
Fault-Tolerant Multiuser Computational Grids
Based on Tuple Spaces

Fábio Favarim † Joni da Silva Fraga† Lau Cheuk Lung§ Miguel Correia‡
† Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina – Brazil

‡ LASIGE, Faculdade de Ciências da Universidade de Lisboa – Portugal
§ Prog. de Pós-Graduação em Informática Aplicada, Pontifı́cia Universidade Católica do Paraná – Brazil

fabio@das.ufsc.br fraga@das.ufsc.br lau@ppgia.pucpr.br mpc@di.fc.ul.pt

Abstract

This paper proposes GridTS, a grid infrastructure in
which the resources select the tasks they execute, instead of
a scheduler finding resources for the tasks. This solution al-
lows scheduling decisions to be made with up-to-date infor-
mation about the resources. GridTS provides fault-tolerant
scheduling by combining a set of fault tolerance techniques
to tolerate crash faults in any components of the system.
The communication is supported by a tuple space.

1 Introduction

Heterogeneous resources connected to the Internet are
being increasingly used for executing resource-intensive ap-
plications, something usually called Grid Computing [1].
The idea is to obtain large amounts of processing power by
harnessing idle resources on the Internet. These resources
can join and leave the grid at any time. This dynamic na-
ture allows the grids to contain many machines that would
not be available otherwise, but on the other hand, it also
requires the infrastructure to manage the uncertainty about
the availability of the resources and their failure.

This paper is about scheduling and fault tolerance in
multiuser grids that execute bag-of-tasks applications [2].
This is only one among several types of applications that
can be executed in grids, but there are many important ap-
plications that fit in this category: data mining, simulations,
massive searches, image processing, etc. These applications
are composed by sets of decoupled tasks that can be exe-
cuted independently, without any kind of synchronization
or communication among them. This independence makes
these applications specially suited for dynamic grids, since
the failure of resources that are executing tasks can easily
be handled by rescheduling the interrupted tasks in other
resources.

An important goal of any grid infrastructure is to use
the resources efficiently, maximizing the resource utiliza-
tion while trying to minimize the total time to execute a
job. Each job consists of a set of tasks, and each task has to
be executed by one of the grid resources for a certain time.
A schedule is an assignment of the tasks of a job to a set of
resources.

Schedulers can be classified in two classes: knowledge-
based schedulers, which rely on accurate information
about resources’ attributes (CPU speed and load, mem-
ory) and availability to do the scheduling [3, 4, 5]; and
knowledge-free schedulers, which do not rely on that in-
formation [4, 6]. Starting with the latter, a knowledge-free
scheduler, like the Workqueue, works like a queue, pick-
ing a task and assigning it to a resource following some or-
der of the resources. When a resource finishes executing a
task, it returns the result and the scheduler gives it the next
one. A problem with this scheme is that when a large task
(e.g., in terms of CPU time and memory needed) is given
to a slow resource, the execution of this task may delay the
whole job. Knowledge-based schedulers avoid this prob-
lem by taking into account information about the resources.
The main differences in these scheduling algorithms is in
how they compute task priorities. Dynamic FPLTF (a varia-
tion of FPLTF for grid computing [3]) gives higher priority
to the largest task, assigning larger tasks to faster nodes [4].
MFTF gives more priority to the task most suited for each
resource [5]. The algorithm uses the expected task execu-
tion time to know how suited a task is to a resource. The
information used by knowledge-based schedulers is usually
provided by an information service that is responsible for
gathering information about all resources that compose the
grid. Gathering that information is like taking a snapshot
of the grid, i.e., getting the global grid state in a certain in-
stant. This operation is reasonably costly in a large grid, and
the snapshot tends to become outdated in a short time when
the grid is comprised by a large number of non-dedicated,



heterogeneous, widely-dispersed resources.

