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Abstract—The growing popularity of Android and the increas-
ing amount of sensitive data stored in mobile devices have lead
to the dissemination of Android ransomware. Ransomware is a
class of malware that makes data inaccessible by blocking access
to the device or, more frequently, by encrypting the data; to
recover the data, the user has to pay a ransom to the attacker. A
solution for this problem is to backup the data. Although backup
tools are available for Android, these tools may be compromised
or blocked by the ransomware itself.

This paper presents the design and implementation of RAN-
SOMSAFEDROID, a TrustZone based backup service for mobile
devices. RANSOMSAFEDROID is protected from malware by
leveraging the ARM TrustZone extension and running in the
secure world. It does backup of files periodically to a secure local
persistent partition and pushes these backups to external storage
to protect them from ransomware. Initially, RANSOMSAFEDROID
does a full backup of the device filesystem, then it does incre-
mental backups that save the changes since the last backup.
As a proof-of-concept, we implemented a RANSOMSAFEDROID
prototype and provide a performance evaluation using an i.MX53
development board.

I. INTRODUCTION

Ransomware (such as WannaCry [1]) has been appearing a
lot in the news. Ransomware is malware that prevents access
to data in a computer, either by locking the system’s screen or,
more frequently, by encrypting files, then demanding a ransom
from the victim to provide back that access [2]. The ransom is
typically paid in a cryptocurrency (e.g., Bitcoin or Monero).

Ransomware has begun to attack mobile devices run-
ning the Android operating system (OS) similarly to what
happened earlier with PCs [3]–[5]. Android ransomware
can be divided in two classes: lock-screen ransomware and
crypto-ransomware. Lock-screen ransomware (such as An-
droid.Lockdroid.E) blocks user interaction with the device,
for example by leveraging the SYSTEM ALERT WINDOW An-
droid permission to lock the screen. An application (app) that
has access to this permission can create system-type windows
and display them on top of every other app or window,
making it impossible to use the device. Before Android 6.0
Marshmallow, this permission was granted automatically to
any app from Google Play Store that requested it, facilitating
this form of attack [6]. Nevertheless, this class of ransomware
seems to be quite specific, as it depends on particular design
vulnerabilities.

The most common form of ransomware is crypto-
ransomware (such as Trojan-Ransom.AndroidOS.Small or
WannaCry for PCs), which encrypts files in the victim’s
device and demands payment to provide the decryption key.
Interestingly, paying the ransom may not return the files, as
sometimes the attacker does not provide the key. Moreover
files may be corrupted and cannot be decrypted. Making
regular backups of the files [7] is a common solution to this
type of attack.

There are several tools to backup and restore data and apps
in mobile devices. For example, Samsung Smart Switch [8]
and LG Bridge [9] transfer data (e.g., documents, videos,
pictures, and contacts) and apps from a mobile device to a PC
and vice-versa. Moreover, mobile OSes (such as Android and
iOS) provide utilities to easily make cloud backups. However,
the existing backup tools are run in the same execution
environment as the malware that infects the device, hence they
may be compromised or blocked by the ransomware. In fact,
malware is often able to disable anti-malware software and
other security software [10], as shown by the recent case of
HijackRAT [11]. From the attacker’s viewpoint, an effective
approach would be for the ransomware to disable the backup
tool(s) for a period of time before it starts encrypting the files,
so files that have been backed up are outdated. Furthermore, in
some cases ransomware is able to encrypt or delete the backup
files themselves, as happened with WannaCry itself, which
deletes shadow copies of a particular volume [1]. Therefore,
the backups themselves have to be protected. Unfortunately,
this is something that does not happen for the online solutions
just discussed.

