks

sanit. funcs

PHP
source code

fixes

 false
positives

 vulnerabilities
fixed

detecting
candidate

vulnerabilities

predicting
false positives

correcting
source code

trained
data sets

entry points
sensitive sinks

sanit. funcs

PHP
source code

fixes

 false
positives

Fig. 1: Overview of the WAP tool modules and data flow.

III. RESTRUCTURING WAP

We propose to extend the WAP tool to be configurable to
handle new classes of input validation vulnerabilities, so we
restructure the tool making it modular. We explain this process
considering WAP’s three original modules: code analyzer, false
positive predictor, and code corrector.

A. Code analyzer

The code that does taint analysis uses three pieces of data
about each class of vulnerabilities: entry points, sensitive sinks,
and sanitization functions. Data coming from entry points
is considered tainted (i.e., non-trustworthy). This component
tracks how this data flows through variables and functions,
verifying if it reaches a sensitive sink. Sanitization functions
block the flow of tainted data. Therefore, the taint analyzer is
coded to recognize the set of functions for each vulnerability
class and specific characteristics on this class (if they exist).

Restructuring the code analyzer implies, on the one hand, to
reorganize the taint analyzer in sub-modules and, on the other
hand, to create a generic detection sub-module configurable by
the user for new vulnerability classes. The AST has to be left
unmodified as it is input to all the sub-modules.

PHP
source code

AST

parsing
code

candidate
vulnerabilities

...

RCE & file
injection

sub-module

client-side
injection

sub-module

query
injection

sub-module

ep ss san ep ss san ep ss san

ta
in

t
an

al
yz

er

new vuln.
detector

sub-module

ep ss san

vulnerability
detector

generator

Fig. 2: Reorganization of WAP’s code analyzis module.

Fig. 2 shows the restructured code analyzer. At the top the
figure shows that PHP code is converted to an AST that is
common input to all sub-modules. The sub-modules are: (1)
RCE & file injection, dealing with vulnerabilities involving
file system, files, and URLs leading to remote code execution
(RCE). These vulnerabilities are OSCI, PHPCI, RFI, LFI, DT,
and SCD. (2) client-side injection, handling vulnerabilities
related with injection of client-side code (e.g., JavaScript
code), namely reflected and stored XSS. (3) query injection,
for vulnerabilities associated to queries, i.e., SQLI. (4) vulner-
ability detector generator, the generic detector configurable by
the user for new vulnerabilities. (5) new vulnerability detector
sub-module, the detectors generated by (4), one for each new
vulnerability class. Each sub-module is fed with entry points
(ep), sensitive sinks (ss), and sanitization (san) functions.
These sets of data are now stored in external files, allowing
the inclusion of new items without recompiling the tool.

WAP’s parser was implemented using ANTLR [19]. This
framework provides tree walkers to navigate through ASTs.
The new vulnerability detector sub-module (sub-module (5))
leverages a tree walker to track data flow and understand if
tainted data reaches a sensitive sink.

WAP (original) WAP (new version)
attribute symptom symptom

validation
Type checking is string is double

is int is integer
is float is long
is numeric is real
ctype digit is scalar

ctype alpha
ctype alnum
intval

Entry point is set isset is null
empty

Pattern control preg match preg match all
ereg
eregi
strnatcmp
strcmp
strncmp
strncasecmp
strcasecmp

White list user functions1

Black list user functions2

Error and exit error
exit

string manipulation
Extract substring substr preg split

str split
explode
split
spliti

String concatenation concatenation operator implode
join

Add char addchar str pad
Replace string substr replace preg filter

str replace ereg replace
preg replace eregi replace

str ireplace
str shuffle
chunk split

Remove whitespaces trim rrim
ltrim

SQL query manipulation
Complex query ComplexSQL
Numeric entry point IsNum
FROM clause FROM
Aggregated function AVG

COUNT
SUM
MAX
MIN

classification
Class false positive (FP)

real vulnerability (RV)
1 user functions containing white lists to validate user inputs
2 user functions containing black lists to block user inputs

TABLE I: Attributes and symptoms of the original WAP and the
new ones. In the new WAP all symptoms are also attributes.

B. False positive predictor

The 3 classifiers of the original WAP use 15 attributes to
classify the vulnerabilities found by the taint analyzer as true
or false. These attributes represent 24 symptoms that may be
present in source code, divided in three categories: validation,
string manipulation and SQL query manipulation. Table I
shows these attributes and symptoms in the two left-hand
columns. The symptoms are PHP functions that manipulate
entry points or variables. The attributes represent symptoms
of the same kind, e.g., the type checking attribute represent
the symptoms that check the data type of variables. Therefore,
an attribute represents several symptoms. A special attribute is
used to indicate the class of each instance (the 16th, last row).

