
25-11-2010

1

2010 Odisseia no Software2010 Odisseia no Software

Miguel Pupo CorreiaMiguel Pupo Correia
Universidade de Lisboa , Faculdade de Ciências, LASIGE

Confraria de Segurança, TB Store, Nov. 23, 2010

Motivations for giving this talk

• Há tempo que queria falar
na Confraria na Confraria

• Segurança no Software
– Miguel P. Correia, Paulo J. Sousa

– FCA, Set. 2010

2

• http://segurancanosoftware.blogspot.com/

25-11-2010

2

Motivation

• “We wouldn’t have to spend so much time, money, and effort on
network security if we didn’t have such bad software security”

– Viega & McGraw, Building Secure Software, Addison Wesley 2002

• “the current state of security in commercial software is rather
distasteful, marked by embarrassing public reports of vulnerabilities
and actual attacks (…) and continual exhortations to customers
to perform rudimentary checks and maintenance.”

– Jim Routh, Beautiful Security, O'Reilly, 2010

3

• “Software buyers are literally crash test dummies for an industry that
is remarkably insulated against liability”

– David Rice, Geekonomics: The Real Cost of
Insecure Software, Addison-Wesley, 2007

The problem is Software: Stuxnet

• Malware for industrial control systems, probably those of
“critical infrastructures” (power, gas, water,…)(p , g , ,)
– Modifies programmable logic controllers (PLCs) that control

these systems (weird but software too!)

• Some features:
– Self-replicates through USB drives exploiting a vulnerability

allowing auto-execution
– Spreads in a LAN through a vulnerability in the Win.Print Spooler

Spreads through SMB by exploiting a Windows RPC vulnerabil

4

– Spreads through SMB by exploiting a Windows RPC vulnerabil.
– Exploits another 2 unpatched privilege escalation vulnerabilities
– Contains a Windows and a PLC rootkit
– And many others…

– Source: Symantec W32.Stuxnet Dossier, Sep. 2010, version 1.0

25-11-2010

3

Stuxnet: possible impact

• CNN, Sept. 2007

“Researchers who launched an experimental cyber• Researchers who launched an experimental cyber
attack caused a generator to self-destruct”
– Financed by the Dep. Homeland Security

– http://edition.cnn.com/2007/US/09/26/power.at.risk/

5

Only industry’s fault?

• “We at Oracle have (...) determined that most developers
we hire have not been adequately trained in basicwe hire have not been adequately trained in basic
secure coding principles (…)

• In the future, Oracle plans to give hiring preference to
students who have received such training and can
demonstrate competence in software security principles.”
– Mary Ann Davidson, Oracle’s Chief Security Officer

6

25-11-2010

4

Problem is in the software

The characteristics of current software:

Complexity• Complexity
– Attacks exploit bugs called vulnerabilities

– Estimated 5-50 bugs per Klines of code

– Windows XP 40M

• Extensibility
– What software is in your laptop? OS + production sw + patches +

3 d t DLL d i d i l i

7

3rd party DLLs + device drivers + plug-ins + …

• Connectivity
– Internet (1 billion users) + control systems + PDAs + mobile

phones + …

This talk

• Motivation

The problem: Vulnerabilities• The problem: Vulnerabilities

• The solution: Techniques and Tools

• Conclusions

8

25-11-2010

5

The problem: Vulnerabilities

9

The problem

• Vulnerability + Attack Intrusion Security Failure
i e violation of confidentiality integrity availability– i.e., violation of confidentiality, integrity, availability

TARGET SYSTEM
vulnerability

attack

10

failureerrorintrusion

attack surface

25-11-2010

6

The problem

• From the software point of view, the problem are its
defects i e its vulnerabilitiesdefects, i.e., its vulnerabilities
– Design vulnerability: inserted during the software design

(e.g., lack of access control)

– Coding vulnerability: a bug
(e.g., missing end of buffer verification)

– Operational vulnerability: caused by the
environment in which the software is

t d it fi ti (k d)

11

executed or its configuration (e.g., weak passwd)

• “the team leaders conveniently assumed that security
vulnerabilities were not defects and could be deferred for
future enhancements or projects” - Jim Routh, op. cit.