TrustZone is a hardware security extension provided by
recent ARM processors to enable trusted computing [12],
[13]. The aim of TrustZone technology is to provide two
execution environments: the secure world, a trusted execution
environment where trusted code runs, and the normal world,
where untrusted code, including the mobile OS (e.g., Android)
and the mobile apps, is executed. The physical core of the
processor is divided into two virtual cores, corresponding to
the two environments. Memory space, peripherals, interrupts,
and other resource can be assigned to the secure world, hence
they are isolated from the normal world. Moreover, code
running in the secure world can access the resources of the
normal world.978-1-5386-1465-5/17/$31.00 c©2017 IEEE



This paper describes the design and implementation of
RANSOMSAFEDROID, a TrustZone-based backup service for
protecting data in mobile devices from crypto-ransomware.
We leverage TrustZone to protect RANSOMSAFEDROID from
malware running in the normal world. Because RANSOM-
SAFEDROID runs in the secure world, it is secure despite the
normal world, including the mobile OS, being compromised.
RANSOMSAFEDROID is able to make a periodical backup of
files in the normal world to a local storage partition in the
secure world, and to push these backups to external storage
(e.g, a cloud service). It offers fast incremental backups which
capture only the changes made to files since the last backup
and efficient storage compression and deduplication to remove
redundant data, thus saving backup storage space.

To the best of our knowledge, in the existing TrustZone
literature it is always the normal world that initiates a call
to a trusted service in the secure world, using the smc

instruction [14]–[20]. However, such a mechanism might be
blocked by the ransomware, hence we have to follow a
different approach and make the secure world active, instead
of passive. Specifically, RANSOMSAFEDROID is scheduled to
run automatically at specific times, without the intervention of
the normal world. For this to happen, a hardware timer is used
to generate a periodic interrupt which forces the execution of
RANSOMSAFEDROID in the secure world. This means that
ransomware running in the normal world cannot stop it.

The main contributions of this paper are: (1) the design
of RANSOMSAFEDROID, a backup service for mobile devices
that is protected using the TrustZone extension; (2) the design
of an active secure world to periodically run RANSOMSAFE-
DROID by using a hardware timer, without the possibility of
the normal world stopping it; (3) an implementation of RAN-
SOMSAFEDROID in hardware, on the NXP Semiconductors
i.MX53 Quick Start Board (QSB); and (4) an experimental
evaluation of RANSOMSAFEDROID.

II. BACKGROUND

This section provides background information on the main
technologies underlying RANSOMSAFEDROID.

A. Android Storage Architecture

Mobile devices such as smartphones normally have three
types of read/write memory: volatile RAM, non-volatile solid-
state internal storage (e.g., eMMC), and an optional non-
volatile solid-state SD card. Android apps can store persistent
configuration files and data in the device’s internal storage and
in the SD card. Android uses different filesystem partitions to
organize files and folders on the storage device. There are typ-
ically six partitions for the internal memory plus one partition
on the SD card, i.e., bootloader (/boot), kernel (/system),
device recovery (/recovery), user data (/data), data/com-
ponent cache (/cache), miscellaneous settings (/misc), and
SD card (/sdcard).

Android used the YAFFS2 [21] filesystem for the various
internal partitions including /system and /data. YAFFS2
is lightweight and optimized for NAND internal storage.

Recently, Android transitioned to ext4 as the default file
system for these partitions [22]. For compatibility, Android
also provides a filesystem to access a FAT32 formatted external
storage, as this is a commonly used file system on SD cards.

B. File Backup Schemes

Backup refers to copying files to an alternative storage
location, typically secondary or remote storage, in order to
prevent data loss due to human action, hardware and software
failures, lost/theft of the device, or accidents/disasters. There
are three main backup techniques: full backup, incremental
backup, and differential backup.

In a full backup, all the files that have been selected for
backup are copied. This approach is efficient when the number
and aggregate size of files is small, but otherwise it can
be slow. Moreover, it can be expensive if performed over a
cellular network.