This paper proposes GridTS, an infrastructure that pro-
vides a knowledge-based scheduling solution in which the
resources select the tasks they execute, instead of the sched-
uler finding resources for the tasks. This solution allows
scheduling decisions to be made with up-to-date informa-
tion, since, naturally, each resource has always up-to-date
information about itself. Therefore our solution overcomes
the problems of getting up-to-date information about re-
sources faced by knowledge-based schedulers. Neverthe-
less, a knowledge-based scheduling heuristic that uses only
local information can still be plugged in GridTS.

GridTS is based on the generative coordination model,
in which processes (brokers, resources) interact through a
shared memory object called tuple space [7]. This coor-
dination model supports communication that is decoupled
both in time and space, i.e., in which processes do not need
to be active at the same time and do not need to know each
others locations or addresses. This makes it particularly
suited for highly dynamic systems like a grid.

In GridTS, a user gives its job to a broker that breaks it
in tasks and inserts them in the tuple space. The resources
are permanently in a loop: get a task from the tuple space,
execute the task, put results in the tuple space, get another
task, execute task. . .

In large-scale grids, the probability of failures happening
is high. Many of the current grids have single points of fail-
ure, i.e., not all their components are fault-tolerant. GridTS
is fault-tolerant and has no single points of failure. Fault
tolerance is enforced using a combination of mechanisms.
Transactions are used to guarantee that the failure of a re-
source or a broker does not cause the loss of a task or leaves
the tuple space in an inconsistent state. Checkpointing is
used to limit the work lost when a resource fails during the
execution of a task, allowing another resource to continue
where the first left. Finally, replication is used to enforce
the fault-tolerance and availability of the tuple space. We
consider only crash faults, which in this context can be ac-
cidental (some machine really crashes) or forced by a re-
source owner that wants to remove his/her machine(s) from
the grid. We do not consider the possibility of the resources
returning results that do not correspond to the execution of
the tasks they are supposed to execute, on the contrary to
[8].

This work has two main contributions. Firstly, it presents
an architecture for a computational grid that allows re-
sources to find tasks suited for their attributes, even if those
attributes change with time. This eliminates the complex-
ity of gathering information about the whole grid. Sec-
ondly, the infrastructure provides fault-tolerant scheduling
by combining a set of fault tolerance techniques to tolerate
crash faults in any component of the system.

2 Tuple Spaces and Fault Tolerance

GridTS is based on a tuple space, a notion first intro-
duced in the Linda programming language [7]. A tuple
space can be viewed as a shared memory object that allows
distributed processes to interact by inserting tuples in the
space. A tuple is an ordered sequence of typed fields. A
tuple t in which all fields have values defined is called an
entry, otherwise it is called a template, and it is denoted,
e.g., t̄.

A tuple space provides three basic operations. The
out(t) operation is used to insert a tuple t in the space. The
rd(t̄) operation reads a tuple t that matches the template t̄
from the tuple space (non-destructive read). An entry t and
a template t̄ match essentially if: they have the same number
of fields; the type of the corresponding fields are the same
in both; the values in defined fields of t̄ are identical to the
values in the corresponding fields of t . The in(t̄) operation
reads and removes a tuple from the tuple space (destruc-
tive read). Both the in and rd operations are blocking, but
they have also non-blocking versions: inp() and rdp(). All
these read operations are non-deterministic, because if there
is more than one matching tuple available, one of them is
chosen arbitrarily. There is one more version of rd(t̄) that
returns all the tuples that match t̄: copy collect (̄t) [9]. Note
that an important characteristic of this coordination model
is the associative nature of the communication: the look up
for tuples on the tuple space is based on their content, rather
than accessed through an address or identifier.

Fault tolerance in the generative coordination model can
be considered at two levels:

• fault tolerance of the tuple space, i.e., the problem of
guaranteeing that the space does not fail if there are
faults in the tuple space itself; and

• application-level fault tolerance, i.e., to ensure that
the applications satisfy certain dependability proper-
ties even if some of the applications’ processes fail.

