
Xor-overlay Topology Management Beyond Kademlia

Erick Lavoie, Laurie Hendren
McGill University, Montreal, Canada,
Email: erick.lavoie@mail.mcgill.ca

Email: hendren@cs.mcgill.ca

Miguel Correia
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa, Lisboa, Portugal
Email: miguel.p.correia@tecnico.ulisboa.pt

Abstract—Kademlia is a widely successful Distributed Hash
Table (DHT) implementation, better known for its use in
the BitTorrent protocol. In this paper, we revisit its overlay
management separately from the DHT operations to allow it
to be used with other distributed abstractions by providing
an accurate and consistent view of the k-closest nodes to any
given identifier. We then present invariants that avoid the irreg-
ularities that are necessary with the original k-bucket design
and improve on later published solutions by not needing an
additional parameter to tune. We then provide a specification
of a distributed abstraction that provides the automatic man-
agement of routing tables using our invariants and a pseudo-
code implementation of that abstraction. We finally sketch how
our abstraction may be used for a security mechanism and how
it could be combined with other known distributed abstractions
to provide other services than file sharing in xor-based overlay
networks enabling xor-based network overlays to go beyond
their original Kademlia design.

1. Introduction

Some self-organizing peer-to-peer overlay networks such
as BitTorrent are built with Kademlia [1], a widely suc-
cessful Distributed Hash Table (DHT) implementation. At
the heart of Kademlia lies an elegant overlay network that
organizes its peers using the xor distance and is simple
and efficient in the number of messages it uses. Its ef-
ficiency comes from combining overlay management and
DHT operations to update the topology as a side-effect of
the latter. Its design makes the overlay management efficient
for exchanging immutable data, such as torrents (files) in
BitTorrent. It is easy to use in other applications that require
only weak consistency amongst replicas1.

The distributed system field has produced many ab-
stractions (and algorithms to implement them) for reli-
ably broadcasting messages, implementing shared registers
or mutable files, and establishing consensus, for example.
These abstractions are mature and can be studied and im-
plemented from a textbook such as the one by Cachin et

1. If the same key is updated with a different value, it provides no
guarantee that later retrievals will only see the newer value. Because file
sharing applications usually distribute immutable files, the problem does
not happen for them.

al. [2]. These abstractions require a known group of nodes
in which individuals may fail as the algorithm progresses. A
self-organizing peer-to-peer overlay network can potentially
enable multiple copies of these abstractions to be run in par-
allel on disjoint subsets of nodes and to perform automatic
load-balancing amongst them in the same way the ownership
of the keys in a DHT is spread between the participating
nodes. However, the original Kademlia implementation does
not guarantee an accurate2 and consistent3 view of the nodes
that are part of the group used for replicating items, e.g.
the k-closest nodes to a target identifier [3], [4]. It only
ensures that enough of them execute correctly long enough
without crashing or disconnecting to maintain at least one
copy available for retrieval (and the regeneration of replicas
every hour). It does not define properties for defining a
group in such a way that they all agree on the group
composition (even eventually). That therefore precludes the
easy implementation of existing distributed abstractions on
top of those groups.

In this paper, we revisit the overlay management sep-
arately from the DHT operations to enable its usage with
other existing distributed abstractions, and additionally make
it easier to understand separately of the original DHT appli-
cation domain. Our key contribution is the development of
new invariants on routing tables’ subtrees (k-buckets) that
enable all nodes in the network to obtain an accurate and
consistent view of the region of the identifier space that is
close to a given identifier, such as their own, independently
of the particular distribution of identifiers. Our invariants
avoid the irregularities which are a result of the original
k-bucket design and introduce no additional parameter to
tune.

Then, we provide a specification of a Xor-overlay Topol-
ogy Manager (XTM) distributed abstraction that manages
automatically the routing tables using the new invariants,
and a pseudo-code implementation of that abstraction. The
abstraction provides a list of peers that can be used with
the original lookup algorithm. Therefore, the abstraction and
implementation could be used for pedagogical purposes to
introduce the underlying xor-based topology management

2. Def. The actual k-closest nodes to a target identifier are all found.
3. Def. All nodes within the close region of the target identifier compute

the same k-closest nodes to a target identifier using their routing table.

operations of Kademlia before explaining how they are com-
bined with DHT operations, providing a layered presentation
of the protocol. They may also serve as a reference for
language-specific implementations.

Finally, the improved accuracy and consistency of the
computation of the k-closest nodes enables new applica-
tions. We sketch how the insights of the paper enable the
implementation of (1) the filtering of messages that are
going to the wrong destination, (2) a leader-based chat room
that provides ordering of messages with replication in case
the leader fails, and (3) a quorum-based uniform reliable
broadcast primitive than can be used to build decentralized
storage.

To summarize, in this paper we make the following
contributions:

• we provide additional insights about the original
design that were not explained or emphasized in
the original paper, in particular how the file sharing
domain that was targeted could minimize the number
of messages and how the lookup algorithm leverages
complementary unordered and ordered views of the
identifier space (xor-space);

• we derive new invariants on routing tables to elimi-
nate the irregularities in the original k-bucket design
and provide accurate and consistent computation of
the k-closest nodes;

• we provide the specification of a Xor-overlay Topol-
ogy Manager (XTM) that maintains the topology,
independently of the original DHT operations;

• we provide a pseudo-code implementation of the
XTM abstraction in a crash-stop partially syn-
chronous distributed system;

• we sketch how the XTM can be used to improve the
security of existing systems and to build peer-to-peer
services other than file-sharing by combining it with
other well-known distributed algorithms.