We propose to improve this component in two directions:
(1) by adding more symptoms to the original set used in WAP
(static symptoms), and (2) allowing the user to define new
symptoms (dynamic symptoms).

1) Static symptoms: By investigating the symptoms asso-
ciated with false positives we have understood that there were
several relevant symptoms not considered originally in WAP.
These symptoms are listed in the right-hand column of Table
I. Moreover, we increased the granularity of the analysis by
specifying that all symptoms are attributes (both old and new,
2nd and 3rd columns). Therefore, instead of 16 attributes we
now have 61.

Modifying the attributes requires training again the clas-
sifiers and, as the number of attributes is much higher, we
need also a much larger number of instances (samples of
code annotated as false positive or not). The original WAP
was trained with a data set of 76 instances: 32 annotated as
false positives and 44 as real vulnerabilities. Each instance
had 16 attributes set to 1 or 0, indicating the presence or not
of symptoms for the attributes, and an attribute saying if the
instance is a false positive or not. We increased the number of
instances to 256, each one with 61 attributes. The instances are
evenly divided in false positives and vulnerable (balanced data
set). To create the data set we used WAP configured to output
the candidate vulnerabilities, and we ran it with 29 open source
PHP web applications. Then, each candidate vulnerability was
processed manually to collect the attributes and to classify it as
being a false positive or not. Finally, noise was eliminated from
the data set by removing duplicated and ambiguous instances.

To perform the data mining process we used the WEKA
tool [26] with the original classifiers and induction rules. We
also want a top 3 of classifiers, as originally. Our goals are
that classifiers: (1) predict as many false positives correctly
as possible; (2) have a fallout as low as possible (wrong
classifications of vulnerabilities as false positives), avoiding
to miss vulnerabilities found by the taint analyzer.

Table II depicts the evaluation of the 3 best classifiers
(we omit the rest for lack of space). The first 7 metrics were
adopted from [12]; the last 2 are new. The last column shows
the formulas to calculate each metric, based in values extracted
from the confusion matrix (Table III, last 2 columns).

Metrics SVM Logistic Random Formula(%) Regression Forest
tpp 94.5% 93.0% 90.6% tpp = recall = tp / (tp + fn)
pfp 4.7% 4.7% 2.3% pfp = fallout = fp / (tn + fp)
prfp 95.3% 95.2% 97.5% prfp = pr positive = tp / (tp + fp)
pd 95.3% 95.3% 97.7% pd = specificity = tn / (tn + fp)
ppd 94.6% 93.1% 91.2% ppd = inverse pr = tn / (tn + fn)
acc 94.9% 94.1% 94.1% accuracy = (tp + tn) / N
pr 94.9% 94.2% 94.4% precision = (prfp + ppd) / 2
inform 89.8% 88.3% 88.3% informedness = tpp + pd -1 = tpp - pfp
jacc 90.3% 88.8% 88.5% jaccard = tp / (tp + fn + fp)

TABLE II: Evaluation of the machine learning models applied to
the data set.

Classifiers are usually selected based on accuracy and
precision, but in this case the three classifiers have very similar
values in both metrics: between 94% and 95%. Moreover, the
compliance to goal (1) is measured by tpp. In terms of this
metric, Support Vector Machine (SVM) had the best results

Observed
SVM Logistic Regression Random Forest Classifier

Predicted Yes (FP) No (not FP) Yes (FP) No (not FP) Yes (FP) No (not FP) Yes No
Yes (FP) 121 6 119 6 116 3 tp fp
No (not FP) 7 122 9 122 12 125 fn tn

TABLE III: Confusion matrix of the top 3 classifiers and confusion
matrix notation (last two columns).

and Logistic Regression (LR) the second best. In terms of goal
(2), Random Forest (RF) had the best fallout rate (pfp). The
inform metric expresses how the classifications made by the
classifier are close to the correct (real) classifications, whereas
jacc measures the classifications in the false positive class,
taking into account false positives and negatives [20]. For
inform, we combine the best values of tpp and pfp, i.e., the tpp
from SVM and the pfp from RF, resulting in 92%, while for
jacc we use the correct and misclassifications of all classifiers,
resulting in 92%. These measures confirm our choice of the
top 3 classifiers. These classifiers are the same as those used
in the original WAP, except RF that substitutes Random Tree.

The confusion matrix of these classifiers is presented in
Table III. SVM and LR classified incorrectly a few instances,
and RF classified 3 real vulnerabilities as being false positives.
Notice that this misclassification is represented as fp in the
confusion matrix, representing the instances belonging to class
No that were classified in class Yes. However, in the context
of vulnerability detection this represents false negatives, i.e.,
vulnerabilities that were not detected.

2) Dynamic symptoms: We use the term dynamic symp-
toms to designate symptoms defined by the user that configures
the tool for new vulnerabilities, whereas static symptoms are
those that come with the tool. For every dynamic symptom
the user has to provide a category and a type. For example, if
the user develops a function val int to validate integer inputs
(instead of is int) he has to provide the information that the
function belongs to the validation category and that it has an
effect similar to the static symptom (function) is int. Based on
this information, the tool understands how to handle function
val int when predicting false positives.