In GridTS, the first issue is handled using replication,
i.e., by running the tuple space in several servers and ensur-
ing that the tuple space as a whole tolerates the failure of
some of the servers [10, 11]. In this paper we consider that
the tuple space is indeed implemented by a set of servers
and is fault-tolerant but we do not delve into the details of
how it is done since the problem is well understood and is
solved.

The second issue is handled by application-level fault
tolerance mechanisms provided by the tuple space, usually
transactions [12, 11]. This mechanism guarantees essen-
tially that if a process tries to execute a set of operations
in the tuple space, either all the operations are executed or
none of them is. Several currently available tuple spaces,
like JavaSpaces and TSpaces, provide this mechanism.



3 GridTS

3.1 The Infrastructure

An overview of the GridTS infrastructure is shown in
Figure 1. The basic functioning is based on the master-
workers pattern [10, 11]. This pattern has two kinds of
entities: one master and several workers. The master gives
tasks to the workers that execute them and return the results
to the master. In GridTS there is not one but several masters
– called brokers – that get jobs from the users, divide them
in tasks and give these tasks to the workers, which are the
grid’s resources. Brokers are usually specific to one class
of applications, i.e., they only know how to divide in tasks
jobs of this class.

Figure 1. The GridTS infrastructure

GridTS use a tuple space to support the scheduling.
Briefly, the idea is the following:

• The user submits a job to a broker that decomposes
the job in several small tasks. The broker insert tuples
describing these tasks in the tuple space (task tuples).

• The resources retrieve from the space tuples that de-
scribe tasks they are able to execute, and execute them.
After each execution, the result is placed in the tuple
space.

• When all job’s tasks finish executing, the broker as-
sembles all task results and gives them to the user that
submitted the job.

Each task represents one unit of work that may be per-
formed in parallel with other tasks. The tuple that describes
a task contains all the necessary information for its execu-
tion: the identification of the task, the requirements for its
execution (e.g. processor load, processor speed, available
memory, operating system), the code to be executed (or the
location from where to download it), and the parameters –
input data– to the execution of the task (or their location).
The users do not need to know which resources will exe-
cute the tasks, their location or when these resources will
be available.

3.2 Fairness and Fault Tolerance

The architecture of GridTS has the immediate benefit
of not requiring an information service to give information
about the resources (their availability, usage and other pa-
rameters), on the contrary of most grid platforms. GridTS
enforces a natural form of load balancing since the re-
sources pick tasks adequate to their conditions and get a new
one whenever the previous ended. However, there are also
some challenges. The first is a problem of fairness since
multiple users/brokers can put tasks concurrently in the tu-
ple space. The second is related to fault tolerance: GridTS
has to tolerate failures in the brokers and, more importantly,
to deal efficiently with failures of the resources.

To guarantee a fair scheduling, the resources have to
pick tasks from the tuple space using an appropriate mech-
anism. A solution that ensures fairness is to use a ticket.
When a broker wants to insert a tuple in the space, it picks a
tuple that represents the ticket (ticket tuple), inserts the job
with the current ticket number, increases the ticket number
and inserts it back in the space. A job is represented in the
tuple space by a job tuple and a set of task tuples. When
a resource wants to pick a task, the criteria should be to se-
lect the job with lowest ticket and then a task from that job,
to ensure fairness. However, other criteria are possible, like
using a network of favors, where the users who donate more
resources will have greater priority when they need to make
use of the grid [13]. This solution does not ensure fairness
in the sense we were considering but in a sense more related
to Economy.

Transactions are used by both brokers and resources.
Broker use transactions to ensure that: (1) the job’s tasks
are insert atomically in the space, i.e., either they are all
inserted or none is (in case the broker fails during the inser-
tion); (2) the ticket is not lost if the broker removes it and
crashes before inserting it back incremented in the space;
(3) to get the results of the tasks atomically from the space.
On the resources-side, transactions are used mainly to guar-
antee that when a resource fails during the execution of a
task, the task tuple is returned to the space to be eventually
executed by another resource (or the same if it recovers).