The remainder of the paper is structured as follows. In
Section 2, we revisit and summarize the key properties of
Kademlia and make explicit some implicit design decisions
of the original paper. In Section 3, we revisit the lookup
algorithm of Kademlia and explain how it leverages different
views of the identifier space during its different phases of
operation. In Section 4, we present our new invariants. In
Section 5, we present the specification and implementation
of a distributed abstraction that manages the topology in
a xor-based overlay using our invariants. In Section 6,
we sketch a new security mechanism and the application
of existing distributed algorithms to a xor-based overlay.
Finally, we present related work in Section 7 and conclude
in Section 8.

2. Kademlia: Distributed Hash Table With
Minimum Management Overhead

In this section, we list the key properties of Kademlia [1]
in a concise manner for those who are not familiar with

the protocol already. We start with the xor distance and
a presentation of the subtrees that underlie the routing
tables. We then present the key properties of the protocol by
separating those that derive from the topology from those
that are required by the application (Distributed Hash Table).
Moreover we present separately those that were introduced
for fault tolerance and those for optimizing the number of
messages. A complete presentation can be found in the
original paper [1]. Those familiar with the protocol may
skip directly to Section 2.6. In that section, we explicit
some design decisions that were not explained in the original
paper that then motivate the rest of the paper.

2.1. Identifiers, Xor Distance, and Subtrees

Every node in Kademlia has an identifier (X) chosen
randomly and composed of b bits. The distributed hash table
(DHT) keys are also composed of b bits and represent the
identifiers of the (key, value) pairs. The pairs are stored
in the k nodes with the smallest distance to the key. The
distance is computed by performing a bitwise exclusive-or
(xor or ⊕) between identifiers and keys, and interpreting the
distance as an integer. Formally:

xi = {0, 1}
X = (x1, x2, ..., xb)

xi ⊕ yi = 0 if xi = yi, 1 otherwise
d(X,Y) =

∑b
1 2

i−1(xi ⊕ yi)

The entire identifier space comprises 2b identifiers with
values between 000...0 and 111...1 which can be organized
in a binary tree in which an identifier belongs to the left
subtree if the leading bit is 0, or the right subtree if the
leading bit is 1, and recursively for the following bits.

In order to scale while requiring each node to only know
about a manageable number of peers, each node keeps track
of a bounded number of peers in each subtree with a prefix
that differs by one bit from its identifier. This is sufficient
to ensure full connectivity (see Chapter 2 in Cai’s master
thesis [5]). The subtrees are created and populated as peers
are discovered, by splitting the node’s subtree (initially at
the root of the binary tree and covering the entire identifier
space).

The binary tree and subtrees for routing purposes are
illustrated in Figure 1. We now list some of the key proper-
ties and ideas of Kademlia. They are regrouped by topic to
make them easier to consider separately. Each topic has its
own section and each property is numbered. To refer to a
given property in the text, we write Topic Section Number
- Property Number (ex: 2.2-1).

2.2. Topology (Routing Tables and Peer Lookup)

The properties listed hereafter are related to the finding
and management of peers by each node. The list of peers a
node maintains is alternatively called routing tables or topol-
ogy in different papers. We present the original properties

0
0

0

1

1

1

000…0 111…1

000… 001…

01…

1…

0010.. 0011..

Figure 1. Subtrees (K-buckets) in Kademlia, grouping sets of identifiers
from the entire identifier space (shown with a line that goes from 000...0
to 111...1). The grayed subtree represents the node 000...0’s subtree and
all others are subtrees containing peers that make up the routing table. The
closest neighboring subtree is split also (shown with dotted circles) if there
are more than k peers to ensure all peers that are close in the identifier
space are known (2.2-5).

to contrast them with the new invariants we will introduce
in Section 4:

1) Every node knows of at least one node in each
of its subtrees (k-bucket), if that subtree contains
a node. This is necessary and sufficient to ensure
convergence of the lookup procedure;

2) A subtree contains up to k peers, others are ignored.
k is chosen so the probability that all peers failing
within a one-hour period is sufficiently small to
ensure 2.2-1 stays true;

3) The current state of a slice of the network is ob-
tained by performing a lookup for the closest nodes
to a given identifier. It provides the k closest nodes
that represent a fix-point amongst all the nodes
that were contacted in a converging path towards
a target identifier (the k closest nodes computed
from the routing tables they return are the k closest
nodes themselves). We write k-closest nodes as a
shorthand for the result of performing a lookup for
the k closest nodes. Empirical evidence suggests
that the lookup is not completely accurate, i.e. it
fails to correctly locate some of the actual k closest
nodes [3]. As a side-effect of finding the k-closest
nodes, all other nodes discovered along the path
are used to populate or refresh the subtrees of the
topology (routing tables). Symmetrically, the nodes
queried during the lookup will populate or refresh
their k-buckets with the information of the node
performing it (if they have space in their routing
table for it);

4) To join the network, a node lookups its own ID
(implicitly making itself known because of 2.2-3);

5) Irregularity: the closest neighboring subtree (to the
node ID’s subtree) is recursively split to contain all
neighbors (shown with dotted circles in Figure 1),
which contradicts 2.2-2. We explain why it was
needed in Section 4.