Fig. 3 presents the reorganization of the false positive
predictor. When a candidate vulnerability is processed by this
module: first the static and dynamic symptoms are collected
from the source code; then a vector of 61 attributes is created
using the map from static symptoms to attributes (stored into
the tool) and the map of dynamic symptoms to attributes (cre-
ated dynamically); then the vector is classified using machine
learning classifiers; finally, in case of a real vulnerability, it is
sent to the code corrector module to be fixed.

C. Code corrector

When a vulnerability is found, the code corrector inserts
a fix that does sanitization or validation of the data flow. To
make WAP modular we created two sub-modules: (1) code
fixing sub-module, which receives the vulnerability class and
the code to be fixed and inserts the fix; (2) fix creation that uses
information and constraints provided by the user to generate
a new fix for a new class of vulnerabilities. The first does
essentially what the original version of WAP already did so
we focus on (2).

collecting
symptoms

static
symptoms

dynamic
symptoms

creating
attributes

vector mapping
dynam. sympt.

to attributes

attributes

map of static
symptoms to

attributes

classifying
attributes

vector
data set

Is a
FP

justifying
false positives

Y N
send to
code

corrector

 false
positives

candidate
vulnerabilities

...

Fig. 3: Reorganization of the false positives predictor module.

We propose three fix templates to generate automatically
fixes: PHP sanitization function, user sanitization, and user
validation. The one that is used depends on the information
provided by the user. The PHP sanitization function template
is applied when the user specifies the PHP sanitization function
used to sanitize data and the sensitive sink associated to this
functions, for a given vulnerability. The sanitization function is
used as fix. The user sanitization template is chosen if the user
indicates the malicious characters that may be used to exploit
the vulnerability and a character that can be used to neutralize
them (e.g., the backslash). The user validation template is used
if the user only specifies the set of malicious characters used
to exploit the vulnerability. In that case the fix checks the
presence of these characters, issuing a message in case there
is a match. Fixes are inserted in the line of the sensitive sink,
as in the original WAP [12].

D. Weapons

A weapon is a WAP extension composed by a detector, a
fix and, optionally, a set of dynamic symptoms. To generate
weapons we developed a weapon generator, external to WAP.
The data needed to create a weapon is: (1) for the detector, the
sanitization and sensitive sinks functions, plus additional entry
points if they exist; (2) for the fix, data for the fix templates
(Section III-C); (3) dynamic symptoms, in case the user has
white/black lists of functions, or functions that do not belong
to the static symptoms list (in this case, the correspondence
between dynamic and static symptoms is required).

To generate a weapon, the weapon generator uses the
vulnerability detector generator (see Section III-A) that it
configures with (1), generating a new detector with the ss, san
and ep files containing the data provided by the user. Next,
it configures the selected fix template with (2), generating a
new fix. Then, it creates a file with (3). The last step is to
put together the three parts, linking them to WAP. Detection
is activated using a command line flag also provided by the
user (e.g., -nosqli).

When the weapon is activated, WAP parses the code,
generating an AST, next the detector navigates under the AST
using the data stored in its files. The candidates vulnerabilities
found by the detector are processed by the false positives

predictor using the symptoms defined in WAP and contained in
the weapon, and the real vulnerabilities are fixed using the code
fixing module (see Section III-C) with the fix of the weapon.

E. Effort to modify WAP

Modifying WAP involved an effort with three facets: (1)
making the AST independent of the navigation made by the
detectors (tree walkers); (2) restructuring the code to create the
three sub-modules for the vulnerabilities originally considered
(Section III-A), to integrate the dynamic symptoms (Section
III-B), and to make the code corrector able to receive new
fixes (Section III-C); (3) coding the weapon generator module
(Section III-D). From the three facets, (3) was the one that
required more effort. We had to build a new java package
to create weapons (new vulnerability detector sub-module),
a frontend for the user to configure the weapon generator,
templates to create automatically fixes, and to integrate the
weapon in WAP. When the weapon generator is executed it
creates a new java package and compiles it, building a jar to
be integrated with the WAP tool.

IV. EXTENDING WAP WITH NEW VULNERABILITIES

This section presents the seven new vulnerability classes
with which we extended WAP, as well as how this extension
was done. The section also presents the extension to detect
SQLI in WordPress plugins that uses WordPress functions as
entry points, sanitization functions, and sensitive sinks. To
demonstrate how we can take advantage of the modularity we
created in WAP, we opted by extending it in two different
ways: reusing the sub-modules presented in Section III-A
(Section IV-B) and with weapons (Section IV-C). However,
a normal user would probably use the second form.