Tasks usually take a long time to execute, e.g., hours or
even days, so it is not convenient to restart from scratch the
execution of a task whenever the resource that is executing
it fails. To minimize this problem, GridTS uses a backward
error recovery mechanism that consists in periodically sav-
ing the state of the task execution – a checkpoint – in the
tuple space [14]. If the resource fails, then another resource
continues the execution of the task from that checkpoint,
thus limiting the work lost when a resource fails during the
execution of a task.

The execution of checkpoint requires the use of nested
transactions. A task is executed in the context of a parent



transaction, which returns the task tuple to the space in case
of failure. The execution of the task between two check-
points is also done in the context of a sub-transaction, to
return the transaction tuple back to the tuple space in case
the resource fails. This scheme is based on nested top-level
transactions [15], because if the parent transaction aborts,
the effects of the sub-transactions – the checkpoint tuples
inserted in the space – persist.

3.3 Evaluation

We are currently evaluating the performance of GridTS
using the GridSim simulator [16]. We are comparing
GridTS with a grid with a knowledge-free scheduler and
two grids with knowledge-based schedulers (based on a
centralized information service). The former simply blindly
scatters the tasks by the resources. The latter are based re-
spectively on the MFTF and the Dynamic FPLTF heuristics
[5, 4].

A first set of simulations has shown very similar perfor-
mances for all the four scheduling schemes. This somewhat
unexpected result comes from the assumptions made in the
simulations: all resources had the same attributes (CPU
speed, memory, load) and there were no failures. These
conditions do not permit the simulations to show the advan-
tages of using knowledge about the resources, which should
appear when comparing the knowledge-based schedulers
with the knowledge-free scheduler. They also do not permit
to see the benefits of always having fresh information about
the resources (in GridTS) over having information that may
be somewhat old or hard to collect (in the knowledge-based
schedulers).

We are currently extending the simulations to observe
these advantages. Preliminary results have shown already
that the benefits of GridTS over knowledge-based sched-
ulers depend heavily on the timeout used to detect the fail-
ure of a resource, the probability of a resource failing, and
the heterogeneity and dynamicity of the resources condi-
tions. We also envisage comparing GridTS with the scheme
for dynamically allocating and reallocating resources pro-
posed in [17].

4 Conclusion

This paper presents GridTS, a decentralized and fault-
tolerant grid infrastructure. Instead of using a centralized
scheduler, the resources are in charge of picking the tasks
they will execute. The communication is based on the gen-
erative coordination model, i.e., on a shared memory object
called a tuple space. The solution combines different fault
tolerance techniques, like transactions, checkpointing and
replication.

Future work will focus on designing a secure version
of GridTS. We envisage extending GridTS with security
mechanisms like access control, to guarantee, e.g., that the
results of a job can be read only by the corresponding bro-
ker. Moreover, we expect to use intrusion tolerance mecha-
nisms to guarantee the security of the system even if some
of its components are compromised. Finally, the scalability
of the infrastructure will be improved by designing a scal-
able tuple space.

5 Acknowledgments

The work described in this paper was partly supported by
the CNPq (Brazilian National Research Council) through
process 140848/2003-7 and by the CAPES through process
3622/05-3.

References

[1] Ian Foster and Carl Kesselmann, Eds., The GRID:
Blueprint for a New Computing Infrastructure, Mor-
gan Kaufmann Publishers, 1999.

[2] J. A. Smith and S. K. Shrivastava, “A system for
fault-tolerant execution of data and compute intensive
programs over a network of workstations,” in Pro-
ceedings of the 2nd International Euro-par Confer-
ence (EURO-PAR’96), 1996, number 1123 in LNCS,
pp. 487–495.