2.3. Distributed Hash Table (DHT) Operations

A distributed hash table implements lookup, storing, and
deletion of (key, value) pairs by key. We explain here how
those operations are built using peers obtained from the
Topology (Section 2.2):

1) Storing an immutable value is performed on the k-
closest nodes, after finding them using the lookup
procedure. As for 2.2-2, k is chosen so that the
probability of all k nodes failing within one hour
is small. Storing a value in the k-closest nodes
provides automatic load-balancing under the as-
sumption that the keys are uniformly distributed
throughout the identifier space;

2) Retrieving an immutable value is performed on the
first of the k-closest nodes that answers. This is
possible because the integrity of the data retrieved
is guaranteed by other means (ex: its key is the hash
of the value) and the same data4 should therefore
be on any of the k-closest nodes;

3) Deleting a value is done by stopping its republica-
tion (see 2.4-1).

2.4. Fault Tolerance

Throughout the design k nodes are used to have multiple
replicas or paths available to ensure the system stays avail-
able even in the presence of failure or sudden disconnection
of individual nodes:

1) Replicas of key-value pairs may disappear (because
nodes fail) or end up in nodes that are not in the
k-closest (because new nodes closer to the ID have
joined). Therefore, to maintain k copies in the k-
closest nodes, the pairs are republished every hour
by one of the k-closest nodes to all the other k−1;

2) K-buckets implement a least-recently seen eviction
policy, except that live nodes are never removed.
Old nodes tend to stay longer and the scheme
resists massive joining attacks therefore providing
stability.

2.5. Topology Management and Optimizations

As much as possible, topology management piggybacks
as a side-effect of the lookup operation used by DHT oper-
ations to minimize extra configuration messages. However
some situations cannot be managed as a side-effect of it and
others can be optimized to reduce the number of messages:

1) If a key is not looked up, the routing information
will never be updated. Therefore when some part
of the identifier space covered by the corresponding
subtree has not been looked up for an hour, a node
will randomly look for an ID within that range to
refresh its information about its peers within that
region;

4. Similar data if weakly consistent mutable data is allowed.

2) When one of the k-closest nodes republishes a key,
all other k − 1 closest nodes will not republish it
for the next hour by noticing it comes from another
k-closest node;

3) When republishing all its pairs, a node first re-
freshes all the k-buckets in a subtree before repub-
lishing all the pairs that belong to that subtree so
the lookup is amortized over all store operations.

2.6. Implicit Design Decisions

The original paper left implicit some design decisions
that were made to leverage opportunities that come from
the file sharing application domain to simplify the design
and reduce the number of messages exchanged. We make
them explicit here to better understand the limitations of the
design:

1) Only the node performing a lookup obtains an
accurate view of the state of (a slice of) the network
and that view is valid for a limited but unspecified
amount of time. The information is obtained as
late as possible and as much as possible as part
of a DHT operation. This minimizes the number
of maintenance messages that nodes have to send
between each other to maintain the overlay;

2) Only weakly consistent or immutable data is stored.
If storing mutable data with strong consistency was
supported, additional messages would be needed to
keep the copies synchronized. Said differently, if
a key is updated with a different value it is not
specified whether the old value might be retrieved
again. The caching mechanism (explained in the
original paper [1]) certainly suggests it may;

3) Eventual consistency of the network and DHT is
sufficient. A node may store a new value not exactly
on the k-closest nodes without preventing correct
retrieval of the value in most cases. Its replication
still guarantees fault tolerance and a lookup will
converge to the values anyway (probabilistically).
Failure of peers in the routing table need not be
resolved in a timely fashion, it can be handled
only when a new peer from the same subtree has
announced itself through a lookup (2.2.3) or no
node from the same subtree has performed a lookup
in the last hour (2.5.1);

3. Two Views of the Identifier Space

In this section, we revisit the lookup protocol of Kadem-
lia to provide an additional explanation of why it works.
This explanation will make the invariants we introduce in
Section 4 easier to understand.

The main purpose of the lookup protocol is to compute
the k-closest nodes to a given identifier. If all nodes knew
about all their peers, the procedure would be simple: a node
would simply have to sort them according to the xor distance
to the target identifier. However, in a network containing

millions of nodes in which nodes are constantly joining and
leaving, it is not practical for a node to maintain accurate
information on all the nodes.

Therefore a scalable scheme is used. Each node main-
tains information about a slice of the entire network keeping
track of 1 to k nodes in each of its subtrees (if it contains
at least one node, Section 2.1). At each step of the lookup
procedure, the closest nodes found so far answer with their
own k-closest peers, until a fix-point is reached (the k-closest
nodes return themselves). As explained in the original paper,
the reason the lookup procedure converges in a logarithmic
number of steps (compared to the number of nodes in the
network) is because if each node knows at least one node
in each of its subtrees, then at each step, the nodes returned
are at least one-bit closer to the target identifier [1].

A key insight behind the scheme, which is not em-
phasized in the original paper, is that for convergence of
the lookup procedure it does not matter which nodes of
the subtrees are remembered in the routing tables. Any k
nodes would do. The original paper chooses to prioritize
the longest running nodes under the assumption that their
probability of failure is lower the longer a node has been
running without crashing [1]. However, it may happen that
a long running network may have all nodes use most of the
same oldest nodes in their routing tables. This may in turn
make the network strongly dependent on their continued
reliability and otherwise fragile if they eventually fail. But
other schemes are possible because the k nodes’ identifiers
in a subtree need only to belong to the set of identifiers that
correspond to the region of the identifier space covered by
that subtree. Their actual ordering according to the target
identifier (or the originating node) does not influence the
worst case behavior of the lookup procedure. This is an
unordered view of a region of the identifier space and only
requires knowledge of some nodes in the region of the
identifier space that is covered by the corresponding subtree.