Coding vulnerabilities

There are many classes; we are going to see the top 3:

• Buffer overflows – traditionally most important (OSs,

binary apps)

• SQL injection

• Cross site scripting
more advisories than BOs
since 2006 (web apps)

12

25-11-2010

7

BO – Stack Smashing

• Stack smashing is the “classical” stack overflow attack

Vulnerable code (inserts untrusted data in buffer without• Vulnerable code (inserts untrusted data in buffer without
checking the limits):

void test(char *s) { //s is untrusted

char buf[10]; //gcc stores extra space

strcpy(buf, s); //doesn’t check buffer’s limit

}

address of buf

address of s

buf

ac
k

fr
am

e
nc

tio
n

te
st

)

13

}

overflow saved ebp

ret address

S
ta

(f
un

BO – Stack Smash. w/code injection

• Attacker executes arbitrary code in the victim’s machine:

address of buf

address of s

buf
malicious binary

function returns to
the address of the

14

overflow saved ebp

ret address

code

address of m.c.

malicious code

25-11-2010

8

BO – Arc injection / return-to-libc

• Attacker forces jump to code somewhere else:

address of buf

address of s

bufanything, except
maybe for

parameters for

libc (e.g., system)
or other

interesting code
in the process
address space

15

overflow saved ebp

ret address

parameters for
the function

called

address of func.

SQL Injection

• Totally different target: web applications

Server
HTML

HTTP / HTTPS / …

Client
(browser)

DataBase

16

HTML
Server side scripting – PHP, ASP,…

…

(browser)
HTML, multimedia

JavaScript
…

25-11-2010

9

SQL Injection – basic

• The attack:
User provides inputs to the server– User provides inputs to the server

– Inputs are inserted in queries to the DB

– Client input with SQL metacharacters inserted in SQL queries

• Example – vulnerable PHP code in the server:
$order_id = $HTTP_POST_VARS [‘order_id’];

$query = “SELECT * FROM orders WHERE id=” . $order_id;

$ lt l ($)

17

$result = mysql_query($query);

• Good input: 123
– SELECT * FROM orders WHERE id=123

• Attack input: 1 OR 1=1
– SELECT * FROM orders WHERE id=1 OR 1=1

Cross Site Scripting (XSS)

• Also for webapps but the victim is the client/user
• Attack consists in running a malicious script in theAttack consists in running a malicious script in the

browser of the victim (e.g. JavaScript)
• Example:

– User does not trust email scripts but trusts the vulnerable site

Victim:

e il sc ipt

Attackeremail

18

“click here”

vulnerable web application
 reflects a script send by the victim

evil script

evil script
reflected

browser
runs evil
script

message posted is a script that pops up window

25-11-2010

10

Other vulnerabilities

• Race conditions

Input validation command injection• Input validation – command injection,
format string vulnerabilities

• Web – session management,
direct reference to objects,
cross site request forgery, …

• Malicious host – software piracy and tampering, fraud in

19

online applications

• Besides many variants of those we just saw…

The solution: Techniques and
Tools

20

25-11-2010

11

Solution 1 – Robust coding

• Buffer overflows
Simply check if there is enough space in the destination buffer– Simply check if there is enough space in the destination buffer

• SQL injection
– Sanitize the inputs (it’s easier to say than do)

• Cross Site Scripting
– Sanitize the inputs, encode the outputs (but it’s also easier…)

21

• but errare humanum est,
code can be huge…

Solution 2 – Runtime protection

• Canaries / Stack cookies
Like canaries in coal mines– Like canaries in coal mines

• Compiler introduces canaries and checks
void test(char *s) {

push canary;

char buf[10];

strcpy(buf, s);

address of buf

address of s

22

…

if (canary is changed) {log; exit;};

}

buf

saved ebp

ret address

canary

overflow

25-11-2010

12

Solution 2 – Runtime protection

• Address space layout randomization

The idea is to randomize the addresses where code and• The idea is to randomize the addresses where code and
data are mapped in runtime
– The memory layout tends to be the same for every execution

– Does not prevent exploitation but usually makes it unreliable –
what address shall be written over the return address?