A. New vulnerabilities

We equiped the tool to detect the following seven vulner-
abilities: LDAP injection (LDAPI), XPath injection (XPathI),
NoSQL injection (NoSQLI), comment spamming (CS), header
injection or HTTP response splitting (HI), email injection (EI),
and session fixation (SF). With the exception of SF, all of
them are input validation vulnerabilities, meaning that they
are created by lack of sanitization or validation of user inputs
before they reach a sensitive sink.

The first three vulnerabilities are associated to the con-
struction of queries or filters that are executed by some kind
of engine, e.g., a database management system. They behave
similarly to SQLI, i.e., if a query is built with unsanitized user
inputs containing malicious characters, the query executed is
a modification of the original one [21], [17].

CS has the goal of manipulating the ranking of spammers’
web sites, making them appear at the top of search engines’
results. Web applications that allow the users to submit con-
tents with hyperlinks are the potential victims of the attack.
Attackers inject comments, for example, containing links to
their own web site [8], [9]. To avoid CS, applications have to
check if the content of posts contains hyperlinks (URLs).

Header injection or HTTP response splitting (HI) allows
an attacker to manipulate the HTTP response, breaking the
normal response using the \n and \r characters. This allows

the attacker to inject malicious code (e.g., JavaScript) in a new
header line or even a new HTTP response. The vulnerability
can be avoided by sanitizing these characters (e.g., substituting
them by a space) [21].

Email injection (EI) is similar to HI, allowing an attacker to
inject the line termination character, in clear or encoded (%0a
and %0d), with the aim of manipulating the email components
(e.g., sender, destination, message). The vulnerability can also
be avoided by sanitizing these characters [21].

Session fixation allows an attacker to force a web client to
use a specific (“fixed”) session ID, allowing him to access the
account of the user. Avoiding this vulnerability is not trivial as
there is no sanitization function to apply or set of malicious
characters to recognize. A way to defend against SF is to avoid
using a session token provided by the user [21], [16].

B. Reusing the sub-modules

The detection of four of the vulnerability classes described
in the previous section can be integrated in the sub-modules of
Section III-A and the fixes to remove them can be created using
a fix template (Section III-C). Table IV shows the classes of
vulnerabilities integrated in each sub-module and the sensitive
sinks added to detect each vulnerability. These functions were
inserted in the ss file of each sub-module. No sanitization
functions or entry points were added to the san and ep files.

In relation to LDAPI and XPathI, a fix was created for each
one using the user validation fix template. For CS we changed
WAP’s san_read and san_write fixes. These fixes deal with
the sensitive sinks specified above for the CS vulnerability.
They validate the user inputs contents against JavaScript code,
so we changed them to also check the input contents against
URIs/hyperlinks. For SF we created a fix from scratch.

Sub-module Vuln. Sensitive sink
RCE & file SF setcookie, setdrawcookie, session idinjection
client-side CS file put contents, file get contentsinjection

query LDAPI ldap add, ldap delete, ldap list, ldap read, ldap search
injection XPathI xpath eval, xptr eval, xpath eval expression

TABLE IV: Sensitive sinks added to the WAP sub-modules to detect
new vulnerability classes.

C. Creating weapons

We used the scheme presented in SectionIII-D to create
three weapons, for (1) NoSQLI, (2) HI and EI, and (3) SQLI
for WordPress.

1) NoSQLI weapon: NoSQL is a common designa-
tion for non-relational databases used in many large-scale
web applications. There are various NoSQL database mod-
els and many engines that implement them. MongoDB
[13] is the most popular engine implementing the docu-
ment store model [7]. Therefore, we opted for creating a
weapon to detect NoSQLI in PHP web applications that
connect to MongoDB. We configured the weapon gen-
erator with: (1) the find, findOne, findAndModify,
insert, remove, save, execute sensitive sinks and the
mysql_real_escape_string sanitization function; (2) the
PHP sanitization fix template to sanitize the user inputs that

reach that sink with that sanitization function, resulting in the
san nosqli fix; and (3) no dynamic symptoms. The weapon is
activated by the -nosqli flag.

2) HI and EI weapon: We configured the weapon gener-
ator with: (1) the header and mail sensitive sinks and no
sanitization functions; (2) the user sanitization fix template to
check the malicious characters presented in Section IV-A and
to replace them by a space, resulting in the san hei fix; and
(3) no dynamic symptoms. The weapon is activated with the
-hei flag of WAP.

3) SQLI for WordPress weapon: WordPress has a set of
functions that sanitize and validate different data types, which
are used in some add-ons. It has also its own sinks to handle
SQL commands ($wpdb class). If we want to analyze, for
example, WordPress plugins with WAP for SQLI vulnera-
bilities, we need a weapon that recognizes these functions.
Therefore, we configured the weapon generator with: (1)
the sensitive sinks and sanitization functions from $wpdb;
(2) the PHP sanitization fix template to sanitize the user
inputs that reach those sinks with those sanitization functions,
resulting in the san wpsqli fix; and (3) dynamic symptoms,
with validation functions from $wpdb and their corresponding
static symptoms. The weapon is activated by the flag -wpsqli.