This insight may be used to provide different properties
in other circumstances. For example, if all nodes were
equally reliable, a different scheme could be used in which
the k-closest peers to a node’s id are kept instead. This
would ensure a uniform distribution of links between peers
through the entire network. Alternatively, the peers with
the longest matching IP-address prefix can be preferred to
minimize latency [6].

However, once the lookup procedure converges towards
a region that is close to the target identifier, which we will
define more precisely in the next section, the ordering of
identifiers according to the target does matter. And if some
nodes in that close region are not known then the compu-
tation of the k-closest nodes will be incorrect. Therefore
the correct computation of the k-closest nodes requires an
ordered view of the close region to a target identifier and
complete knowledge of all the nodes in the region that is
close to the target identifier.

Both views are therefore complementary. In the next
section we use this insight to derive different invariants on
Kademlia subtrees.

4. New Invariants for Accurate and Consistent
Computation of the K-Closest Nodes

The presence of an irregularity in the construction of
subtrees (Property 2.2-5 mentioned previously), i.e. the split-
ting scheme of k-buckets is not applied uniformly through-
out the entire identifier space, should arise suspicions about
the organization principle that is used. Section 2.5 of the
original paper [1] mentions that “[nodes] ensure they have
complete knowledge of a surrounding subtree with at least
k nodes” while seemingly contradicting the statement in
Section 2.2 by writing that a k-bucket (subtree) will grow to
up to size k. In this section, we propose different invariants
that remove the irregularities by making the intuition that
justified their introduction explicit.

Remember that the goal of the lookup procedure is
to correctly compute the k-closest nodes to a given target
identifier by contacting only a slice of all the nodes in the
network. Moreover, as explained in the previous section and
in Section 2.5 of the original paper, complete knowledge
of all nodes in the region close to the target identifier is
necessary for that computation. However, a node may not
know by itself if it is one of the k-closest to the target
identifier. It is only in relationship to the other nodes present
that it may compute so. This is why the node that is
performing a lookup is gathering information from different
nodes and in the process acquires a more accurate view of
the relevant slice of the entire network (2.6-1).

We realized that while the original Kademlia invariants
on routing tables are sufficient to ensure good enough con-
vergence of the lookup procedure in most cases, they are
insufficient (or insufficiently specified) to ensure the cor-
rect computation of the k-closest nodes under any possible
distribution of node identifiers.

Our new invariants are based on the following insight. A
node may be definitely sure that it is not part of the k-closest
nodes to any identifier within a region of the identifier space
covered by a subtree if it knows at least k other nodes with
identifiers that belong to that subtree and are closer than
its own.

Reformulating the same invariant from a different per-
spective, an identifier is k-closest to any k nodes within a
given subtree (that also contains the identifier) than to nodes
in a disjoint subtree (not a parent).

This insight leads to the following new invariants for
splitting and merging subtrees (k-buckets) in the routing
table. Initially, the node is in the root subtree. The subtree
is split if and only if the two resulting subtrees each have at
least k nodes in them. Otherwise, a node keeps all contacts
within the subtree. The subtree that contains the node rep-
resents the close region and all other subtrees represent far
regions. If after a crash was detected a subtree contains less
than k nodes, it is merged with the nearest sibling subtree
(and all subtrees it may contain) to ensure all subtrees have
at least k nodes at all time.

These invariants ensure that if the network is stable, all
nodes will eventually have a consistent view of the close
region because they will all know about all other nodes in

it. Moreover, regardless of the actual distribution of nodes
in the space, nodes will always compute the k-closest nodes
correctly in the close region, and know for sure that they
are not one of the k-closest in the far region.

The actual size of the close region and therefore the
number of nodes that are kept in a subtree depend on the
actual distribution of nodes’ identifiers throughout the entire
identifier space. For example, a non-uniform distribution
with less than k nodes in one of the root’s subtree would
force the close region to cover the entire identifier space.
However, the probability of that happening in practice with
identifiers generated with a uniform random number gener-
ator decreases exponentially with the number of nodes and
is therefore not a problem in practice even with a small
number of nodes (ex: a hundred).

We may see now that the original irregularity in the
original paper was necessary because the subtree was split
too early. The irregularity was introduced to ensure complete
knowledge of all nodes in the close region but was insuffi-
ciently precise about how many neighboring subtrees should
be split to ensure complete knowledge. Our invariants give
a precise definition of the close region in which complete
knowledge of all the nodes is required and ensure that all
nodes will eventually compute the same close region. More-
over, the list of peers our invariants produce can be used
for lookup in the same way the original did. Additionally,
a node may actively maintain subtrees to compute the k-
closest nodes not only to its own identifier but also to other
identifiers in the network (presumably to monitor nodes or
specific keys).

5. Xor-Overlay Topology Management

In this section, we present the Xor-Overlay Topology
Manager (XTM), a peer-to-peer algorithm for maintaining
the overlay topology as nodes join and leave the network.
We first give an intuitive overview of the algorithm. We then
specify the system model we are using, introduce a formal
abstraction with key properties that together show it can be
used to compute the k-closest nodes, and finally describe
the algorithm. The presentation is inspired by the textbook
approach of Cachin and al [2].

5.1. Overview

When joining the network, a new node initializes its
close region to the entire identifier space and will therefore
keep all other nodes it discovers as its peers. As it learns
about enough peers, some regions of the space become far
and the node removes extra peers, keeping a fixed number
per far region. While keeping only k peers would be enough
for correctness, our implementation actually keeps an extra
h peers to tolerate less than h peers suddenly crashing5. This
improves the availability of the network in the presence of
peers joining and leaving.