23

Solution 3 – Static code analysis

• Vulnerabilities are in the source code so a solution is…
to look for themto look for them
– But it’s like finding a needle in the haystack

• Code analyzers do it automatically
– “read” the (source) code and check

if certain rules are satisfied
(e.g., is memory free’d twice?)

• Commercial tools are available

24

Commercial tools are available
– Fortify, Coverity, Ounce Labs

25-11-2010

13

Solution 3 – Static code analysis

• Code analyzers work essentially in two phases
Generate an Abstract Syntax Tree AST (like a compiler)– Generate an Abstract Syntax Tree – AST (like a compiler)

– Search for vulnerabilities in the AST; several ways:

• Syntactic analysis – check if “dangerous” functions are
called (e.g., gets almost always vulnerable)

• Type checking – check if data is manipulated according
to its type (e.g., unsigned int = int is problematic)

25

• Taint checking – follow the data flow and check if input
reaches dangerous functions (e.g., strcpy)

• Control-flow analysis – follow the control flow paths
and do several checks (e.g., if there are double frees)

Solution 4 – Attack injection/fuzzing

• Look for vulnerabilities without delving into the
complexity of the software i e looking at it as a blackcomplexity of the software, i.e., looking at it as a black
box

TARGET SYSTEM

vulnerability

failureerrorintrusion

attack

26

Look for errors /
failures

(2)Generate various
attacks

(1)

Find the correspondent
vulnerability for that
particular attack

(3)

25-11-2010

14

Solution 4 – Attack injection/fuzzing

• Fuzzers
Late 80s/early 90s Miller/Fredrikse/So were studding the integrity– Late 80s/early 90s Miller/Fredrikse/So were studding the integrity
of Unix command line utilities

– During a thunderstorm one was attempting to use the utilities
over a dial-up connection but the utilities were crashing

– Data was being modified in the line due to noise

– Thus they developed an utility called fuzz to generate random
input and test the robustness of software

27

• Currently used to find vulnerabilities in software
– Very successfully…

Solution 4 – Attack injection/fuzzing

• Recursive fuzzing
Iterating though all possible combinations of characters from an– Iterating though all possible combinations of characters from an
alphabet

– Ex.: URL followed by 8 hexadecimal digits; try all possible
combinations of the 8 digits

• Replacive fuzzing
– Iterating though a set of predefined values, called fuzz vectors

– Ex.: look for XSS vulnerabilities by providing the following inputs:

28

Ex.: look for XSS vulnerabilities by providing the following inputs:

• >"><script>alert("XSS")</script>&

• '';!--"<XSS>=&{()}

• Attack injection (AJECT project)
– Pick a state for the target and an input to inject; put the target in

that state; inject; monitor; repeat

25-11-2010

15

Other solutions

• Security-aware software development processes

Software auditing• Software auditing

• Testing

• Validation and encoding

• Programming language security

• Virtualization

• Trusted computing

29

• Trusted computing

• Besides many variants of those we just saw…

Conclusions

30

25-11-2010

16

Conclusions

• Software security is important + interesting + difficult
New vulnerabilities every day– New vulnerabilities every day

– New types of vulnerabilities every year

– New solutions every…

• Requires
– Knowing current vulnerabilities

– Know the new ones that appear (especially new types)

K th l ti d th

31

– Know the solutions and use them

– Run tools, run tools, run tools

Thank you. Questions?

• To probe further:

32

• Miguel Pupo Correia
http://www.di.fc.ul.pt/~mpc/
http://www.seguranca-informatica.net/