Incremental and differential backups aim to solve the issues
of delay and cost. Both require an initial full backup, then
only those files that have been modified or created are copied
when subsequent backups occur. The difference between these
two is that an incremental backup considers all changes since
the previous backup (full or incremental), while a differential
backup includes all files that have been changed or added
since the last full backup. These two schemes result in faster
and smaller backups in comparison with full backup, as long
as only a small percentage of files changes before each
subsequent backup. The advantage of reducing the size of
backups is not only less storage space is needed, but also less
data that needs to be transferred over the network in the case
of remote backups.

All of the above backup methods can be combined with
other methods of reducing the backup storage space and
network bandwidth, such as data compression [23] and dedu-
plication [24], [25].

There is a vast range of compression techniques, but all are
based on the idea of removing redundancy in order to store
data in a more compact form. Compression techniques may
be lossless (the original data can be fully recovered) or lossy
(the original data cannot be entirely recovered).

Deduplication aims to remove redundancy with respect to
files stored in the same data store. In file-level deduplication, a
file is not copied if it already exists in the store. In block-level
deduplication, files are broken in blocks of the same size; a
block is not copied if it already exists in the store.

C. ARM TrustZone

ARM TrustZone [12] is a hardware security extension
incorporated into recent ARM processor designs (e.g., Cortex
A8, A9, and A15). The aim of this technology is to enable a
device to offer both a feature-rich open operating environment
and a robust security solution by partitioning the system-on-
chip hardware and software into two execution environments
or worlds: the secure world that runs trusted apps on top
of a small trusted OS; and the normal world that runs
untrusted apps on top of a rich OS such as Android. The



secure world is logically separated from the normal world, but
exists in the same physical CPU. A context switch between
these two worlds is triggered by an interrupt, typically a
software interrupt triggered by a call to the secure monitor
call (smc) instruction. ARM TrustZone enables any part of the
system to be assigned to the secure world. The normal world
cannot access those system resources (e.g., memory space and
peripherals) that are assigned to the secure world; while the
secure world has access to the normal world’s resources.

III. RANSOMSAFEDROID

This section presents the architecture and design of RAN-
SOMSAFEDROID.

A. Threat Model and Assumptions

We assume a device with an ARM processor with the
TrustZone extension. RANSOMSAFEDROID runs in the secure
world, isolated from the normal world. In order to minimize
the size of the trusted computing base (TCB) [26], i.e., the
software in the secure world, we run a small custom kernel
in that world, and do not include a network stack. We assume
the secure world software, including RANSOMSAFEDROID, is
verified as trusted. In contrast, we assume that the software
running in the normal world, including the mobile OS (typ-
ically Android), may be malicious or compromised, e.g., by
ransomware.

The device is configured with a hardware timer reserved
for the secure world. While malware or attackers might be
interested in disabling this timer, we assume they cannot
access or compromise the resources assigned to the secure
world. We also assume that, if the user wishes to initiate
a restore of their files, the user interface for this operation
is secured by using TrustZone (this has previously been
addressed in [19]). In all cases we assume that the attacker
does not have physical access to the device.

B. Architecture

The architecture of RANSOMSAFEDROID is shown in Fig-
ure 1. The normal world runs a mobile OS and apps, whereas
the secure world runs RANSOMSAFEDROID on top of a small
trusted OS that provides basic OS functions (e.g., process
management, file access, and memory management).

The secure storage is a private persistent partition used for
local backup storage. It is isolated in the secure world, i.e., it
cannot be accessed by the normal world. This way, backups are
protected from malware running in the normal world despite
the mobile OS being compromised by ransomware.

RANSOMSAFEDROID has three software modules: local
backup, external backup, and restore. The local backup module
copies files in the normal world into the local secure storage,
whereas the external backup module pushes backups stored in
secure storage to an external device, a remote server, or cloud
computing service (e.g., Amazon S3 or Google Drive). The
restore module copies files from a backup (local or remote)
into the normal world, removing the effects of ransomware
attacks or other failures.

C. Active Secure World

To protect mobile devices from ransomware, not only must
the backups be protected, but the adversary must be prevented
from denying the execution of the backup/restore operations.
Therefore, backups/restores cannot be initiated by a process
in the normal world. This implies that the secure world has to
be active, i.e., has to run RANSOMSAFEDROID without being
called. As far as we are aware, this is the first such TrustZone
use proposed in the literature.

In order to generate an interrupt to initiate backup/restore
operations, RANSOMSAFEDROID configures a hardware timer
to be accessible only by the secure world, preventing the
normal world from disabling it. This timer will generate a
periodic interrupt that triggers the execution of the secure
world. In the discussion that follows we focus specifically
on the local backup module as this is likely to be the most
frequent operation.

The period Tsw (secure world execution period) is config-
urable. There is a tradeoff when setting Tsw as with a longer
period the higher the probability some important file may not
be backup when an attack happens; a shorter period increases
the overhead, as the normal world execution is more frequently
interrupted and the more likely it is that there are no changes
in files to be processed.

The assigned hardware timer is not part of the ARM
processor itself, but of the device, so it depends on the specific
hardware used. Section IV explains the configuration for the
i.MX53 board that was used to implement the prototype.

Next we present the main components of RANSOMSAFE-
DROID (as shown in Figure 1).

D. Local Backup Module

The local backup module copies files from the normal world
and saves them to the secure storage in the secure world, for
a later restore if the device is attacked and files are encrypted
by ransomware.

This module creates in the secure storage (in the secure
world) an index of the files and directories in the filesystem
that is being backup (from the normal world). This index stores
a list of files and their attributes, along with hashes over the
files. This data is used to track the files in the index that have
been updated since the last backup.

This module utilizes an incremental backup to save both
space and time. Files are divided into blocks of data and
each block is separately indexed by its hash/checksum. The
scheme uses rolling checksums based on the rolling checksum
algorithm from the rsync tool [27] to compare the file blocks,
for determining the difference between two files and to save
only the difference. This scheme allows identification of even
small differences in large files, hence minimizing the number
of blocks that have to be stored in the backup.

As explained in Section II-B, the first backup has to be a full
backup. Doing a full backup of an Android filesystem takes
some time, as it typically involves copying gigabytes of data.
Moreover, mobile devices tend to be slower than PCs, with
respect to processor speed, internal bandwidth, and memory



Fig. 1. Architecture of a mobile device running RANSOMSAFEDROID. The grey boxes are components of RANSOMSAFEDROID.

speed. However, the overhead of the full backup does not have
an impact on usability, as it should be done before the device
enters normal operation. For example, it can be done by the
device manufacturer before it is sold to the end-user.

Moreover, the backup module uses both compression and
deduplication. In terms of compression, the idea is simply
to compress the files using zip-like lossless compression
algorithms. In relation to deduplication, the idea is to use
hashes of the file blocks to identify and remove redundant
data across files and generations of backups. If the backup
repository already contains a particular block of data, it will
be re-used and the duplicated block of data will be replaced
with a link. This feature can significantly reduce the amount
of storage space needed for backups, which is important for
mobile devices since they normally have limited storage space.

The secure storage should be large enough to contain the full
backup and the increments, but it cannot have infinite space. To
deal with this limitation, the major mechanism is the external
backup (next section). Moreover, if the space available goes
below a certain threshold, the user may be told explicitly to do
an external backup, e.g., using an Android notification (that
appears on the top of the screen).

E. External Backup Module

Local backups are effective against ransomware, but not
against other more classical threats, such as the device being
lost, stolen, or destroyed. Therefore, we extend the basic RAN-
SOMSAFEDROID design with the ability to perform backups
to external storage, e.g., to remote servers or to a remote cloud
computing storage service.