5. The extra h peers delay the splitting of a region, we therefore view
them as a hysteresis parameter, hence the usage of the letter h

As the network continues to grow, the far regions will
cover more and more of the space and the node’s close
region will become smaller and smaller. This automatically
balances the load across all nodes.

When nodes leave, by crashing or not, they may trigger
reconfiguration of other nodes’ peers. If the number of peers
in a far region drops below k+h, a node obtains new peers
to maintain knowledge of k+h peers from that region. If the
number of peers drops below k in a region, a node merges
its close region with adjacent far regions up to and including
the far region with < k peers. The close region will again
be reduced when new peers replace those that have left.

5.2. System Model

This xor-overlay topology can be implemented for dif-
ferent distributed system models because it follows from
the topology invariants (Section 4), not the assumptions
made on the distributed system. In the next sections, we
provide the abstraction and implementation of the Xor-
overlay Topology Manager (XTM) for one particular case
of a distributed system by using the following assumptions:

• Identifiers for nodes are uniformly random within
the identifier space;

• Nodes have access to an eventually perfect failure
detector [7];

• Nodes fail by crash-stopping and therefore cooperate
until they fail.

All nodes are physically connected through an IP net-
work, therefore any node can send a message to any other
node using its IP address and port. Each node maintains a
set of peers with whom it has active connections, and sends
them periodic heartbeat messages for failure detection.

One possible scheme to obtain identifiers that are uni-
formly random is to derive the identifier from the hash of
the IP address and port of a node. The random uniformity
comes from using a good hashing function.

5.3. Abstraction

The xor-overlay topology manager (XTM) abstraction
defined in Module 1 executes on each node and provides
a well-defined interface to obtain the current set of peers.
The set of peers can be used by another module to correctly
compute whether the current node is part of the k-closest
nodes to a target identifier or find all other peers that are
closer to it. To do so, the other module sorts the peer set,
augmented with the node’s identifier, with the target identi-
fier id. If the node’s identifier is in the first k elements then
it is part of the k-closest. Otherwise, the closest identifier(s)
can be used to contact closer nodes to id using the regular
Kademlia lookup algorithm (Property 2.2-3 and Section 3).

The abstraction is configured with parameters that are
fixed for the entire execution. k is the size of the number
of replicas (the k-closest nodes), b is the number of bits
used for identifiers, and h is the hysteresis factor that delays

splitting of regions to make the overlay topology more stable
in the presence of nodes leaving and joining.

The abstraction is first initialized by providing an id
coming from a uniform pseudo-random number generator
and a set of bootstrap nodes qs with the Join request. From
the bootstrap set of nodes, the XTM will discover more peers
until at least k are known and a first set of peers is provided
with the Peers indication. As more nodes are discovered new
Peers indications are delivered. The regions computed from
the set of peers in later Peers indications will eventually
converge towards the regions that would be computed if all
peers were known6. At some point the Unstable indication
may be delivered if too many peers leave at once and there
is not enough time for other peers to replace them and
maintain the abstraction properties. Following an Unstable
indication, a new Peers indication means the properties are
reestablished.

We decompose the properties required from the XTM
implementation such that they ensure collectively that the
same k-closest nodes would be computed if a node had
known the entire set of peers in the network. The properties
are guaranteed for correct nodes.

The eventual regions accuracy property (XTM1) is a
liveness property. It ensures that once enough peers have
been discovered a node will compute the same regions as
if it would know all other nodes in the network. Moreover,
by construction because of the definition of far regions, the
number of regions should be logarithmic compared to the
number of correct nodes.

The close nodes accuracy property (XTM2), is a liveness
property. It ensures that all correct nodes in the close region
will be known. It is necessary for computing the k-closest
nodes in the close region.

The eventual stability property (XTM3), is a liveness
property. It ensures that even if an Unstable event happens,
as long as there are enough correct nodes (≥ k) in the
network, a new set of peers will be provided.

The three liveness properties together ensure that the
abstraction will eventually provide a set of peers that is
useful for computing the k-closest nodes in the close region.

The completeness property (XTM4) is a safety property.
It ensures that there are enough peers in the far regions to
safely ignore most other peers in them.

The scaling property (XTM5) is also a safety property
that follows by construction of the topology. Since a subtree
contains at most k+h peers and there are at most b subtrees
that correspond to each bit of the identifiers, there are
therefore at most (k + h) ∗ b peers in the routing table.
As all subtrees fill probabilistically uniformly as new nodes
join, then the number of peers in the set of peers grows
logarithmically compared to the number of nodes.

We chose those properties to be as weak as possible
while making it easy to build stronger versions of the same
abstraction using ours. For example, Module 1 provides

6. The initial convergence can be made faster if the abstraction is
initialized by providing a bootstrap set qs obtained by performing a
Kademlia lookup (Property 2.2-3 and Section 3) for id. It is not needed
for correctness.

Module 1 Xor-Overlay Topology Manager
Module:

Name: XorOverlayTopologyManager, instance xtm

Parameters:

k: Number of replicas to use.
b: Number of bits in the identifier space.
h: Hysteresis factor to control when a region splits in smaller regions.

Events:

Request: 〈xtm, Join | id,qs〉: Joins the close region to id using qs as bootstrap nodes.
Indication: 〈xtm,Peers | ps〉: Provides the latest set of peers (excluding the node’s id).
Indication: 〈xtm,Unstable | region〉: Invalidates the previous set of peers because the properties of the xor-overlay
topology may not be satisfied in region.