V. EXPERIMENTAL EVALUATION

The objective of the experimental evaluation was to answer
the following questions: (1) Is the new version of WAP able
to detect the new vulnerabilities (Sections V-A and V-B)?; (2)
Does it remain able to detect the same vulnerabilities as WAP
v2.1 (Section V-A)?; (3) Is it more accurate and precise in
predicting false positives than WAP v2.1 (Section V-A)?; (4)
Can it be equipped with weapons configured with non-native
PHP functions and detect vulnerabilities (Section V-B)? For
convenience, in this section we designate the new version of
the WAP tool by WAPe.

A. Real web applications

To assess the new version of the tool and to answer the
first three questions, we run WAPe with 54 web application
packages written in PHP and compare it with the prior version
of the tool (v2.1).

WAPe analyzed a total of 8,374 files corresponding to
2,065,914 lines of code of the 54 packages. It detected 413
real vulnerabilities from several classes in 17 applications.
The largest packages analyzed were Play sms v1.3.1 and
phpBB v3.1.6 Es with 248,875 and 185,201 lines of code.
Table V summarizes this analysis presenting the 17 packages
where these vulnerabilities were found and some information
about the analysis. These 17 packages contain 4,714 files
corresponding to 1,196,702 lines of code. The total execution
time for the analysis was 123 seconds, with an average of 7.2
seconds per application. This average time indicates that the
tool has a good performance as it searches for 15 vulnerability
classes in one execution.

We run the same 54 packages with WAP v2.1. The tool
flagged as vulnerable the same 17 applications. Table VI
presents the detection made by the two tools distributed by the
10 classes of vulnerabilities and the false positives predicted

Web application Version Files Lines of Analysis Vuln. Vuln.
code time (s) files found

Admin Control Panel Lite 2 0.10.2 14 1,984 1 9 81
Anywhere Board Games 0.150215 3 501 1 1 3
Clip Bucket 2.7.0.4 597 148,129 11 16 22
Clip Bucket 2.8 606 149,830 12 18 26
Community Mobile Channels 0.2.0 372 119,890 8 116 47
divine 0.1.3a 5 706 1 2 9
Ldap address book 0.22 18 4,615 2 4 1
Minutes 0.42 19 2,670 1 2 10
Mle Moodle 0.8.8.5 235 59,723 18 4 7
Php Open Chat 3.0.2 249 83,899 7 9 11
Pivotx 2.3.10 254 108,893 6 1 1
Play sms 1.3.1 1,420 248,875 19 7 6
RCR AEsir 0.11a 8 396 1 6 13
refbase 0.9.6 171 109,600 10 18 48
SAE 1.1 150 47,207 7 39 48
Tomahawk Mail 2.0 155 16,742 3 3 3
vfront 0.99.3 438 93,042 15 25 77

Total 4,714 1,196,702 123 280 413

TABLE V: Summary of results for the new version of WAP
with real web applications.

Web application Version WAP & WAPe real vuls. WAPe real vuls. WAP FP WAPe FP
SQLI XSS Files* SCD LDAPI SF HI CS Total FPP FP FPP FP

Admin Control Panel Lite 2 0.10.2 9 72 81 8 8
Anywhere Board Games 0.150215 1 1 1 3
Clip Bucket 2.7.0.4 10 11 1 22 2 4 6
Clip Bucket 2.8 4 10 11 1 26 2 4 6
Community Mobile Channels 0.2.0 14 27 3 3 47 4 4
divine 0.1.3a 4 2 3 9
Ldap address book 0.22 1 1
Minutes 0.42 9 1 10
Mle Moodle 0.8.8.5 6 1 7 2 1 2 1
Php Open Chat 3.0.2 10 1 11
Pivotx 2.3.10 1 1 9 9
Play sms 1.3.1 6 6 2 2
RCR AEsir 0.11a 9 3 1 13 1 1
Refbase 0.9.6 46 2 48 7 4 11
SAE 1.1 11 25 10 1 1 48 23 12 11
Tomahawk Mail 2.0 2 1 3 1 2 3
vfront 0.99.3 23 28 16 10 77 26 20 40 6

Total 72 255 55 4 2 1 19 5 413 62 60 104 18
*DT & RFI, LFI vulnerabilities

TABLE VI: Vulnerabilities found and false positives predicted
and reported by the two versions of WAP in web applications.

and not predicted. The third to sixth columns show the number
of real vulnerabilities that the tools found for the classes that
both detect, i.e., the 386 vulnerabilities of classes SQLI, XSS,
RFI, LFI, DT and SCD. This provides a positive answer to
the second question: WAPe still discovers the vulnerabilities
detected by WAP v2.1.