As local backups are already compact, the remote servers
simply maintain a copy of the local backups. A naive solution
would be to simply copy all new and modified files to the
remote storage whenever they appear in the (local) secure
storage. However, this would considerably increase the over-
head of doing the backups. Therefore, we use an opportunistic
and cautionary approach: whenever a local backup module
is executed, it measures the time it takes to run, i.e., tlb
(local backup time). Then, it passes control to the external
backup module that copies files to remote storage during at
most tmax − tlb units of time (if positive). The interval of

Fig. 2. Backup period and other relevant times.

time tmax (maximum time) is a configurable parameter that
indicates the maximum time the backup process should take,
i.e., that the secure world should run in every period Tsw. It
is important to limit this time because ARM CPUs do not do
time sharing between the two worlds, hence when the secure
world is running the normal world is blocked (and vice-versa).
These times are represented in Figure 2.

External backups can be done in two ways. The first is
by connecting a storage device (e.g., an external disk or an
SD card) directly to the mobile device. This solution requires
allocating the I/O devices needed for this purpose to the secure
world in order to prevent malware in the normal world from
corrupting such backups. Second, the backup can be done via
a network. As we explained earlier, the secure world does not
contain a network stack in order to reduce the size of the
TCB. Therefore, backups via the network have to be done
with the assistance of a gateway app in the normal world
(not shown in the figure, as this is optional). Additionally,
end-to-end encryption and message authentication codes for
security must be used (similarly to the solution in [16]). As
a result, malware in the normal world may be able to prevent
this communication, but cannot corrupt it. Nevertheless, recall
that the purpose of remote backups is not to protect against
ransomware but rather to protect against other forms of threats.

F. Restore Module and App

This module has the role of restoring files when needed. It
has the ability to restore files from local or remote storage.

The restore operation is normally started using a restore
app that is executed in the normal world and allows the
user to define how the restore is done. This app calls the
restore module in the secure world using the smc instruction.
The user has to provide authentication credentials in order to
prove to RANSOMSAFEDROID that they are a legitimate user,



rather than an adversary. The authenticity of the app may be
checked using TruApp, a TrustZone-based service to check
app authenticity and integrity [20].

When a restore is done after a ransomware attack, most
likely the most recent backups will consist of encrypted files.
Incremental backups allow dealing with this problem by not
recovering the increments that correspond to encrypted files.
The detection of which increments correspond to encrypted
files can be done using a few heuristics. First, when a whole
filesystem is encrypted by ransomware, there must be an easy
to observe peak in the number of files to be backup, from a
few to many. Second, the restore app may include a scheme to
detect which files are encrypted, e.g., using entropy analysis
[28].

The restore operation tends to be quite slow, because it
has first to copy the initial full backup, then all the changes
that were made. However, while the backups are executed
during normal operation, restore is an exceptional operation,
executed only when a problem occurs (e.g., a ransomware
attack). Therefore, the time to restore is not considered critical
for the usability of RANSOMSAFEDROID.

IV. IMPLEMENTATION

In this section, we discuss the implementation of the RAN-
SOMSAFEDROID prototype on an i.MX53 QSB board. The
board is equipped with a Cortex A8 single-core 1 GHz pro-
cessor and 1 GB RAM (DDR memory). We choose this board
because most commercial TrustZone enabled smartphones are
locked and do not allow programming the secure world.

In order to minimize the size of the TCB in the secure
world, we setup a small trusted OS based on a custom kernel
(base-hw) provided by the Genode labs [29] for our board.
In the normal world, we installed a version of Android for
the i.MX53 series from Adeneo/Freescale [30]. The kernel is
patched by the Genode project to be executed in the normal
world. The DDR RAM is partitioned into secure world and
normal world address ranges.

A TrustZone monitor called tz vmm is implemented in the
secure world as a user level program that runs on top of
the Genode kernel. In the secure world, we implemented
RANSOMSAFEDROID based on tz vmm. We configured the
Android filesystem partitions to be accessed by the secure
world, so RANSOMSAFEDROID modules can access and copy
files in the normal world.

A secure storage space has to be reserved in the secure
world, to be accessible exclusively by the secure world com-
ponents, in order to store the local backups (secure storage in
Figure 1). We use the Genode partition manager (part blk) for
this purpose. It makes each partition on a SD card available as
a block session. This allows the partitions to be addressable
as separate block sessions and makes it is easy to grant or
deny access to them. In our prototype, we used this scheme to
assign an SD card partition to the secure world. In the current
prototype, we allocated 50 GB of secure storage space from
a total of 128 GB space available on a microSDHC UHS-I

Class U3 card. This card supports speeds up to 90 MB/s for
reads and 80 MB/s for writes.

In the prototype, the local backup module is based on bup
[31], an open source backup tool, selected after comparing
the performance of five similar software packages. bup is an
efficient file backup software based on the git packfile format.
bup offers incremental backups, compression using the zlib
library (the default in the git packfile format), and storage
deduplication, thus providing backup time and space savings.
This tool has several modules, including the index module to
create an index of files, and the save module that creates a
new backup. Unfortunately, bup is written in Python, which
requires adding the Python runtime to the TCB. Nevertheless,
this is just a prototype and for production purposes bup should
be replaced by code written in C/C++ or another language that
does not require a runtime engine. Moreover, the bup website
acknowledges that “Writing more parts in C might help with
the speed” [31].

In order to make the secure world active, we used the
enhanced periodic interrupt timer (EPIT) available on the
i.MX53 board [32]. EPIT is a 32-bit set-and-forget timer. A
driver for the EPIT timer has been implemented by the Genode
project in the base-hw kernel running in the secure world,
allowing the configurable periodic execution of the secure
world. In i.MX53, groups of I/O devices are assigned to one
of the worlds using configuration bits of the central security
unit (CSU), similarly to what happens with the protection
controller used on ARM’s versatile express platform [29]. In
our configuration, a group containing the EPIT is assigned
to the secure world. This is done essentially by modifying a
Genode configuration file (csu.h), where hardware assigned
to the secure world is tagged secure, whereas hardware
assigned to the normal world is tagged unsecure.

We focused most of our implementation effort in the mech-
anisms just described, which are the most relevant for the
normal operation of RANSOMSAFEDROID. On the contrary,
the implementations of the external backup module, the restore
module and the restore app are not finished yet.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate RANSOMSAFEDROID in terms
of backup latency and storage efficiency by considering three
different circumstances: initial backup, runtime backups, and
null backups. We consider only local backups, because this is
the main functionality of RANSOMSAFEDROID and the per-
formance of remote backups depends strongly on the tmax and
tlb parameters as well as the properties of the communication
with the remote store. As explained in Section III-F, we also
do not evaluate the restore time because this is considered to
be an exceptional operation that does not impact usability.

A. Initial Backup

We conducted experiments to understand the cost of an ini-
tial (full) backup in terms of time and storage space. To make
these experiments realistic, we used a real Android filesystem
with a 1.1 GB storage size. We ran RANSOMSAFEDROID
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Fig. 3. Initial/full backup with different Android filesystem sizes.

to perform a full backup of all files in this filesystem, and
measured elapsed time and size of the backup created in the
secure storage (in the secure world). Additionally, we repeated
this experiment for different filesystem sizes: 2.2 GB, 3.3 GB,
4.4 GB, and 5.5 GB. For this purpose, we prepared different
filesystems by adding new files to the real Android filesystem
in multiples of 1.1 GB. We use the genbackupdata tool [33],
which generates test data sets for performance evaluation of
backup tools. Each data set consists of files and directories.
Files can be either text files or binary files. In these tests we
used 10 equally sized files and set equal percentages of text
files and binary files.

The results of these experiments are shown in Figure 3. A
first conclusion is that the full backup takes a considerable
time, e.g., 6.1 minutes for the smaller filesystem and 18.3 for
the largest. This may seem to be deterrent for the use of this
service; but, as explained in Section III-D, the full backup can
be done before the device is in normal use, even before it
is sold to the end-user. A second conclusion is that the time
grows approximately linearly with the size of the filesystem.
Finally, it is noteworthy that the read/write speeds of the SD
card are not the performance bottleneck, as the time to read
and write 5.5 GB from the card at the (maximum) speeds of
90 and 80 MB/s is 2.16 minutes, which is far less than the
observed 18.3 minutes. The bottleneck is the CPU speed, as
the CPU used on the i.MX53 has 1 GHz clock speed.

Next, we did an experiment to show that it is possible to
reduce the time of the full backup by doing it in steps. For
that purpose, we evaluated the performance of a full backup
of each partition or sub-tree in the filesystem. The 1.1 GB
Android filesystem in the current prototype has 5 partitions:
cache, recovery, system, data, and sdcard. For each
partition, we measured the total time to complete a full backup
of the partition and the storage space used by the backup data.
We show these results in Figure 4. It is possible to observe
that the total time for the full backup is greater than the 6.1
minutes observed in Figure 3. However, the times to backup
the individual partitions is smaller, so they might be easier to
do during idle times, if that was required.

B. Runtime Backups

The overhead of runtime backups depends on two factors:
the period of the incremental backups (Tsw) and their size. As
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the period is configurable, we did not take it into account in the
evaluation. However, one might assume that this could occur
when the device is otherwise unused and recharging (perhaps
each night).

We considered the case of the size of a filesystem increasing
by 1% in every step to emulate incremental changes. For this
purpose, we took as a basis the full backup of the 1.1 GB
filesystem, then we created new files using the genbackupdata
tool as described earlier.

We performed two experiments by considering the number
of new files created in each step after the initial full backup of
the Android filesystem. In the first experiment, we increased
the size of the filesystem by 1% with 10 equally sized files
in each incremental backup; in the second experiment we also
incremented the size of the filesystem with different numbers
of equally sized files in powers of 10 (e.g., 10, 100, 1000 and
10000 files) in each step. Note that the total number of bytes
that are backed up in each incremental backup are the same
in both experiments: 1% of the size of the filesystem.

We measured the latency and backup size for the two
experiments. We show the results in Figures 5 and 6. A
first conclusion is that the times are much smaller than those
observed for the full backup, as expected as the amount of
the data is much smaller (times are in seconds, no longer in
minutes). A second conclusion is that backups of more files
take more time, e.g., the backup of 11 MB with 10 files and
100 files – second backup – takes respectively 3.0 and 4.1
seconds.
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C. Null Backups

Finally, we also measured the time it takes to run RAN-
SOMSAFEDROID and do an incremental backup when the
filesystem did not change, i.e., the time spent with null
backups. This may happen quite often, depending on the
periodicity with which RANSOMSAFEDROID is executed (i.e.,
depending on Tsw), hence it is important to understand how
much time null backups take.

As before, we considered different sized filesystems (i.e.,
1.1 GB, 2.2 GB, 3.3 GB, 4.4 GB and 5.5 GB) and configured
RANSOMSAFEDROID to periodically perform 10 null incre-
mental backups for each filesystem size. We show the average
of these 10 results for each different size of filesystem in
Figure 7. We observe that the time needed to perform a null
backup for all filesystem sizes is approximately 2 seconds on
our board. This is the time necessary for RANSOMSAFEDROID
to check if any change has been made since the last backup.
The time may be even longer if the numbers and size of files
in the filesystem are higher. Interestingly, the time seems to
be independent of the size of the filesystem analyzed.

We studied if it is possible to reduce this delay of 2 seconds
by implementing an alternative mechanism to check if files
were modified. For that purpose, we implemented a small
script using the find command. We obtained a delay of 20
milliseconds, with a standard deviation of 6 milliseconds,
which are much better values. This supports our claim that
it is possible to improve performance with a more efficient
implementation of the backup code, e.g., written in C/C++.