Properties:

XTM1: Eventual regions accuracy: The far and close regions computed with the node identifier id from the latest
set of peers will eventually match the regions computed from the set of all correct nodes with a number of replicas
between k and k + h inclusively.
XTM2: Eventual close nodes accuracy: The set of peers will eventually contain all correct nodes that are in id’s
close region.
XTM3: Eventual stability: Once the Unstable event has been raised, if there exists at least k correct nodes, a new
set of peers will be eventually provided.
XTM4: Completeness: Each region, close and far, computed from the latest set of peers contains at least k nodes.
(By definition, the union of the close and the regions covers the entire identifier space.)
XTM5: Scalability: By construction of the peer set, the set of peers contains at most (k + h) ∗ b nodes. As in
Kademlia, because the identifiers are uniformly distributed, the number of peers grows logarithmically with the total
number of nodes.

eventual accuracy both for the close nodes and the regions.
It means that no explicit indication is provided when it
is actually achieved. A stronger version (eventually strong
accuracy) could provide such an indication by synchronizing
with all peers in the close region to make sure everyone
has the same set of nodes in it and verify with them if
they compute the same far regions. That stronger version
would therefore need to wait for all nodes in the close
region to agree before delivering the set of peers. However,
the overhead of synchronization may not be necessary for
many applications (such as Kademlia’s DHT) so we prefer
the weaker version here.

5.4. Implementation

The implementation is provided in Algorithm 1 (at the
end of the paper). It follows the properties and intuitions
about xor-space in a straightforward way. It is written in an
event-driven style and assumes the internal data structures,
such as sets and dictionaries raise events when modified.
Therefore predicates on them can be used to trigger opera-
tions. Notice also that some events are triggered explicitly
for modules that are encapsuled by the implementation and
do not appear in the abstraction definition. These events
are prefixed with the module they reference. For example,
trigger < ps, SetSubscriptions|peers > triggers the event

SetSubscriptions on the ps instance of the PeerSampling
module, with the set of peers as argument.

We use PeerSampling, a module that obtains samples
of nodes from the entire network at regular intervals using
gossiping [8]. We use a special SetSubscriptions request
for PeerSampling that is used to bias the sampling node
towards regions of the space that are closer. Otherwise, if
samples were uniformly drawn from the entire space, the
probability of obtaining new samples in the close region
would become smaller as the number of nodes would grow.
The sampler therefore provides new peers from a mix of
peers of the node’s current peers and a set of random peers
from the entire network. The topology is updated with the
new samples, or when a failure is suspected.

Depending on the number of nodes in the different
regions of the topology, regions may be split or merged.
The split is straightforward and simply means the close
region is split in a close and a far region once enough nodes
are known. The merge is slightly more complicated, as the
merge may need to happen with a far region that is not
the closest. In that case all regions in-between need also
to be merged with the close region. If after merging there
are not enough nodes in the newer region to satisfy the
completeness property, then the Unstable event is raised.

In far regions, we only keep the k + h closest nodes.
This spreads the number of connections evenly between
all nodes because no node might become a peer of a high

fraction of all nodes. Other schemes would be possible. For
example, we could keep the longest running node, as done
by Kademlia (Property 2.5-2).

6. Use Cases

The Xor-Overlay Topology Manager (XTM) enables
new security mechanisms and applications to be built on
a xor-based overlay network. In this section we sketch three
of them.

6.1. Filtering Operations to the Wrong Destination

In the Kademlia design, because only the node perform-
ing a lookup has the most up-to-date information about the
running nodes (2.6.1), when a node is the target of a store
operation it cannot know if it is part of the k-closest nodes
to the target identifier or not. By default it should therefore
store the information. Using the XTM a node may compute
whether it is effectively the k-closest and filter out operations
for target identifiers for which it is not.

6.2. Building a Decentralized Chatroom using
Leader Election

Imagine a decentralized messaging application with
multiple clients exchanging messages between each other.
Clients are all in a chat room with a binary identifier r
(presumably the hash of the name of the room). The node
closest to r becomes a chat room server s and decides the
ordering of messages, replicates them on the k − 1 closest
nodes, and sends the newest messages to all clients. If s fails
then the clients reconnect to the other closest transparently.
The newer server then continues on with the replicated
history. If a new node tries to connect with an identifier
that would be closer to the chat room identifier than r’s
identifier, it is asked to reconnect with a different one by
the k-closest.

In effect, this scheme implements automatic leader elec-
tion using only the node identifiers, without any extra syn-
chronization mechanisms, by exploiting an ordered view of
the k-closest nodes. It may also be used to implement a
more general replicated state machine to implement other
kinds of stateful server services.

6.3. Building Decentralized Storage using Quorum-
based Algorithms

Imagine a decentralized storage system that stores user
information using git repositories. The individual objects
that compose the repository are immutable but the pointer
that represents the head of the repository history is mutable
so that it tracks the latest update. Moreover, the location
of the repository on the network should be stable to be
found by its user(s) and could presumably derive from a
user identifier.

An unordered view of the k-closest nodes to a target
identifier may be used to implement quorum-based algo-
rithms in which a majority of nodes need to agree for an
operation to succeed. Suppose then that amongst the k-
closest nodes to an identifier, f are likely to fail during its
execution. Then, for example, a Uniform Reliable Broadcast
(URB) primitive may be implemented by ensuring k > 2f
(See the Module 3.3 in Cachin et al. [2]). In turn the
URB primitive may be used to build a consistent replication
scheme in which if a message m is delivered by one of
the k-closest nodes (whether correct of faulty), then m is
delivered by all k-closest nodes. That replication scheme
may then serve as the basis for updating the head of the
repository.