The next four columns correspond to the new vulnera-
bilities that WAPe was equipped to detect and the following
column is the total of vulnerabilities detected by WAPe (413
vulnerabilities). WAPe detected 26 zero-day vulnerabilities of
the LDAPI, HI, and CS classes, plus one known SF vulner-
ability. The vulnerabilities found in the Pivotx v2.3.10 and
refbase v0.9.6 (for XSS) packages were previously discovered
and registered in Packet storm [18] and CVE-2015-7383.
The Community Mobile Channels v0.2.0 application was the
most vulnerable mobile application with 47 vulnerabilities
(SQLI and XSS mostly). This seems to confirm the general
impression that the security of mobile applications is not
always the best. Also interesting is the fact that the most recent
version of Clip Bucket contains more 4 SQLI and the same 22
vulnerabilities than the previous version.

WAP v2.1 reported more vulnerabilities than WAPe, but
they were false positives. The last four columns of the table
show the number of false positives predicted (FPP) and not
predicted (FP) by WAP (the first two columns) and WAPe
(the next two columns). The original tool correctly predicted

62 false positives and incorrectly 60 as not being so. WAPe
predicted 104 false positives: the same as WAP plus 42 that
WAP classified as not being false positives. This means that
the data mining improvements proposed in this paper made the
tool more accurate and precise in prediction of false positives
and detection of real vulnerabilities.

We analyzed the 18 cases reported by WAPe as not being
false positives; some of them had function calls that we did not
consider as symptoms, such as calls to functions sizeof and
md5, whereas others contained sanitization functions devel-
oped by the applications’ programmers. For example, the vfont
v0.99.3 application contains 6 of these cases, using a function
named escape to sanitize the user inputs. To demonstrate the
extensibility of the tool for such functions, we fed it with
that non-native PHP function (escape) as being an external
sanitization function and belonging to the sanitization list (see
Section III-A), and we run the tool again for that application.
The tool correctly did not report these 6 cases. We recall
that WAP does not report candidate vulnerabilities that are
sanitized. This example shows that a user can configure WAPe
for a specific web application during its development, feeding
WAPs with user functions developed for that application and
helping the user revising the code of the application.

B. WordPress plugins

To answer the first and last questions, and to find
previously-unknown (zero-day) vulnerabilities, we run WAPe
with a set of 115 WordPress (WP) plugins [27], 5 of which
with vulnerabilities registered in CVE [5]. WordPress is the
most adopted CMS and supports plugins developed by many
different teams. We selected 115 plugins from different tags
(arts, food, health, shopping, travel, authentication, popular
plugins and others) and distributed by several ranges of down-
loads, from less than 2000 to more than 500K. The popular
plugins fit in this last range, having some of them more than
1M downloads. Fig. 4(a) shows the number of downloads of
these plugins and Fig. 4(b) the number of web sites that have
these plugins active.

WAPe discovered 153 zero-day vulnerabilities and detected
16 known vulnerabilities. Table VII shows the 23 plugins with
vulnerabilities, distributed by 8 classes. The wpsqli weapon
detected 55 SQLI vulnerabilities, while the other detectors
found the remaining 114 vulnerabilities of the XSS, RFI,
LFI, DT, HI and CS classes (last 2 are new). For the known
5 vulnerable plugins (appointment-booking-calendar 1.1.7,
easy2map 1.2.9, payment-form-for-paypal-pro 1.0.1, resads
1.0.1 and simple-support-ticket-system 1.2), we confirmed the
vulnerabilities using the information about them published in
BugTraq [3]. However, for the simple-support-ticket-system 1.2
plugin WAPe detected more 13 SQLI vulnerabilities than those
that were registered.

The 23 plugins fit in all ranges of downloads, as depicted
by the orange columns of Fig. 4(a). 16 of them have more
than 10K downloads, reaching more than 500K downloads. All
ranges of active WP installations contain vulnerable plugins,
as shown by the orange columns of Fig. 4(b). 12 plugins are
used in more than 2000 web sites. The vulnerable Lightbox
Plus Colorbox plugin is active in more than 200,000 web sites
(the most used plugin), making these web sites vulnerable to
XSS attacks.

Plugin Version Real vulnerabilities Total FPP FP
SQLI XSS Files* SCD CS HI

Appointment Booking Calendar** 1.1.7 1 3 4 1
Auth0 1.3.6 1 1
Authorizer 2.3.6 2 2
BuddyPress 2.4.0 0 1
Contact formgenerator 2.0.1 11 11
CP Appointment Calendar 1.1.7 2 2
Easy2map** 1.2.9 1 2 3
Ecwid Shopping Cart 3.4.6 1 1
Gantry Framework 4.1.6 3 3
Google Maps Travel Route 1.3.1 1 2 3
Lightbox Plus Colorbox 2.7.2 8 8
Payment form for Paypal pro** 1.0.1 2 2
Recipes writer 1.0.4 4 4
ResAds** 1.0.1 2 2
Simple support ticket system** 1.2 18 18
The CartPress eCommerce Shopping Cart 1.4.7 8 17 25
WebKite 2.0.1 1 1
WP EasyCart - eCommerce Shopping Cart 3.2.3 13 6 29 5 2 5 60
WP Marketplace 2.4.1 9 9 1
WP Shop 3.5.3 5 5 1
WP ToolBar Removal Node 1839 1 1
WP ultimate recipe 2.5 0 1
WP Web Scraper 3.5 3 3

Total 55 71 31 5 2 5 169 3 2
*DT & RFI, LFI vulnerabilities
**plugins with vulnerabilities registered in CVE-2015-7319, CVE-2015-7320, CVE-2015-7666,
CVE-2015-7667, CVE-2015-7668, CVE-2015-7669, CVE-2015-7670

TABLE VII: Vulnerabilities found by new version of WAP in
WordPress plugins.

Sheet1

Page 2

< 2000
2K – 5K

.5K – 10K
10K – 50K

50K – 100K
100K – 500K

> 500K

0

5

10

15

20

25

30

35

Analyzed Vulnerable

< 100
100 – 500

500 – 1K
1K – 2K

2K – 5K
5K – 10K

> 10K

0

5

10

15

20

25

30

Analyzed Vulnerable

(a) Downloads

Sheet1

Page 2

< 2000
2K – 5K

.5K – 10K
10K – 50K

50K – 100K
100K – 500K

> 500K

0

5

10

15

20

25

30

35

Analyzed Vulnerable

< 100
100 – 500

500 – 1K
1K – 2K

2K – 5K
5K – 10K

> 10K

0

5

10

15

20

25

30

Analyzed Vulnerable

(b) Active installs

Fig. 4: Downloads and active installed plugins of 115 analyzed
(blue columns) and 23 vulnerable (orange columns) plugins.

Fig. 5 presents the vulnerabilities detected by class for
the 17 web applications and 23 WP plugins. Clearly SQLI
and XSS continue to be the most prevalent classes. Moreover,
it is possible to observe that WAPe detects correctly the
vulnerabilities it was extended to detect. In both analysis it
detected HI and CS vulnerabilities, while LDAPI and SF were
only detected in the web applications (not plugins).

All these vulnerabilities were reported to the developers of
the web applications and WP plugins. Some already confirmed
their existence. All were confirmed by us manually.

Sheet10

Page 4

PLUGUNS & WEB APPS

Plugins
SQLI 72 55

XSS 255 71

Files 55 31
SCD 4 5

LDAPI 2 0

SF 1 0

HI 19 2
CS 5 5

WebApps

SQLI

XSS

Files

SCD

LDAPI

SF

HI

CS

0 25 50 75 100 125 150 175 200 225 250 275
Number of vulnerabilities by class

WebApps Plugins

Fig. 5: Number of vulnerabilities detected by class in the
vulnerable web applications and WordPress plugins.

VI. RELATED WORK

This section summarizes the main related work in the areas
of static analysis and data mining used to detect vulnerabilities.

1) Static analysis: Taint analysis is a form of data flow
analysis that tracks sensible data and verifies which points of
the code it reaches. This form of analysis is usually used to
detect vulnerabilities in source code, tracking the entry points
and checking if they reach a sensitive sink. The technique
uses two states – tainted and untainted – that may change
during the data flow analysis. WAP [11] is a tool that performs
this type of analysis to detect input validation vulnerabilities
in PHP web applications. Pixy [10], phpSAFE [15], and
RIPS [6] are other tools that apply the same technique to
discover vulnerabilities. The first two only detect SQLI and
XSS vulnerabilities. RIPS detects the same vulnerabilities as
WAP v2.1, but cannot analyse object-oriented source code.
phpSAFE has been configured to detect SQLI vulnerabilities
in WordPress plugins, but this configuration was made in its
source code, whereas in the present work we modified WAP
to be configured without modifying the source code. On the
contrary of the tool we present in this paper, none of these
tools is modular and extensible for new vulnerabilities classes.
Moreover, only WAP corrects the vulnerabilities found, fixing
the web application source code and removing them.

2) Data mining: Recently data mining has started to be
explored to predict the existence of vulnerabilities in soft-
ware. This technique uses machine learning classifiers that
are trained with data sets containing instances composed by
attributes. Some tools use attributes collected from source code
while others from attack vectors. PhpMiner [22] detect SQLI
and XSS vulnerabilities in PHP source code. It collects at-
tributes from excerpts of code that end in a sink, independently
of where they start. It does not perform the data mining process
itself, which has to be run by the user using the WEKA tool
[26]. Nunan et al. retrieve attributes from a large collection of
XSS attacks vectors, using document- and URL-based features,
to learn how to characterize and detect XSS attacks [14]. The
WAP tool also uses data mining, but in contrast with these
tools, it uses that approach to predict false positives.