Notice that these times are measured between the moment

the secure world starts to run until it returns, so they do
not include the time for context switching between the two
worlds. It is not possible to measure this latter time using
the interrupt caused by the timer, so we created a routine
to trigger the secure world by calling the smc instruction in
the normal world, then returning immediately. This time is
measured in the normal world just before and after the trigger.
We obtained an average time of 45 microseconds (averaged
over 1000 repetitions).

VI. RELATED WORK

There is a large variety of backup software for keeping
copies of all data (photos, videos, music files, and contacts)
and apps installed on smartphones and tablets. Some backup
apps, e.g., Samsung Smart Switch [8] and LG Bridge [9],
transfer data and apps to a PC using a USB cable and vice-
versa. Mobile OSes such as Android and iOS also provide
utilities that facilitate backing up of data to a remote storage
cloud. Furthermore, Android also provides the Auto Backup
API for developers to add backup functionality to their apps
[34]. This API allows apps to backup data by uploading it
to the user’s Google Drive account, where it is protected by
the user’s Google account credentials. Nevertheless, all these
backup schemes are exposed to malware as they run inside
an untrusted execution environment where other applications
and the mobile OS run [10], [11], [35]. Their security is based
on a set of assumptions that are often broken: no permissions
should be granted to download apps, no vulnerabilities should
exist in certain apps, no vulnerabilities exist in the mobile OS,
etc. In contrast, we use ARM TrustZone to protect our backup
mechanism, based on the isolation it provides.

TrustZone has been utilized to provide a large set of security
services [14], [16], [18]. For instance, T2Droid [17] enables
secure dynamic analysis of Android apps by leveraging Trust-
Zone. The Trusted Language Runtime (TLR) [14] provides
a framework to separate application security logic, called
a trustlet, from the rest of the application and runs it in
the ARM TrustZone secure world. Several works on secure
storage have proposed mechanisms to protect sensitive data
such as private keys, that are only accessible to small security
critical programs using the TrustZone [18], [19]. However,
none of these works provides a backup solution or focuses on
protection from ransomware, unlike our work. Moreover, all
of these programs are designed such that it is the normal world
that calls the secure world. In contrast, RANSOMSAFEDROID
leverages an active secure world by using a hardware timer
to initiate the secure world without intervention of the normal
world.

Currently, most backup apps place the backed up files in
rented remote servers or cloud storage, which do not belong to
the owner of the files. This may lead to personal or confidential
data being accessed without the consent of the owner [36],
[37]. However, RANSOMSAFEDROID use a secure storage
partition in the user’s device, isolated from the untrusted
execution environment, to store backups, thereby protecting
unauthorized access to backup data. Additionally, data to be



stored in a remote data store could be encrypted using a key
stored only in the trusted local storage, thus protecting even
externally stored backups.

File backup is a very old topic [7], [38], [39], but most
of the emphasis of such earlier work was on backup speed
and space efficiency. Our work, on the contrary, targets recent
mobile devices that have particular characteristics, and focuses
on protecting the backup mechanism using a modern hardware
security extension (TrustZone).

VII. CONCLUSION

As mobile devices such as smartphones increase in popular-
ity, so does the amount of sensitive data that people store on
these devices. Seeing this as an opportunity, ransomware has
begun to attack Android phones, mainly by encrypting files on
these devices. Having a regular backup of files using backup
applications is a common solution to the problem. However,
the current backup systems are designed to run in the same
execution environment as malware, hence this malware is able
to block or disable these mechanisms. This paper presents
the design, implementation, and experimental evaluation of
RANSOMSAFEDROID, a backup system that is protected from
malware by leveraging ARM TrustZone and allows backing
up files in a persistent local secure storage.
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