7. Related Work

Researchers have identified accuracy problems with the
lookup procedure in Kademlia and suggested various so-
lutions. In 2009, Kang and al. [3] studied why lookups
fail in Kad, a Kademlia implementation used by eMule
(a BitTorrent client). Their work shows clear empirical
evidence that the k-closest nodes found are not accurate
because almost half of replica roots are never located for
rare objects and almost ten percent of search queries never
find the replica roots immediately after publishing. They
attributed the problem to the high-level of similarity of
routing tables and the fact that “only half of the nodes near
a specific ID are alive”. They proposed extra steps in the
lookup procedure that increase the accuracy while increasing
the latency. Three years later, Liu and al. [4]7 performed
a similar study again and found that additional factors
influenced the lookup reliability: selective denial-of-service
(malicious) nodes, misses when an operation timeouts after
having found the roots but did not have time to perform an
operation on them before the timeout occurred, in addition
to misses that happen when the roots are not found. They
suggested to perform operations on the θ-neighborhood of
an identifier that is defined as the region of the space that
shares a fixed length prefix θ and comprises all nodes within
it. Rather than modifying the lookup operation, we suggest
instead to change the invariants that decide which peers
are kept in the routing table and ensure nodes know about
all their peers in the region close to itself. Our approach
adds no latency on lookups and instead places the trade-
off between the frequency at which nodes send each other
heartbeat messages to detect failure (bandwidth used) and
accuracy. Moreover, our close region definition is similar to
the θ-neighborhood but the size of the neighborhood (close
region) shrinks automatically as the network size grows
rather than being fixed, removing the need for tuning the
θ parameter.

Other researchers have proposed ways of implementing
newer abstractions on top of a Kademlia overlay. Chazapis
and al. [9] proposed an additional update operation for a

7. We reference the more complete journal paper that was published
later.

DHT that mutates the value of a key and guarantees the
update to be consistent and atomic on all replicas in a
Byzantine distributed system model using a quorum based
algorithm. For the correct operation, they “assume that each
peer has a good knowledge of its close peers and thus will
know the quorum members of each data item it stores.”
They prudently mention that ‘depending on the way each
particular DHT implementation manages routing tables, this
may require an extra messaging step”. Our work provides
such guarantees while not requiring extra message steps
(if eventual consistency is sufficient). Czirkos and al. [10]
proposed different algorithms for broadcasting messages to
all nodes of the network that leverage the tree structure of
the routing tables for efficiency. As their approach is prob-
abilistic, it doesn’t need more accuracy or consistency than
what is already provided by the original design of Kademlia
so our work is not necessary for those applications.

8. Conclusion and Future Work

In this paper, we first provided insights about the original
Kademlia design and made explicit some design decisions
that were implicit in the original paper. We re-explained the
elegance of the lookup procedure in terms of its combined
use of ordered and unordered views of the identifier space.
We explained an insight that enable different invariants on
routing tables and a precise definition of the close region
of a node. Both enable accurate and consistent computa-
tion of the k-closest nodes to any target identifier of the
identifier space. Our invariants avoid the irregularities of
the original k-bucket design, do not require extra lookup
operations and are compatible with the original lookup
procedure, and dynamically adjust to any network size while
requiring one less parameter to tune than the θ-neighborhood
approach. We provided a clear and precise specification and
implementation of a Xor-based Topology Manager (XTM)
that maintains routing table using the invariants. We fi-
nally sketched how the XTM could be leveraged to build
new applications that go beyond the file sharing domain
of Kademlia by adapting known distributed abstractions to
leverage the unique topology of xor-based overlay networks.

Our work could be extended by formulating a precise
implementation of a strongly consistent variant of our XTM,
study the messaging overhead, and implement it in various
distributed system models. It could be used to reformulate
the original Kademlia implementation in layers to make
it easier to learn, and separating the procedures made for
correctness from those required for optimizations. Our XTM
implementation could also be formalized and automatically
checked for correctness to ensure it meets the abstraction
specification. Finally, empirical studies to verify its effect on
accuracy and consistency of k-closest nodes lookup should
ensure the practice meets the theory.

We hope this paper will motivate peer-to-peer appli-
cation developers to implement other existing distributed
abstractions on Kademlia networks and use the resulting sys-
tem as a foundation for more sophisticated self-organizing
systems.

Acknowledgment
Inspiration for this work came from trying to understand

and clearly specify how the k-closest nodes were computed
in the Safe Network implementation, itself based on Kadem-
lia and developed by MaidSafe Incorporated. This culmi-
nated in finding new invariants for accurate and consistent
computation of the k-closest nodes, which are described in
this paper.

We would like to thank MaidSafe Inc. for providing
accommodations during a short visit in Troon (Scotland)
in 2015, as well as David Irvine and Bejamin Bollen for
insightful discussions and the rest of the employees for an
enjoyable stay.

We would also like to thank other collaborators such
as Thanh Nguyen for initial guidance in research method-
ologies in distributed algorithms, Andreas Fackler for com-
ments on a previous version of this paper, and reviewers for
their comments and suggestions, which all helped greatly
improve the quality of our work.