VII. CONCLUSION

The paper presents the extension of the WAP tool to detect
new vulnerabilities. It addresses the difficulty of extending
these tools by proposing a modular and extensible version
of the WAP tool, equipping it with “weapons” to detect (and
correct) vulnerabilities of new classes. The approach involved
restructuring WAP to make it modular and the creation of a
new module to generate weapons, i.e., to generate automat-
ically detectors and fixes to detect and remove new classes
of vulnerabilities. To predict false positives the precision and
accuracy of the data mining process has been improved, adding
more symptoms about false positives and instances. The new
version of the tool was evaluated with 7 new vulnerability
classes using web applications and WordPress plugins. The
results show that this extensibility allows WAP to find many
new (zero-day) vulnerabilities.

ACKNOWLEDGMENT

This work was partially supported by the EC through project FP7-
607109 (SEGRID), and by national funds through Fundação para a

Ciência e a Tecnologia (FCT) with references UID/CEC/50021/2013
(INESC-ID) and UID/CEC/00408/2013 (LaSIGE).

REFERENCES

[1] OWASP WAP – Web Application Protection. https://www.owasp.org/
index.php/OWASP WAP-Web Application Protection.

[2] WAP. http://awap.sourceforge.net/.
[3] BugTraq. http://www.securityfocus.com.
[4] CSO Online. Ashley Madison hack exposes IT details and customer

records, July 2015. http://www.csoonline.com/article/2949902/
vulnerabilities/ashley-madison-hack-exposes-it-details-and-customer-
records.html.

[5] CVE. http://cve.mitre.org.
[6] J. Dahse and T. Holz. Simulation of built-in PHP features for precise

static code analysis. In Proceedings of the 21st Network and Distributed
System Security Symposium, Feb 2014.

[7] DB-Engines. http://db-engines.com/en/ranking.
[8] Imperva. Anatomy of comment spam. hacker intelligence initiative.

May 2014.
[9] Imperva. Web application attack report #6. Nov. 2015.

[10] N. Jovanovic, C. Kruegel, and E. Kirda. Precise alias analysis for static
detection of web application vulnerabilities. In Proceedings of the 2006
Workshop on Programming Languages and Analysis for Security, pages
27–36, June 2006.

[11] I. Medeiros, N. F. Neves, and M. Correia. Automatic detection and
correction of web application vulnerabilities using data mining to
predict false positives. In Proceedings of the International World Wide
Web Conference, pages 63–74, Apr. 2014.

[12] I. Medeiros, N. F. Neves, and M. Correia. Detecting and removing web
application vulnerabilities with static analysis and data mining. IEEE
Transactions on Reliability, 65(1):54–69, March 2016.

[13] MongoDB. https://www.mongodb.org/.
[14] A. E. Nunan, E. Souto, E. M. dos Santos, and E. Feitosa. Automatic

classification of cross-site scripting in web pages using document-based
and url-based features. In Proceedings of the IEEE Symposium on
Computers and Communications, pages 702–707, July 2012.

[15] P. Nunes, J. Fonseca, and M. Vieira. phpSAFE: A security analysis
tool for OOP web application plugins. In Proceedings of the 45th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, June 2015.

[16] OWASP. Session fixation. https://www.owasp.org/index.php/
Session fixation.

[17] OWASP. Testing for NoSQL injection.
https://www.owasp.org/index.php/Testing for NoSQL injection.

[18] Packet storm. https://packetstormsecurity.com.
[19] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific

Languages. Pragmatic Bookshelf, 2007.
[20] D. Powers. Evaluation a monte carlo study. CoRR, abs/1504.00854:843–

844, 2015.
[21] J. Scambray, V. Lui, and C. Sima. Hacking Exposed Web Applications:

Web Application Security Secrets and Solutions. Mc Graw Hill, 2011.
[22] L. K. Shar and H. B. K. Tan. Mining input sanitization patterns

for predicting SQL injection and cross site scripting vulnerabilities.
In Proceedings of the 34th International Conference on Software
Engineering, pages 1293–1296, 2012.

[23] The Hacker News. 600tb MongoDB database ’accidentally’ exposed on
the internet, Nov. 2015. http://thehackernews.com/2015/07/MongoDB-
Database-hacking-tool.html.

[24] WhiteHat Security. Website security statistics report. Nov. 2015.
[25] J. Williams and D. Wichers. OWASP Top 10 2013 – the ten most

critical web application security risks, 2013.
[26] I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine

Learning Tools and Techniques. Morgan Kaufmann, 3rd edition, 2011.
[27] WordPress. https://wordpress.org/.