[3] Daniel A. Menascé, Debanjan Saha, Stella C.
da Silva Porto, Virgilio A. F. Almeida, and Satish K.
Tripathi, “Static and dynamic processor scheduling
disciplines in heterogeneous parallel architectures,”
Journal of Parallel and Distributed Computing, vol.
28, no. 1, pp. 1–18, 1995.

[4] Daniel Paranhos da Silva, Walfredo Cirne, and Fran-
cisco Vilar Brasileiro, “Trading cycles for informa-
tion: Using replication to schedule bag-of-tasks ap-
plications on computational grids,” in Proceedings
of the 9th International Euro-par Conference (EURO-
PAR’03), 2003.

[5] Sheng-De Wang, I-Tar Hsu, and Zheng Yi Huang,
“Dynamic scheduling methods for computational grid
environments,” in Proceedings of the 11th Interna-
tional Conference on Parallel and Distributed Systems
(ICPADS’05), 2005, pp. 22–28.

[6] Noriyuki Fujimoto and Kenichi Hagihara, “Near-
optimal dynamic task scheduling of independent
coarse-grained tasks onto a computational grid,” An-
nual International Conference on Parallel Processing
(ICPP-03), vol. 00, pp. 391–398, 2003.



[7] David Gelernter, “Generative communication in
Linda,” ACM Transactions on Programing Languages
and Systems, vol. 7, no. 1, pp. 80–112, 1985.

[8] Paul Townend, Paul Groth, Nik Looker, and Jie Xu,
“Ft-grid: A fault-tolerance system for e-Science,” in
Proceedings of the 4th UK e-Science All Hands Meet-
ing (AHM05), 2005.

[9] Antony I. T. Rowstron and Alan Wood, “Solving
the Linda multiple rd problem using the copy-collect
primitive,” Science of Computer Programming, vol.
31, no. 2-3, pp. 335–358, 1998.

[10] Andrew Xu and Barbara Liskov, “A design for a fault-
tolerant, distributed implementation of Linda,” in
Proceedings of the 19th Symposium on Fault-Tolerant
Computing (FTCS’89), 1989, pp. 199–206.

[11] David E. Bakken and Richard D. Schlichting, “Sup-
porting fault-tolerant parallel programming in Linda,”
IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 06, no. 3, pp. 287–302, 1995.

[12] Karpjoo Jeong and Dennis Shasha, “Plinda 2.0: A
transactional/checkpointing approach to fault tolerant
Linda,” in Proceedings of the 13th Symposium on Re-
liable Distributed Systems, 1994, pp. 96–105.

[13] Nazareno Andrade, Walfredo Cirne, Francisco
Brasileiro, and Paulo Roisenberg, “OurGrid: An
approach to easily assemble grid with equitable
resource sharing.,” in Proceedings of 9th Workshop
on Job Scheduling Strategies for Parallel Processing,
2003.

[14] Peter A. Lee and Thomas Anderson, Fault Tolerance:
Principles and Practice, Dependable Computing and
Fault-Tolerant System. Springer-Verlag, 2nd edition,
1990.

[15] Barbara Liskov and Robert Scheifler, “Guardians and
actions: Linguistic support for robust, distributed pro-
grams,” ACM Transactions on Programing Languages
and Systems, vol. 5, no. 3, pp. 381–404, 1983.

[16] Rajkumar Buyya and Manzur Murshed, “Gridsim: A
toolkit for the modeling and simulation of distributed
resource management and scheduling for grid comput-
ing,” The Journal of Concurrency and Computation:
Practice and Experience (CCPE), vol. 14, no. 13–15,
pp. 1175–1220, 2002.

[17] Charles‘Kubicek, Mike Fisher, Paul McKee, and
R. Smith, “Dynamic allocation of servers to jobs in
a grid hosting environment,” BT Technology Journal,
vol. 22, no. 3, pp. 251–260, 2004.