This work was partially supported by national funds
through Fundação para a Ciência e a Tecnologia (FCT) with
reference UID/CEC/50021/2013, by the Natural Sciences
and Engineering Research Council of Canada (NSERC), and
the Fonds de recherche du Québec Nature et technologies
(FRQNT).

References
[1] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer Infor-

mation System Based on the XOR Metric,” in Revised Papers from
the First International Workshop on Peer-to-Peer Systems. Springer-
Verlag, 2002, pp. 53–65.

[2] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to reliable
and secure distributed programming. Springer-Verlag Berlin Hei-
delberg, 2011.

[3] H. J. Kang, E. Chan-Tin, N. J. Hopper, and Y. Kim, “Why Kad
Lookup Fails,” in Peer-to-Peer Computing, 2009. P2P’09. IEEE Ninth
International Conference on. IEEE, 2009, pp. 121–130.

[4] B. Liu, T. Wei, C. Zhang, J. Li, and J. Zhang, “Improving lookup
reliability in Kad,” Peer-to-Peer Networking and Applications, vol. 8,
no. 1, pp. 156–170, 2015.

[5] X. Cai and L. Devroye, “A Probabilistic Analysis of Kademlia
Networks,” in Algorithms and Computation, ser. Lecture Notes in
Computer Science. Springer, 2013, vol. 8283, pp. 711–721.

[6] C. Pornavalai et al., “Proximity neighbor selection using IP prefix
matching in Kademlia-based Distributed Hash Table,” in Electrical
Engineering/Electronics Computer Telecommunications and Informa-
tion Technology (ECTI-CON), 2010 International Conference on.
IEEE, 2010, pp. 671–675.

[7] T. D. Chandra and S. Toueg, “Unreliable Failure Detectors for Re-
liable Distributed Systems,” Journal of the ACM, vol. 43, no. 2, pp.
225–267, Mar. 1996.

[8] M. Jelasity and O. Babaoglu, “T-Man: Gossip-based overlay topology
management,” in Engineering Self-Organising Systems. Springer,
2005, pp. 1–15.

[9] A. Chazapis and N. Koziris, “XOROS: A Mutable Distributed
Hash Table,” in Proceedings of the 5th International Workshop
on Databases, Information Systems and Peer-to-Peer Computing
(DBISP2P 2007), Vienna, Austria, 2007.

[10] Z. Czirkos and G. Hosszú, “Enhancing the Kademlia P2P Network,”
Periodica Polytechnica Electrical Engineering, vol. 54, no. 3-4, pp.
87–92, 2012.

Algorithm 1 Xor-Overlay Topology Manager
1: Implements:
2: XorOverlayTopologyManager, instance xtm.
3:
4: Uses:
5: PeerSampling, instance ps;
6: EventuallyPerfectFailureDetector, instance fd.
7:
8: upon event 〈xtm, Init〉 do
9: id := 0; peers := ∅; topology := {> : ∅}; . A topology maps regions (keys) to members (values);

10: . Initialized to the entire identifier space (>
11:
12: upon event 〈xtm, Join | id′,qs〉 do peers := qs; id := id′;
13:
14: upon peers changed do trigger 〈ps, SetSubscriptions | peers〉;
15:
16: upon topology changed do
17: if ∀members ∈ topology.values, |members| ≥ k then . topology.values provides all values in the topology
18: trigger 〈xtm,Peers | peers〉;
19:
20: upon event 〈ps, Sample | qs〉 do . Update topology and groups
21: for all q ∈ qs do
22: for all region ∈ topology.keys do . topology.keys provides the set of all keys in the topology
23: members := topology[region]; . topology[region] provides the members set associated to the region
24: if q ∈ region and q /∈ members then
25: topology[region] := members ∪ {q}; . topology[region] := ... replaces the members set of a region
26: peers := peers ∪ {q};
27:
28: upon event 〈fd, Suspect | q〉 do . Handle failures
29: peers := peers− {q};
30: for all members ∈ topology.values such that q ∈ members do
31: members := members− {q}; . False suspicions are reintroduced through Peer Sampling
32:

. Split close region
33: upon topology changed and ∃region ∈ topology with members and id ∈ region such that members can be split

in two smaller groups and the smallest group size > k + h and they both cover half of the topology region do
34: close hood := xor-closest half-split of region to id;
35: far hood := xor-furthest half-split of region to id;
36: close members := {m|m ∈ members and id(m) ∈ close hood};
37: far members := {m|m ∈ members and id(m) ∈ far hood};
38: topology.remove(region); . topology.remove removes the region and associated members
39: topology[close hood] := close members; . topology[region] := ... implicitly creates the association
40: topology[far hood] := far members;
41:
42: upon topology changed and ∃region ∈ topology with members such that |members| < k do . Merge region(s)
43: for all region ∈ topology with members from biggest to smallest region such that |members| < k do
44: members := topology[region]; . Merge smaller regions
45: for all region′ ∈ topology.keys such that region′ 6= region and |region′| ≤ |region| do
46: members′ := topology[region′];
47: members := members ∪members′
48: topology.remove(region′)
49: topology[region] := members;
50: break;
51: if ∃region ∈ topology with members such that |members| < k then
52: trigger 〈xtm,Unstable | region〉; . Next samplings should add new members
53:

. Rem. extra peers in far regions
54: upon ∃region ∈ topology with members such that |members| > k + h and id /∈ region do
55: excluded members := {m|m ∈ members and id(m) is not in the closest k + h ∈ region};
56: topology[region] := members− excluded members;
57: peers := peers− excluded members;
58:

